Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chaoming Li | 11490 | 97.33% | 2 | 6.06% |
Larry Finger | 171 | 1.45% | 13 | 39.39% |
Joe Perches | 76 | 0.64% | 5 | 15.15% |
Peter Lekensteyn | 22 | 0.19% | 1 | 3.03% |
Forest Bond | 20 | 0.17% | 1 | 3.03% |
Ping-Ke Shih | 9 | 0.08% | 2 | 6.06% |
Christian Engelmayer | 5 | 0.04% | 1 | 3.03% |
Johannes Berg | 3 | 0.03% | 1 | 3.03% |
Dan Carpenter | 2 | 0.02% | 1 | 3.03% |
Arnd Bergmann | 2 | 0.02% | 1 | 3.03% |
Colin Ian King | 1 | 0.01% | 1 | 3.03% |
Andy Shevchenko | 1 | 0.01% | 1 | 3.03% |
Justin P. Mattock | 1 | 0.01% | 1 | 3.03% |
Taehee Yoo | 1 | 0.01% | 1 | 3.03% |
Rickard Strandqvist | 1 | 0.01% | 1 | 3.03% |
Total | 11805 | 33 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "dm.h" #include "fw.h" #include "led.h" #include "sw.h" #include "hw.h" u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 value; rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC)); rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct); udelay(10); value = rtl_read_dword(rtlpriv, REG_DBI_RDATA); return value; } void rtl92de_write_dword_dbi(struct ieee80211_hw *hw, u16 offset, u32 value, u8 direct) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000)); rtl_write_dword(rtlpriv, REG_DBI_WDATA, value); rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct); } static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); } static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(0); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0); } void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *) (val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfstate; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfstate)); if (rfstate == ERFOFF) { *((bool *) (val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *) (val)) = false; else *((bool *) (val)) = true; } break; } case HW_VAR_FW_PSMODE_STATUS: *((bool *) (val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *) (val)) = tsf; break; } case HW_VAR_INT_MIGRATION: *((bool *)(val)) = rtlpriv->dm.interrupt_migration; break; case HW_VAR_INT_AC: *((bool *)(val)) = rtlpriv->dm.disable_tx_int; break; case HAL_DEF_WOWLAN: break; default: pr_err("switch case %#x not processed\n", variable); break; } } void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR: for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); } break; case HW_VAR_BASIC_RATE: { u16 rate_cfg = ((u16 *) val)[0]; u8 rate_index = 0; rate_cfg = rate_cfg & 0x15f; if (mac->vendor == PEER_CISCO && ((rate_cfg & 0x150) == 0)) rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff); while (rate_cfg > 0x1) { rate_cfg = (rate_cfg >> 1); rate_index++; } if (rtlhal->fw_version > 0xe) rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); break; } case HW_VAR_BSSID: for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); } break; case HW_VAR_SIFS: rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *) val)); break; case HW_VAR_SLOT_TIME: { u8 e_aci; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (&e_aci)); break; } case HW_VAR_ACK_PREAMBLE: { u8 reg_tmp; u8 short_preamble = (bool) (*val); reg_tmp = (mac->cur_40_prime_sc) << 5; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); break; } case HW_VAR_AMPDU_MIN_SPACE: { u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *val; if (min_spacing_to_set <= 7) { sec_min_space = 0; if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY: { u8 density_to_set; density_to_set = *val; mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg; mac->min_space_cfg |= (density_to_set << 3); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR: { u8 factor_toset; u32 regtoset; u8 *ptmp_byte = NULL; u8 index; if (rtlhal->macphymode == DUALMAC_DUALPHY) regtoset = 0xb9726641; else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) regtoset = 0x66626641; else regtoset = 0xb972a841; factor_toset = *val; if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 4; index++) { ptmp_byte = (u8 *)(®toset) + index; if ((*ptmp_byte & 0xf0) > (factor_toset << 4)) *ptmp_byte = (*ptmp_byte & 0x0f) | (factor_toset << 4); if ((*ptmp_byte & 0x0f) > factor_toset) *ptmp_byte = (*ptmp_byte & 0xf0) | (factor_toset); } rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoset); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } break; } case HW_VAR_AC_PARAM: { u8 e_aci = *val; rtl92d_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, &e_aci); break; } case HW_VAR_ACM_CTRL: { u8 e_aci = *val; union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_VOQEN); break; default: pr_err("switch case %#x not processed\n", e_aci); break; } } RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR: rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]); rtlpci->receive_config = ((u32 *) (val))[0]; break; case HW_VAR_RETRY_LIMIT: { u8 retry_limit = val[0]; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); break; } case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *) val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *val; break; case HW_VAR_IO_CMD: rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *val); break; case HW_VAR_SET_RPWM: rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val)); break; case HW_VAR_H2C_FW_PWRMODE: break; case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *) val); break; case HW_VAR_H2C_FW_JOINBSSRPT: { u8 mstatus = (*val); u8 tmp_regcr, tmp_reg422; bool