Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 6213 | 71.22% | 5 | 6.58% |
Dominik Brodowski | 1631 | 18.70% | 41 | 53.95% |
Russell King | 636 | 7.29% | 9 | 11.84% |
Andrew Morton | 109 | 1.25% | 1 | 1.32% |
Alan Cox | 25 | 0.29% | 3 | 3.95% |
David Howells | 17 | 0.19% | 1 | 1.32% |
Linus Torvalds | 16 | 0.18% | 3 | 3.95% |
Harvey Harrison | 13 | 0.15% | 1 | 1.32% |
Daniel Ritz | 11 | 0.13% | 1 | 1.32% |
Chris Wright | 10 | 0.11% | 1 | 1.32% |
Pavel Machek | 9 | 0.10% | 1 | 1.32% |
David Hinds | 8 | 0.09% | 1 | 1.32% |
Kees Cook | 6 | 0.07% | 1 | 1.32% |
Himangi Saraogi | 5 | 0.06% | 1 | 1.32% |
Joe Perches | 4 | 0.05% | 1 | 1.32% |
Pavel Roskin | 3 | 0.03% | 1 | 1.32% |
Ben Dooks | 3 | 0.03% | 1 | 1.32% |
Marc Zyngier | 2 | 0.02% | 1 | 1.32% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.32% |
Bhumika Goyal | 1 | 0.01% | 1 | 1.32% |
Total | 8724 | 76 |
// SPDX-License-Identifier: GPL-2.0-only /* * cistpl.c -- 16-bit PCMCIA Card Information Structure parser * * The initial developer of the original code is David A. Hinds * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds * are Copyright (C) 1999 David A. Hinds. All Rights Reserved. * * (C) 1999 David A. Hinds */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/major.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/mm.h> #include <linux/pci.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/security.h> #include <asm/byteorder.h> #include <asm/unaligned.h> #include <pcmcia/ss.h> #include <pcmcia/cisreg.h> #include <pcmcia/cistpl.h> #include <pcmcia/ds.h> #include "cs_internal.h" static const u_char mantissa[] = { 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90 }; static const u_int exponent[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000 }; /* Convert an extended speed byte to a time in nanoseconds */ #define SPEED_CVT(v) \ (mantissa[(((v)>>3)&15)-1] * exponent[(v)&7] / 10) /* Convert a power byte to a current in 0.1 microamps */ #define POWER_CVT(v) \ (mantissa[((v)>>3)&15] * exponent[(v)&7] / 10) #define POWER_SCALE(v) (exponent[(v)&7]) /* Upper limit on reasonable # of tuples */ #define MAX_TUPLES 200 /* Bits in IRQInfo1 field */ #define IRQ_INFO2_VALID 0x10 /* 16-bit CIS? */ static int cis_width; module_param(cis_width, int, 0444); void release_cis_mem(struct pcmcia_socket *s) { mutex_lock(&s->ops_mutex); if (s->cis_mem.flags & MAP_ACTIVE) { s->cis_mem.flags &= ~MAP_ACTIVE; s->ops->set_mem_map(s, &s->cis_mem); if (s->cis_mem.res) { release_resource(s->cis_mem.res); kfree(s->cis_mem.res); s->cis_mem.res = NULL; } iounmap(s->cis_virt); s->cis_virt = NULL; } mutex_unlock(&s->ops_mutex); } /** * set_cis_map() - map the card memory at "card_offset" into virtual space. * * If flags & MAP_ATTRIB, map the attribute space, otherwise * map the memory space. * * Must be called with ops_mutex held. */ static void __iomem *set_cis_map(struct pcmcia_socket *s, unsigned int card_offset, unsigned int flags) { pccard_mem_map *mem = &s->cis_mem; int ret; if (!