Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
George | 3578 | 94.91% | 1 | 3.70% |
Larry Finger | 105 | 2.79% | 13 | 48.15% |
Joe Perches | 68 | 1.80% | 6 | 22.22% |
Taehee Yoo | 10 | 0.27% | 2 | 7.41% |
Michael Straube | 6 | 0.16% | 3 | 11.11% |
Cong Ding | 2 | 0.05% | 1 | 3.70% |
Ping-Ke Shih | 1 | 0.03% | 1 | 3.70% |
Total | 3770 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "../wifi.h" #include "../pci.h" #include "../usb.h" #include "../ps.h" #include "../cam.h" #include "../stats.h" #include "reg.h" #include "def.h" #include "phy.h" #include "rf.h" #include "dm.h" #include "mac.h" #include "trx.h" #include "../rtl8192c/fw_common.h" #include <linux/module.h> /* macro to shorten lines */ #define LINK_Q ui_link_quality #define RX_EVM rx_evm_percentage #define RX_SIGQ rx_mimo_sig_qual void rtl92c_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); enum version_8192c chip_version = VERSION_UNKNOWN; const char *versionid; u32 value32; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); if (value32 & TRP_VAUX_EN) { chip_version = (value32 & TYPE_ID) ? VERSION_TEST_CHIP_92C : VERSION_TEST_CHIP_88C; } else { /* Normal mass production chip. */ chip_version = NORMAL_CHIP; chip_version |= ((value32 & TYPE_ID) ? CHIP_92C : 0); chip_version |= ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0); if (IS_VENDOR_UMC(chip_version)) chip_version |= ((value32 & CHIP_VER_RTL_MASK) ? CHIP_VENDOR_UMC_B_CUT : 0); if (IS_92C_SERIAL(chip_version)) { value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM); chip_version |= ((CHIP_BONDING_IDENTIFIER(value32) == CHIP_BONDING_92C_1T2R) ? CHIP_92C_1T2R : 0); } } rtlhal->version = (enum version_8192c)chip_version; pr_info("Chip version 0x%x\n", chip_version); switch (rtlhal->version) { case VERSION_NORMAL_TSMC_CHIP_92C_1T2R: versionid = "NORMAL_B_CHIP_92C"; break; case VERSION_NORMAL_TSMC_CHIP_92C: versionid = "NORMAL_TSMC_CHIP_92C"; break; case VERSION_NORMAL_TSMC_CHIP_88C: versionid = "NORMAL_TSMC_CHIP_88C"; break; case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT: versionid = "NORMAL_UMC_CHIP_i92C_1T2R_A_CUT"; break; case VERSION_NORMAL_UMC_CHIP_92C_A_CUT: versionid = "NORMAL_UMC_CHIP_92C_A_CUT"; break; case VERSION_NORMAL_UMC_CHIP_88C_A_CUT: versionid = "NORMAL_UMC_CHIP_88C_A_CUT"; break; case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT: versionid = "NORMAL_UMC_CHIP_92C_1T2R_B_CUT"; break; case VERSION_NORMAL_UMC_CHIP_92C_B_CUT: versionid = "NORMAL_UMC_CHIP_92C_B_CUT"; break; case VERSION_NORMAL_UMC_CHIP_88C_B_CUT: versionid = "NORMAL_UMC_CHIP_88C_B_CUT"; break; case VERSION_TEST_CHIP_92C: versionid = "TEST_CHIP_92C"; break; case VERSION_TEST_CHIP_88C: versionid = "TEST_CHIP_88C"; break; default: versionid = "UNKNOWN"; break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Chip Version ID: %s\n", versionid); if (IS_92C_SERIAL(rtlhal->version)) rtlphy->rf_type = (IS_92C_1T2R(rtlhal->version)) ? RF_1T2R : RF_2T2R; else rtlphy->rf_type = RF_1T1R; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R"); if (get_rf_type(rtlphy) == RF_1T1R) rtlpriv->dm.rfpath_rxenable[0] = true; else rtlpriv->dm.rfpath_rxenable[0] = rtlpriv->dm.rfpath_rxenable[1] = true; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); } /** * writeLLT - LLT table write access * @io: io callback * @address: LLT logical address. * @data: LLT data content * * Realtek hardware access function. * */ bool rtl92c_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { pr_err("Failed to polling write LLT done at address %d! _LLT_OP_VALUE(%x)\n", address, _LLT_OP_VALUE(value)); status = false; break; } } while (++count); return status; } /** * rtl92c_init_LLT_table - Init LLT table * @io: io callback * @boundary: * * Realtek hardware access function. * */ bool rtl92c_init_llt_table(struct ieee80211_hw *hw, u32 boundary) { bool rst = true; u32 i; for (i = 0; i < (boundary - 1); i++) { rst = rtl92c_llt_write(hw, i , i + 1); if (true != rst) { pr_err("===> %s #1 fail\n", __func__); return