recover = false; if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr | BIT(0))); _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); if (tmp_reg422 & BIT(6)) recover = true; rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); rtl92d_set_fw_rsvdpagepkt(hw, 0); _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (recover) rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0)))); } rtl92d_set_fw_joinbss_report_cmd(hw, (*val)); break; } case HW_VAR_AID: { u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); break; } case HW_VAR_CORRECT_TSF: { u8 btype_ibss = val[0]; if (btype_ibss) _rtl92de_stop_tx_beacon(hw); _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32) (mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32) ((mac->tsf >> 32) & 0xffffffff)); _rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl92de_resume_tx_beacon(hw); break; } case HW_VAR_INT_MIGRATION: { bool int_migration = *(bool *) (val); if (int_migration) { /* Set interrupt migration timer and * corresponding Tx/Rx counter. * timer 25ns*0xfa0=100us for 0xf packets. * 0x306:Rx, 0x307:Tx */ rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0); rtlpriv->dm.interrupt_migration = int_migration; } else { /* Reset all interrupt migration settings. */ rtl_write_dword(rtlpriv, REG_INT_MIG, 0); rtlpriv->dm.interrupt_migration = int_migration; } break; } case HW_VAR_INT_AC: { bool disable_ac_int = *((bool *) val); /* Disable four ACs interrupts. */ if (disable_ac_int) { /* Disable VO, VI, BE and BK four AC interrupts * to gain more efficient CPU utilization. * When extremely highly Rx OK occurs, * we will disable Tx interrupts. */ rtlpriv->cfg->ops->update_interrupt_mask(hw, 0, RT_AC_INT_MASKS); rtlpriv->dm.disable_tx_int = disable_ac_int; /* Enable four ACs interrupts. */ } else { rtlpriv->cfg->ops->update_interrupt_mask(hw, RT_AC_INT_MASKS, 0); rtlpriv->dm.disable_tx_int = disable_ac_int; } break; } default: pr_err("switch case %#x not processed\n", variable); break; } } static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { pr_err("Failed to polling write LLT done at address %d!\n", address); status = false; break; } } while (++count); return status; } static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned short i; u8 txpktbuf_bndy; u8 maxpage; bool status; u32 value32; /* High+low page number */ u8 value8; /* normal page number */ if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) { maxpage = 255; txpktbuf_bndy = 246; value8 = 0; value32 = 0x80bf0d29; } else { maxpage = 127; txpktbuf_bndy = 123; value8 = 0; value32 = 0x80750005; } /* Set reserved page for each queue */ /* 11. RQPN 0x200[31:0] = 0x80BD1C1C */ /* load RQPN */ rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8); rtl_write_dword(rtlpriv, REG_RQPN, value32); /* 12. TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */ /* TXRKTBUG_PG_BNDY */ rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 | txpktbuf_bndy)); /* 13. TDECTRL[15:8] 0x209[7:0] = 0xF6 */ /* Beacon Head for TXDMA */ rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); /* 14. BCNQ_PGBNDY 0x424[7:0] = 0xF6 */ /* BCNQ_PGBNDY */ rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); /* 15. WMAC_LBK_BF_HD 0x45D[7:0] = 0xF6 */ /* WMAC_LBK_BF_HD */ rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); /* Set Tx/Rx page size (Tx must be 128 Bytes, */ /* Rx can be 64,128,256,512,1024 bytes) */ /* 16. PBP [7:0] = 0x11 */ /* TRX page size */ rtl_write_byte(rtlpriv, REG_PBP, 0x11); /* 17. DRV_INFO_SZ = 0x04 */ rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); /* 18. LLT_table_init(Adapter); */ for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _rtl92de_llt_write(hw, i, i + 1); if (true != status) return status; } /* end of list */ status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); if (true != status) return status; /* Make the other pages as ring buffer */ /* This ring buffer is used as beacon buffer if we */ /* config this MAC as two MAC transfer. */ /* Otherwise used as local loopback buffer. */ for (i = txpktbuf_bndy; i < maxpage; i++) { status = _rtl92de_llt_write(hw, i, (i + 1)); if (true != status) return status; } /* Let last entry point to the start entry of ring buffer */ status = _rtl92de_llt_write(hw, maxpage, txpktbuf_bndy); if (true != status) return status; return true; } static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; if (rtlpci->up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl92de_sw_led_on(hw, pled0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl92de_sw_led_on(hw, pled0); else rtl92de_sw_led_off(hw, pled0); } static bool _rtl92de_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); unsigned char bytetmp; unsigned short wordtmp; u16 retry; rtl92d_phy_set_poweron(hw); /* Add for resume sequence of power domain according * to power document V11. Chapter V.11.... */ /* 0. RSV_CTRL 0x1C[7:0] = 0x00 */ /* unlock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05); /* 1. AFE_XTAL_CTRL [7:0] = 0x0F enable XTAL */ /* 2. SPS0_CTRL 0x11[7:0] = 0x2b enable SPS into PWM mode */ /* 3. delay (1ms) this is not necessary when initially power on */ /* C. Resume Sequence */ /* a. SPS0_CTRL 0x11[7:0] = 0x2b */ rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); /* b. AFE_XTAL_CTRL [7:0] = 0x0F */ rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F); /* c. DRV runs power on init flow */ /* auto enable WLAN */ /* 4. APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0 */ /* Power On Reset for MAC Block */ bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0); udelay(2); rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); udelay(2); /* 5. Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */ bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); udelay(50); retry = 0; while ((bytetmp & BIT(0)) && retry < 1000) { retry++; bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1); udelay(50); } /* Enable Radio off, GPIO, and LED function */ /* 6. APS_FSMCO 0x04[15:0] = 0x0012 when enable HWPDN */ rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012); /* release RF digital isolation */ /* 7. SYS_ISO_CTRL 0x01[1] = 0x0; */ /*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */ rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82); udelay(2); /* make sure that BB reset OK. */ /* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */ /* Disable REG_CR before enable it to assure reset */ rtl_write_word(rtlpriv, REG_CR, 0x0); /* Release MAC IO register reset */ rtl_write_word(rtlpriv, REG_CR, 0x2ff); /* clear stopping tx/rx dma */ rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0); /* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */ /* System init */ /* 18. LLT_table_init(Adapter); */ if (!_rtl92de_llt_table_init(hw)) return false; /* Clear interrupt and enable interrupt */ /* 19. HISR 0x124[31:0] = 0xffffffff; */ /* HISRE 0x12C[7:0] = 0xFF */ rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_byte(rtlpriv, REG_HISRE, 0xff); /* 20. HIMR 0x120[31:0] |= [enable INT mask bit map]; */ /* 21. HIMRE 0x128[7:0] = [enable INT mask bit map] */ /* The IMR should be enabled later after all init sequence * is finished. */ /* 22. PCIE configuration space configuration */ /* 23. Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ), */ /* and PCIe gated clock function is enabled. */ /* PCIE configuration space will be written after * all init sequence.(Or by BIOS) */ rtl92d_phy_config_maccoexist_rfpage(hw); /* THe below section is not related to power document Vxx . */ /* This is only useful for driver and OS setting. */ /* -------------------Software Relative Setting---------------------- */ wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xF771; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); /* Reported Tx status from HW for rate adaptive. */ /* This should be realtive to power on step 14. But in document V11 */ /* still not contain the description.!!! */ rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); /* Set Tx/Rx page size (Tx must be 128 Bytes, * Rx can be 64,128,256,512,1024 bytes) */ /* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */ /* Set RCR register */ rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); /* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */ /* Set TCR register */ rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); /* disable earlymode */ rtl_write_byte(rtlpriv, 0x4d0, 0x0); /* Set TX/RX descriptor physical address(from OS API). */ rtl_write_dword(rtlpriv, REG_BCNQ_DESA, rtlpci->tx_ring[BEACON_QUEUE].dma); rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma); rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma); rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma); rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma); rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma); rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma); /* Set RX Desc Address */ rtl_write_dword(rtlpriv, REG_RX_DESA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma); /* if we want to support 64 bit DMA, we should set it here, * but now we do not support 64 bit DMA*/ rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33); /* Reset interrupt migration setting when initialization */ rtl_write_dword(rtlpriv, REG_INT_MIG, 0); /* Reconsider when to do this operation after asking HWSD. */ bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); do { retry++; bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); } while ((retry < 200) && !(bytetmp & BIT(7))); /* After MACIO reset,we must refresh LED state. */ _rtl92de_gen_refresh_led_state(hw); /* Reset H2C protection register */ rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); return true; } static void _rtl92de_hw_configure(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 reg_bw_opmode = BW_OPMODE_20MHZ; u32 reg_rrsr; reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); rtl_write_byte(rtlpriv, REG_SLOT, 0x09); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); rtl_write_word(rtlpriv, REG_RL, 0x0707); rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); /* Aggregation threshold */ if (rtlhal->macphymode == DUALMAC_DUALPHY) rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641); else if (rtlhal->macphymode == DUALMAC_SINGLEPHY) rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641); else rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a); rtlpci->reg_bcn_ctrl_val = 0x1f; rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); /* For throughput */ rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666); /* ACKTO for IOT issue. */ rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); /* Set Spec SIFS (used in NAV) */ rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); /* Set SIFS for CCK */ rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); /* Set SIFS for OFDM */ rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); /* Set Multicast Address. */ rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); switch (rtlpriv->phy.rf_type) { case RF_1T2R: case RF_1T1R: rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3); break; case RF_2T2R: case RF_2T2R_GREEN: rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3); break; } } static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); rtl_write_byte(rtlpriv, 0x34b, 0x93); rtl_write_word(rtlpriv, 0x350, 0x870c); rtl_write_byte(rtlpriv, 0x352, 0x1); if (ppsc->support_backdoor) rtl_write_byte(rtlpriv, 0x349, 0x1b); else rtl_write_byte(rtlpriv, 0x349, 0x03); rtl_write_word(rtlpriv, 0x350, 0x2718); rtl_write_byte(rtlpriv, 0x352, 0x1); } void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } int rtl92de_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool rtstatus = true; u8 tmp_u1b; int i; int err; unsigned long flags; rtlpci->being_init_adapter = true; rtlpci->init_ready = false; spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags); /* we should do iqk after disable/enable */ rtl92d_phy_reset_iqk_result(hw); /* rtlpriv->intf_ops->disable_aspm(hw); */ rtstatus = _rtl92de_init_mac(hw); if (!rtstatus) { pr_err("Init MAC failed\n"); err = 1; spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); return err; } err = rtl92d_download_fw(hw); spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW..\n"); return 1; } rtlhal->last_hmeboxnum = 0; rtlpriv->psc.fw_current_inpsmode = false; tmp_u1b = rtl_read_byte(rtlpriv, 0x605); tmp_u1b = tmp_u1b | 0x30; rtl_write_byte(rtlpriv, 0x605, tmp_u1b); if (rtlhal->earlymode_enable) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EarlyMode Enabled!!!\n"); tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0); tmp_u1b = tmp_u1b | 0x1f; rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b); rtl_write_byte(rtlpriv, 0x4d3, 0x80); tmp_u1b = rtl_read_byte(rtlpriv, 0x605); tmp_u1b = tmp_u1b | 0x40; rtl_write_byte(rtlpriv, 0x605, tmp_u1b); } if (mac->rdg_en) { rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff); rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200); rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05); } rtl92d_phy_mac_config(hw); /* because last function modify RCR, so we update * rcr var here, or TP will unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/ rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl92d_phy_bb_config(hw); rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; /* set before initialize RF */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); /* config RF */ rtl92d_phy_rf_config(hw); /* After read predefined TXT, we must set BB/MAC/RF * register as our requirement */ /* After load BB,RF params,we need do more for 92D. */ rtl92d_update_bbrf_configuration(hw); /* set default value after initialize RF, */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); /*---- Set CCK and OFDM Block "ON"----*/ if (rtlhal->current_bandtype == BAND_ON_2_4G) rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); if (rtlhal->interfaceindex == 0) { /* RFPGA0_ANALOGPARAMETER2: cck clock select, * set to 20MHz by default */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | BIT(11), 3); } else { /* Mac1 */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) | BIT(10), 3); } _rtl92de_hw_configure(hw); /* reset hw sec */ rtl_cam_reset_all_entry(hw); rtl92de_enable_hw_security_config(hw); /* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */ /* TX power index for different rate set. */ rtl92d_phy_get_hw_reg_originalvalue(hw); rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl92de_enable_aspm_back_door(hw); /* rtlpriv->intf_ops->enable_aspm(hw); */ rtl92d_dm_init(hw); rtlpci->being_init_adapter = false; if (ppsc->rfpwr_state == ERFON) { rtl92d_phy_lc_calibrate(hw); /* 5G and 2.4G must wait sometime to let RF LO ready */ if (rtlhal->macphymode == DUALMAC_DUALPHY) { u32 tmp_rega; for (i = 0; i < 10000; i++) { udelay(MAX_STALL_TIME); tmp_rega = rtl_get_rfreg(hw, (enum radio_path)RF90_PATH_A, 0x2a, MASKDWORD); if (((tmp_rega & BIT(11)) == BIT(11))) break; } /* check that loop was successful. If not, exit now */ if (i == 10000) { rtlpci->init_ready = false; return 1; } } } rtlpci->init_ready = true; return err; } static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; u32 value32; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); if (!(value32 & 0x000f0000)) { version = VERSION_TEST_CHIP_92D_SINGLEPHY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n"); } else { version = VERSION_NORMAL_CHIP_92D_SINGLEPHY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n"); } return version; } static int _rtl92de_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR); enum led_ctl_mode ledaction = LED_CTL_NO_LINK; u8 bcnfunc_enable; bt_msr &= 0xfc; if (type == NL80211_IFTYPE_UNSPECIFIED || type == NL80211_IFTYPE_STATION) { _rtl92de_stop_tx_beacon(hw); _rtl92de_enable_bcn_sub_func(hw); } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) { _rtl92de_resume_tx_beacon(hw); _rtl92de_disable_bcn_sub_func(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n", type); } bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL); switch (type) { case NL80211_IFTYPE_UNSPECIFIED: bt_msr |= MSR_NOLINK; ledaction = LED_CTL_LINK; bcnfunc_enable &= 0xF7; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: bt_msr |= MSR_ADHOC; bcnfunc_enable |= 0x08; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: bt_msr |= MSR_INFRA; ledaction = LED_CTL_LINK; bcnfunc_enable &= 0xF7; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: bt_msr |= MSR_AP; bcnfunc_enable |= 0x08; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: pr_err("Network type %d not supported!