rst; } } /* end of list */ rst = rtl92c_llt_write(hw, (boundary - 1), 0xFF); if (true != rst) { pr_err("===> %s #2 fail\n", __func__); return rst; } /* Make the other pages as ring buffer * This ring buffer is used as beacon buffer if we config this MAC * as two MAC transfer. * Otherwise used as local loopback buffer. */ for (i = boundary; i < LLT_LAST_ENTRY_OF_TX_PKT_BUFFER; i++) { rst = rtl92c_llt_write(hw, i, (i + 1)); if (true != rst) { pr_err("===> %s #3 fail\n", __func__); return rst; } } /* Let last entry point to the start entry of ring buffer */ rst = rtl92c_llt_write(hw, LLT_LAST_ENTRY_OF_TX_PKT_BUFFER, boundary); if (true != rst) { pr_err("===> %s #4 fail\n", __func__); return rst; } return rst; } void rtl92c_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: pr_err("illegal switch case\n"); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { pr_err("Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry\n"); if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY length is %d\n", rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY is %x %x\n", rtlpriv->sec.key_buf[0][0], rtlpriv->sec.key_buf[0][1]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, "Pairwise Key content", rtlpriv->sec.pairwise_key, rtlpriv->sec. key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec. key_buf[key_index]); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf [entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } u32 rtl92c_get_txdma_status(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); return rtl_read_dword(rtlpriv, REG_TXDMA_STATUS); } void rtl92c_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw)); if (IS_HARDWARE_TYPE_8192CE(rtlpriv)) { rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); } else { rtl_write_dword(rtlpriv, REG_HIMR, rtlusb->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlusb->irq_mask[1] & 0xFFFFFFFF); } } void rtl92c_init_interrupt(struct ieee80211_hw *hw) { rtl92c_enable_interrupt(hw); } void rtl92c_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); } void rtl92c_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl92c_dm_init_edca_turbo(hw); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (u8 *)&aci); } void rtl92c_init_driver_info_size(struct ieee80211_hw *hw, u8 size) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, size); } int rtl92c_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { u8 value; struct rtl_priv *rtlpriv = rtl_priv(hw); switch (type) { case NL80211_IFTYPE_UNSPECIFIED: value = NT_NO_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: value = NT_LINK_AD_HOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: value = NT_LINK_AP; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: value = NT_AS_AP; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Set Network type to AP!\n"); break; default: RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Network type %d not supported!\n", type); return -EOPNOTSUPP; } rtl_write_byte(rtlpriv, MSR, value); return 0; } void rtl92c_init_network_type(struct ieee80211_hw *hw) { rtl92c_set_network_type(hw, NL80211_IFTYPE_UNSPECIFIED); } void rtl92c_init_adaptive_ctrl(struct ieee80211_hw *hw) { u16 value16; u32 value32; struct rtl_priv *rtlpriv = rtl_priv(hw); /* Response Rate Set */ value32 = rtl_read_dword(rtlpriv, REG_RRSR); value32 &= ~RATE_BITMAP_ALL; value32 |= RATE_RRSR_CCK_ONLY_1M; rtl_write_dword(rtlpriv, REG_RRSR, value32); /* SIFS (used in NAV) */ value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10); rtl_write_word(rtlpriv, REG_SPEC_SIFS, value16); /* Retry Limit */ value16 = _LRL(0x30) | _SRL(0x30); rtl_write_dword(rtlpriv, REG_RL, value16); } void rtl92c_init_rate_fallback(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* Set Data Auto Rate Fallback Retry Count register. */ rtl_write_dword(rtlpriv, REG_DARFRC, 0x00000000); rtl_write_dword(rtlpriv, REG_DARFRC+4, 0x10080404); rtl_write_dword(rtlpriv, REG_RARFRC, 0x04030201); rtl_write_dword(rtlpriv, REG_RARFRC+4, 