\n", type); return 1; } rtl_write_byte(rtlpriv, MSR, bt_msr); rtlpriv->cfg->ops->led_control(hw, ledaction); if ((bt_msr & MSR_MASK) == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 reg_rcr; if (rtlpriv->psc.rfpwr_state != ERFON) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); if (check_bssid) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); _rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else if (!check_bssid) { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl92de_set_media_status(hw, type)) return -EOPNOTSUPP; /* check bssid */ if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP) rtl92de_set_check_bssid(hw, true); } else { rtl92de_set_check_bssid(hw, false); } return 0; } /* do iqk or reload iqk */ /* windows just rtl92d_phy_reload_iqk_setting in set channel, * but it's very strict for time sequence so we add * rtl92d_phy_reload_iqk_setting here */ void rtl92d_linked_set_reg(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 indexforchannel; u8 channel = rtlphy->current_channel; indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel); if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) { RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG, "Do IQK for channel:%d\n", channel); rtl92d_phy_iq_calibrate(hw); } } /* don't set REG_EDCA_BE_PARAM here because * mac80211 will send pkt when scan */ void rtl92de_set_qos(struct ieee80211_hw *hw, int aci) { rtl92d_dm_init_edca_turbo(hw); } void rtl92de_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; } void rtl92de_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED); rtlpci->irq_enabled = false; } static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 u1b_tmp; unsigned long flags; rtlpriv->intf_ops->enable_aspm(hw); rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0); rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0); /* 0x20:value 05-->04 */ rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04); /* ==== Reset digital sequence ====== */ rtl92d_firmware_selfreset(hw); /* f. SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51); /* g. MCUFWDL 0x80[1:0]=0 reset MCU ready status */ rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); /* ==== Pull GPIO PIN to balance level and LED control ====== */ /* h. GPIO_PIN_CTRL 0x44[31:0]=0x000 */ rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000); /* i. Value = GPIO_PIN_CTRL[7:0] */ u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL); /* j. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */ /* write external PIN level */ rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00FF0000 | (u1b_tmp << 8)); /* k. GPIO_MUXCFG 0x42 [15:0] = 0x0780 */ rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790); /* l. LEDCFG 0x4C[15:0] = 0x8080 */ rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080); /* ==== Disable analog sequence === */ /* m. AFE_PLL_CTRL[7:0] = 0x80 disable PLL */ rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80); /* n. SPS0_CTRL 0x11[7:0] = 0x22 enter PFM mode */ rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23); /* o. AFE_XTAL_CTRL 0x24[7:0] = 0x0E disable XTAL, if No BT COEX */ rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e); /* p. RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); /* ==== interface into suspend === */ /* q. APS_FSMCO[15:8] = 0x58 PCIe suspend mode */ /* According to power document V11, we need to set this */ /* value as 0x18. Otherwise, we may not L0s sometimes. */ /* This indluences power consumption. Bases on SD1's test, */ /* set as 0x00 do not affect power current. And if it */ /* is set as 0x18, they had ever met auto load fail problem. */ rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "In PowerOff,reg0x%x=%X\n", REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL)); /* r. Note: for PCIe interface, PON will not turn */ /* off m-bias and BandGap in PCIe suspend mode. */ /* 0x17[7] 1b': power off in process 0b' : power off over */ if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) { spin_lock_irqsave(&globalmutex_power, flags); u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); u1b_tmp &= (~BIT(7)); rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp); spin_unlock_irqrestore(&globalmutex_power, flags); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n"); } void rtl92de_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl92de_set_media_status(hw, opmode); if (rtlpci->driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); /* Power sequence for each MAC. */ /* a. stop tx DMA */ /* b. close RF */ /* c. clear rx buf */ /* d. stop rx DMA */ /* e. reset MAC */ /* a. stop tx DMA */ rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE); udelay(50); /* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */ /* c. ========RF OFF sequence========== */ /* 0x88c[23:20] = 0xf. */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); /* APSD_CTRL 0x600[7:0] = 0x40 */ rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); /* Close antenna 0,0xc04,0xd04 */ rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0); /* SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB state machine */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); /* Mac0 can not do Global reset. Mac1 can do. */ /* SYS_FUNC_EN 0x02[7:0] = 0xE0 reset BB state machine */ if (rtlpriv->rtlhal.interfaceindex == 1) rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0); udelay(50); /* d. stop tx/rx dma before disable REG_CR (0x100) to fix */ /* dma hang issue when disable/enable device. */ rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff); udelay(50); rtl_write_byte(rtlpriv, REG_CR, 0x0); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n"); if (rtl92d_phy_check_poweroff(hw)) _rtl92de_poweroff_adapter(hw); return; } void rtl92de_interrupt_recognized(struct ieee80211_hw *hw, struct rtl_int *intvec) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, intvec->inta); } void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; rtl92de_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30); else rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20); rtl_write_byte(rtlpriv, 0x606, 0x30); } void rtl92de_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl92de_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl92de_enable_interrupt(hw); } void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl92de_disable_interrupt(hw); rtl92de_enable_interrupt(hw); } static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo, u8 *rom_content, bool autoloadfail) { u32 rfpath, eeaddr, group, offset1, offset2; u8 i; memset(pwrinfo, 0, sizeof(struct txpower_info)); if (autoloadfail) { for (group = 0; group < CHANNEL_GROUP_MAX; group++) { for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { if (group < CHANNEL_GROUP_MAX_2G) { pwrinfo->cck_index[rfpath][group] = EEPROM_DEFAULT_TXPOWERLEVEL_2G; pwrinfo->ht40_1sindex[rfpath][group] = EEPROM_DEFAULT_TXPOWERLEVEL_2G; } else { pwrinfo->ht40_1sindex[rfpath][group] = EEPROM_DEFAULT_TXPOWERLEVEL_5G; } pwrinfo->ht40_2sindexdiff[rfpath][group] = EEPROM_DEFAULT_HT40_2SDIFF; pwrinfo->ht20indexdiff[rfpath][group] = EEPROM_DEFAULT_HT20_DIFF; pwrinfo->ofdmindexdiff[rfpath][group] = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; pwrinfo->ht40maxoffset[rfpath][group] = EEPROM_DEFAULT_HT40_PWRMAXOFFSET; pwrinfo->ht20maxoffset[rfpath][group] = EEPROM_DEFAULT_HT20_PWRMAXOFFSET; } } for (i = 0; i < 3; i++) { pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; } return; } /* Maybe autoload OK,buf the tx power index value is not filled. * If we find it, we set it to default value. */ for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) { eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3) + group; pwrinfo->cck_index[rfpath][group] = (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ? EEPROM_DEFAULT_TXPOWERLEVEL_5G : EEPROM_DEFAULT_TXPOWERLEVEL_2G) : rom_content[eeaddr]; } } for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { for (group = 0; group < CHANNEL_GROUP_MAX; group++) { offset1 = group / 3; offset2 = group % 3; eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) + offset2 + offset1 * 21; pwrinfo->ht40_1sindex[rfpath][group] = (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ? EEPROM_DEFAULT_TXPOWERLEVEL_5G : EEPROM_DEFAULT_TXPOWERLEVEL_2G) : rom_content[eeaddr]; } } /* These just for 92D efuse offset. */ for (group = 0; group < CHANNEL_GROUP_MAX; group++) { for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G; offset1 = group / 3; offset2 = group % 3; if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF) pwrinfo->ht40_2sindexdiff[rfpath][group] = (rom_content[base1 + offset2 + offset1 * 21] >> (rfpath * 4)) & 0xF; else pwrinfo->ht40_2sindexdiff[rfpath][group] = EEPROM_DEFAULT_HT40_2SDIFF; if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2 + offset1 * 21] != 0xFF) pwrinfo->ht20indexdiff[rfpath][group] = (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2 + offset1 * 21] >> (rfpath * 4)) & 0xF; else pwrinfo->ht20indexdiff[rfpath][group] = EEPROM_DEFAULT_HT20_DIFF; if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2 + offset1 * 21] != 0xFF) pwrinfo->ofdmindexdiff[rfpath][group] = (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2 + offset1 * 21] >> (rfpath * 4)) & 0xF; else pwrinfo->ofdmindexdiff[rfpath][group] = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2 + offset1 * 21] != 0xFF) pwrinfo->ht40maxoffset[rfpath][group] = (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2 + offset1 * 21] >> (rfpath * 4)) & 0xF; else pwrinfo->ht40maxoffset[rfpath][group] = EEPROM_DEFAULT_HT40_PWRMAXOFFSET; if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2 + offset1 * 21] != 0xFF) pwrinfo->ht20maxoffset[rfpath][group] = (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2 + offset1 * 21] >> (rfpath * 4)) & 0xF; else pwrinfo->ht20maxoffset[rfpath][group] = EEPROM_DEFAULT_HT20_PWRMAXOFFSET; } } if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) { /* 5GL */ pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F; pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F; /* 5GM */ pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F; pwrinfo->tssi_b[1] = (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 | (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2; /* 5GH */ pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] & 