0x08070605); } static void rtl92c_set_cck_sifs(struct ieee80211_hw *hw, u8 trx_sifs, u8 ctx_sifs) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_SIFS_CCK, trx_sifs); rtl_write_byte(rtlpriv, (REG_SIFS_CCK + 1), ctx_sifs); } static void rtl92c_set_ofdm_sifs(struct ieee80211_hw *hw, u8 trx_sifs, u8 ctx_sifs) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_SIFS_OFDM, trx_sifs); rtl_write_byte(rtlpriv, (REG_SIFS_OFDM + 1), ctx_sifs); } void rtl92c_init_edca_param(struct ieee80211_hw *hw, u16 queue, u16 txop, u8 cw_min, u8 cw_max, u8 aifs) { /* sequence: VO, VI, BE, BK ==> the same as 92C hardware design. * referenc : enum nl80211_txq_q or ieee80211_set_wmm_default function. */ u32 value; struct rtl_priv *rtlpriv = rtl_priv(hw); value = (u32)aifs; value |= ((u32)cw_min & 0xF) << 8; value |= ((u32)cw_max & 0xF) << 12; value |= (u32)txop << 16; /* 92C hardware register sequence is the same as queue number. */ rtl_write_dword(rtlpriv, (REG_EDCA_VO_PARAM + (queue * 4)), value); } void rtl92c_init_edca(struct ieee80211_hw *hw) { u16 value16; struct rtl_priv *rtlpriv = rtl_priv(hw); /* disable EDCCA count down, to reduce collison and retry */ value16 = rtl_read_word(rtlpriv, REG_RD_CTRL); value16 |= DIS_EDCA_CNT_DWN; rtl_write_word(rtlpriv, REG_RD_CTRL, value16); /* Update SIFS timing. ?????????? * pHalData->SifsTime = 0x0e0e0a0a; */ rtl92c_set_cck_sifs(hw, 0xa, 0xa); rtl92c_set_ofdm_sifs(hw, 0xe, 0xe); /* Set CCK/OFDM SIFS to be 10us. */ rtl_write_word(rtlpriv, REG_SIFS_CCK, 0x0a0a); rtl_write_word(rtlpriv, REG_SIFS_OFDM, 0x1010); rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0204); rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x014004); /* TXOP */ rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, 0x005EA42B); rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0x0000A44F); rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x005EA324); rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x002FA226); /* PIFS */ rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); /* AGGR BREAK TIME Register */ rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040); rtl_write_byte(rtlpriv, REG_BCNDMATIM, 0x02); rtl_write_byte(rtlpriv, REG_ATIMWND, 0x02); } void rtl92c_init_ampdu_aggregation(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x99997631); rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); /* init AMPDU aggregation number, tuning for Tx's TP, */ rtl_write_word(rtlpriv, 0x4CA, 0x0708); } void rtl92c_init_beacon_max_error(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF); } void rtl92c_init_rdg_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xFF); rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200); rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05); } void rtl92c_init_retry_function(struct ieee80211_hw *hw) { u8 value8; struct rtl_priv *rtlpriv = rtl_priv(hw); value8 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL); value8 |= EN_AMPDU_RTY_NEW; rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL, value8); /* Set ACK timeout */ rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); } void rtl92c_disable_fast_edca(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0); } void rtl92c_set_min_space(struct ieee80211_hw *hw, bool is2T) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 value = is2T ? MAX_MSS_DENSITY_2T : MAX_MSS_DENSITY_1T; rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, value); } /*==============================================================*/ static void _rtl92c_query_rxphystatus(struct ieee80211_hw *hw, struct rtl_stats *pstats, struct rx_desc_92c *p_desc, struct rx_fwinfo_92c *p_drvinfo, bool packet_match_bssid, bool packet_toself, bool packet_beacon) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct phy_sts_cck_8192s_t *cck_buf; s8 rx_pwr_all = 0, rx_pwr[4]; u8 rf_rx_num = 0, evm, pwdb_all; u8 i, max_spatial_stream; u32 rssi, total_rssi = 0; bool in_powersavemode = false; bool is_cck_rate; __le32 *pdesc = (__le32 *)p_desc; is_cck_rate = RX_HAL_IS_CCK_RATE(p_desc->rxmcs); pstats->packet_matchbssid = packet_match_bssid; pstats->packet_toself = packet_toself; pstats->packet_beacon = packet_beacon; pstats->is_cck = is_cck_rate; pstats->RX_SIGQ[0] = -1; pstats->RX_SIGQ[1] = -1; if (is_cck_rate) { u8 report, cck_highpwr; cck_buf = (struct phy_sts_cck_8192s_t *)p_drvinfo; if (!in_powersavemode) cck_highpwr = rtlphy->cck_high_power; else cck_highpwr = false; if (!cck_highpwr) { u8 cck_agc_rpt = cck_buf->cck_agc_rpt; report = cck_buf->cck_agc_rpt & 0xc0; report = report >> 6; switch (report) { case 0x3: rx_pwr_all = -46 - (cck_agc_rpt & 0x3e); break; case 0x2: rx_pwr_all = -26 - (cck_agc_rpt & 0x3e); break; case 0x1: rx_pwr_all = -12 - (cck_agc_rpt & 0x3e); break; case 0x0: rx_pwr_all = 16 - (cck_agc_rpt & 0x3e); break; } } else { u8 cck_agc_rpt = cck_buf->cck_agc_rpt; report = p_drvinfo->cfosho[0] & 0x60; report = report >> 5; switch (report) { case 0x3: rx_pwr_all = -46 - ((cck_agc_rpt & 0x1f) << 1); break; case 0x2: rx_pwr_all = -26 - ((cck_agc_rpt & 0x1f) << 1); break; case 0x1: rx_pwr_all = -12 - ((cck_agc_rpt & 0x1f) << 1); break; case 0x0: rx_pwr_all = 16 - ((cck_agc_rpt & 0x1f) << 1); break; } } pwdb_all = rtl_query_rxpwrpercentage(rx_pwr_all); pstats->rx_pwdb_all = pwdb_all; pstats->recvsignalpower = rx_pwr_all; if (packet_match_bssid) { u8 sq; if (pstats->rx_pwdb_all > 40) sq = 100; else { sq = cck_buf->sq_rpt; if (sq > 64) sq = 0; else if (sq < 20) sq = 100; else sq = ((64 - sq) * 100) / 44; } pstats->signalquality = sq; pstats->RX_SIGQ[0] = sq; pstats->RX_SIGQ[1] = -1; } } else { rtlpriv->dm.rfpath_rxenable[0] = rtlpriv->dm.rfpath_rxenable[1] = true; for (i = RF90_PATH_A; i < RF90_PATH_MAX; i++) { if (rtlpriv->dm.rfpath_rxenable[i]) rf_rx_num++; rx_pwr[i] = ((p_drvinfo->gain_trsw[i] & 0x3f) * 2) - 110; rssi = rtl_query_rxpwrpercentage(rx_pwr[i]); total_rssi += rssi; rtlpriv->stats.rx_snr_db[i] = (long)(p_drvinfo->rxsnr[i] / 2); if (packet_match_bssid) pstats->rx_mimo_signalstrength[i] = (u8) rssi; } rx_pwr_all = ((p_drvinfo->pwdb_all >> 1) & 0x7f) - 110; pwdb_all = rtl_query_rxpwrpercentage(rx_pwr_all); pstats->rx_pwdb_all = pwdb_all; pstats->rxpower = rx_pwr_all; pstats->recvsignalpower = rx_pwr_all; if (get_rx_desc_rx_mcs(pdesc) && get_rx_desc_rx_mcs(pdesc) >= DESC_RATEMCS8 && get_rx_desc_rx_mcs(pdesc) <= DESC_RATEMCS15) max_spatial_stream = 2; else max_spatial_stream = 1; for (i = 0; i < max_spatial_stream; i++) { evm = rtl_evm_db_to_percentage(p_drvinfo->rxevm[i]); if (packet_match_bssid) { if (i == 0) pstats->signalquality = (u8) (evm & 0xff); pstats->RX_SIGQ[i] = (u8) (evm & 0xff); } } } if (is_cck_rate) pstats->signalstrength = (u8)(rtl_signal_scale_mapping(hw, pwdb_all)); else if (rf_rx_num != 0) pstats->signalstrength = (u8)(rtl_signal_scale_mapping(hw, total_rssi /= rf_rx_num)); } void rtl92c_translate_rx_signal_stuff(struct ieee80211_hw *hw, struct sk_buff *skb, struct rtl_stats *pstats, struct rx_desc_92c *pdesc, struct rx_fwinfo_92c *p_drvinfo) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct ieee80211_hdr *hdr; u8 *tmp_buf; u8 *praddr; __le16 fc; u16 type, cpu_fc; bool packet_matchbssid, packet_toself, packet_beacon = false; tmp_buf = skb->data + pstats->rx_drvinfo_size + pstats->rx_bufshift; hdr = (struct ieee80211_hdr *)tmp_buf; fc = hdr->frame_control; cpu_fc = le16_to_cpu(fc); type = WLAN_FC_GET_TYPE(fc); praddr = hdr->addr1; packet_matchbssid = ((IEEE80211_FTYPE_CTL != type) && ether_addr_equal(mac->bssid, (cpu_fc & IEEE80211_FCTL_TODS) ? hdr->addr1 : (cpu_fc & IEEE80211_FCTL_FROMDS) ? hdr->addr2 : hdr->addr3) && (!pstats->hwerror) && (!pstats->crc) && (!pstats->icv)); packet_toself = packet_matchbssid && ether_addr_equal(praddr, rtlefuse->dev_addr); if (ieee80211_is_beacon(fc)) packet_beacon = true; _rtl92c_query_rxphystatus(hw, pstats, pdesc, p_drvinfo, packet_matchbssid, packet_toself, packet_beacon); rtl_process_phyinfo(hw, tmp_buf, pstats); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1