0xF0) >> 4 | (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4; pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] & 0xFC) >> 2; } else { for (i = 0; i < 3; i++) { pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI; pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI; } } } static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct txpower_info pwrinfo; u8 tempval[2], i, pwr, diff; u32 ch, rfpath, group; _rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail); if (!autoload_fail) { /* bit0~2 */ rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7); rtlefuse->eeprom_thermalmeter = hwinfo[EEPROM_THERMAL_METER] & 0x1f; rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K]; tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03; tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2; rtlefuse->txpwr_fromeprom = true; if (IS_92D_D_CUT(rtlpriv->rtlhal.version) || IS_92D_E_CUT(rtlpriv->rtlhal.version)) { rtlefuse->internal_pa_5g[0] = !((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6); rtlefuse->internal_pa_5g[1] = !((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Is D cut,Internal PA0 %d Internal PA1 %d\n", rtlefuse->internal_pa_5g[0], rtlefuse->internal_pa_5g[1]); } rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6]; rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7]; } else { rtlefuse->eeprom_regulatory = 0; rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP; tempval[0] = tempval[1] = 3; } /* Use default value to fill parameters if * efuse is not filled on some place. */ /* ThermalMeter from EEPROM */ if (rtlefuse->eeprom_thermalmeter < 0x06 || rtlefuse->eeprom_thermalmeter > 0x1c) rtlefuse->eeprom_thermalmeter = 0x12; rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; /* check XTAL_K */ if (rtlefuse->crystalcap == 0xFF) rtlefuse->crystalcap = 0; if (rtlefuse->eeprom_regulatory > 3) rtlefuse->eeprom_regulatory = 0; for (i = 0; i < 2; i++) { switch (tempval[i]) { case 0: tempval[i] = 5; break; case 1: tempval[i] = 4; break; case 2: tempval[i] = 3; break; case 3: default: tempval[i] = 0; break; } } rtlefuse->delta_iqk = tempval[0]; if (tempval[1] > 0) rtlefuse->delta_lck = tempval[1] - 1; if (rtlefuse->eeprom_c9 == 0xFF) rtlefuse->eeprom_c9 = 0x00; RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "CrystalCap = 0x%x\n", rtlefuse->crystalcap); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "Delta_IQK = 0x%x Delta_LCK = 0x%x\n", rtlefuse->delta_iqk, rtlefuse->delta_lck); for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) { for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) { group = rtl92d_get_chnlgroup_fromarray((u8) ch); if (ch < CHANNEL_MAX_NUMBER_2G) rtlefuse->txpwrlevel_cck[rfpath][ch] = pwrinfo.cck_index[rfpath][group]; rtlefuse->txpwrlevel_ht40_1s[rfpath][ch] = pwrinfo.ht40_1sindex[rfpath][group]; rtlefuse->txpwr_ht20diff[rfpath][ch] = pwrinfo.ht20indexdiff[rfpath][group]; rtlefuse->txpwr_legacyhtdiff[rfpath][ch] = pwrinfo.ofdmindexdiff[rfpath][group]; rtlefuse->pwrgroup_ht20[rfpath][ch] = pwrinfo.ht20maxoffset[rfpath][group]; rtlefuse->pwrgroup_ht40[rfpath][ch] = pwrinfo.ht40maxoffset[rfpath][group]; pwr = pwrinfo.ht40_1sindex[rfpath][group]; diff = pwrinfo.ht40_2sindexdiff[rfpath][group]; rtlefuse->txpwrlevel_ht40_2s[rfpath][ch] = (pwr > diff) ? (pwr - diff) : 0; } } } static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw, u8 *content) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION]; if (macphy_crvalue & BIT(3)) { rtlhal->macphymode = SINGLEMAC_SINGLEPHY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MacPhyMode SINGLEMAC_SINGLEPHY\n"); } else { rtlhal->macphymode = DUALMAC_DUALPHY; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MacPhyMode DUALMAC_DUALPHY\n"); } } static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw, u8 *content) { _rtl92de_read_macphymode_from_prom(hw, content); rtl92d_phy_config_macphymode(hw); rtl92d_phy_config_macphymode_info(hw); } static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); enum version_8192d chipver = rtlpriv->rtlhal.version; u8 cutvalue[2]; u16 chipvalue; rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H, &cutvalue[1]); rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L, &cutvalue[0]); chipvalue = (cutvalue[1] << 8) | cutvalue[0]; switch (chipvalue) { case 0xAA55: chipver |= CHIP_92D_C_CUT; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n"); break; case 0x9966: chipver |= CHIP_92D_D_CUT; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n"); break; case 0xCC33: chipver |= CHIP_92D_E_CUT; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n"); break; default: chipver |= CHIP_92D_D_CUT; pr_err("Unknown CUT!\n"); break; } rtlpriv->rtlhal.version = chipver; } static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID, EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR_MAC0_92D, EEPROM_CHANNEL_PLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, COUNTRY_CODE_WORLD_WIDE_13}; int i; u16 usvalue; u8 *hwinfo; hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); if (!hwinfo) return; if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) goto exit; _rtl92de_efuse_update_chip_version(hw); _rtl92de_read_macphymode_and_bandtype(hw, hwinfo); /* Read Permanent MAC address for 2nd interface */ if (rtlhal->interfaceindex != 0) { for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i]; *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue; } } rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, rtlefuse->dev_addr); RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); _rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo); /* Read Channel Plan */ switch (rtlhal->bandset) { case BAND_ON_2_4G: rtlefuse->channel_plan = COUNTRY_CODE_TELEC; break; case BAND_ON_5G: rtlefuse->channel_plan = COUNTRY_CODE_FCC; break; case BAND_ON_BOTH: rtlefuse->channel_plan = COUNTRY_CODE_FCC; break; default: rtlefuse->channel_plan = COUNTRY_CODE_FCC; break; } rtlefuse->txpwr_fromeprom = true; exit: kfree(hwinfo); } void rtl92de_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; rtlhal->version = _rtl92de_read_chip_version(hw); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); rtlefuse->autoload_status = tmp_u1b; if (tmp_u1b & BIT(4)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl92de_read_adapter_info(hw); } else { pr_err("Autoload ERR!!\n"); } return; } static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 nmode = mac->ht_enable; u8 mimo_ps = IEEE80211_SMPS_OFF; u16 shortgi_rate; u32 tmp_ratr_value; u8 curtxbw_40mhz = mac->bw_40; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->supp_rates[1] << 4; else ratr_value = sta->supp_rates[0]; ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_A: ratr_value &= 0x00000FF0; break; case WIRELESS_MODE_B: if (ratr_value & 0x0000000c) ratr_value &= 0x0000000d; else ratr_value &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: nmode = 1; if (mimo_ps == IEEE80211_SMPS_STATIC) { ratr_value &= 0x0007F005; } else { u32 ratr_mask; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) { ratr_mask = 0x000ff005; } else { ratr_mask = 0x0f0ff005; } ratr_value &= ratr_mask; } break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } ratr_value &= 0x0FFFFFFF; if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); } rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); } static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0; u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u32 value[2]; u8 macid = 0; u8 mimo_ps = IEEE80211_SMPS_OFF; sta_entry = (struct rtl_sta_info *) sta->drv_priv; mimo_ps = sta_entry->mimo_ps; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->supp_rates[1] << 4; else ratr_bitmap = sta->supp_rates[0]; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: ratr_index = RATR_INX_WIRELESS_G; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: if (wirelessmode == WIRELESS_MODE_N_24G) ratr_index = RATR_INX_WIRELESS_NGB; else ratr_index = RATR_INX_WIRELESS_NG; if (mimo_ps == IEEE80211_SMPS_STATIC) { if (rssi_level == 1) ratr_bitmap &= 0x00070000; else if (rssi_level == 2) ratr_bitmap &= 0x0007f000; else ratr_bitmap &= 0x0007f005; } else { if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff005; } } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x value0:%x value1:%x\n", ratr_bitmap, value[0], value[1]); rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value); if (macid != 0) sta_entry->ratr_index = ratr_index; } void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl92de_update_hal_rate_mask(hw, sta, rssi_level, update_bw); else rtl92de_update_hal_rate_table(hw, sta); } void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x1010; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); enum rf_pwrstate e_rfpowerstate_toset; u8 u1tmp; bool actuallyset = false; unsigned long flag; if (rtlpci->being_init_adapter) return false; if (ppsc->swrf_processing) return false; spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); if (ppsc->rfchange_inprogress) { spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv, REG_MAC_PINMUX_CFG) & ~(BIT(3))); u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF; if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio ON, RF ON\n"); e_rfpowerstate_toset = ERFON; ppsc->hwradiooff = false; actuallyset = true; } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio OFF, RF OFF\n"); e_rfpowerstate_toset = ERFOFF; ppsc->hwradiooff = true; actuallyset = true; } if (actuallyset) { spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } else { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag); ppsc->rfchange_inprogress = false; spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag); } *valid = 1; return !ppsc->hwradiooff; } void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx; u8 cam_offset = 0; u8 clear_number = 5; RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: pr_err("switch case %#x not processed\n", enc_algo); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { pr_err("Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY length is %d\n", rtlpriv->sec.key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The insert KEY is %x %x\n", rtlpriv->sec.key_buf[0][0], rtlpriv->sec.key_buf[0][1]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD, "Pairwise Key content", rtlpriv->sec.pairwise_key, rtlpriv-> sec.key_len[PAIRWISE_KEYIDX]); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv-> sec.key_buf[key_index]); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf [entry_id]); } } } } void rtl92de_suspend(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL); } void rtl92de_resume(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL, rtlpriv->rtlhal.macphyctl_reg); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1