(s->features & SS_CAP_STATIC_MAP) && (mem->res == NULL)) { mem->res = pcmcia_find_mem_region(0, s->map_size, s->map_size, 0, s); if (mem->res == NULL) { dev_notice(&s->dev, "cs: unable to map card memory!\n"); return NULL; } s->cis_virt = NULL; } if (!(s->features & SS_CAP_STATIC_MAP) && (!s->cis_virt)) s->cis_virt = ioremap(mem->res->start, s->map_size); mem->card_start = card_offset; mem->flags = flags; ret = s->ops->set_mem_map(s, mem); if (ret) { iounmap(s->cis_virt); s->cis_virt = NULL; return NULL; } if (s->features & SS_CAP_STATIC_MAP) { if (s->cis_virt) iounmap(s->cis_virt); s->cis_virt = ioremap(mem->static_start, s->map_size); } return s->cis_virt; } /* Bits in attr field */ #define IS_ATTR 1 #define IS_INDIRECT 8 /** * pcmcia_read_cis_mem() - low-level function to read CIS memory * * must be called with ops_mutex held */ int pcmcia_read_cis_mem(struct pcmcia_socket *s, int attr, u_int addr, u_int len, void *ptr) { void __iomem *sys, *end; unsigned char *buf = ptr; dev_dbg(&s->dev, "pcmcia_read_cis_mem(%d, %#x, %u)\n", attr, addr, len); if (attr & IS_INDIRECT) { /* Indirect accesses use a bunch of special registers at fixed locations in common memory */ u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN; if (attr & IS_ATTR) { addr *= 2; flags = ICTRL0_AUTOINC; } sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0)); if (!sys) { dev_dbg(&s->dev, "could not map memory\n"); memset(ptr, 0xff, len); return -1; } writeb(flags, sys+CISREG_ICTRL0); writeb(addr & 0xff, sys+CISREG_IADDR0); writeb((addr>>8) & 0xff, sys+CISREG_IADDR1); writeb((addr>>16) & 0xff, sys+CISREG_IADDR2); writeb((addr>>24) & 0xff, sys+CISREG_IADDR3); for ( ; len > 0; len--, buf++) *buf = readb(sys+CISREG_IDATA0); } else { u_int inc = 1, card_offset, flags; if (addr > CISTPL_MAX_CIS_SIZE) { dev_dbg(&s->dev, "attempt to read CIS mem at addr %#x", addr); memset(ptr, 0xff, len); return -1; } flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0); if (attr) { flags |= MAP_ATTRIB; inc++; addr *= 2; } card_offset = addr & ~(s->map_size-1); while (len) { sys = set_cis_map(s, card_offset, flags); if (!sys) { dev_dbg(&s->dev, "could not map memory\n"); memset(ptr, 0xff, len); return -1; } end = sys + s->map_size; sys = sys + (addr & (s->map_size-1)); for ( ; len > 0; len--, buf++, sys += inc) { if (sys == end) break; *buf = readb(sys); } card_offset += s->map_size; addr = 0; } } dev_dbg(&s->dev, " %#2.2x %#2.2x %#2.2x %#2.2x ...\n", *(u_char *)(ptr+0), *(u_char *)(ptr+1), *(u_char *)(ptr+2), *(u_char *)(ptr+3)); return 0; } /** * pcmcia_write_cis_mem() - low-level function to write CIS memory * * Probably only useful for writing one-byte registers. Must be called * with ops_mutex held. */ int pcmcia_write_cis_mem(struct pcmcia_socket *s, int attr, u_int addr, u_int len, void *ptr) { void __iomem *sys, *end; unsigned char *buf = ptr; dev_dbg(&s->dev, "pcmcia_write_cis_mem(%d, %#x, %u)\n", attr, addr, len); if (attr & IS_INDIRECT) { /* Indirect accesses use a bunch of special registers at fixed locations in common memory */ u_char flags = ICTRL0_COMMON|ICTRL0_AUTOINC|ICTRL0_BYTEGRAN; if (attr & IS_ATTR) { addr *= 2; flags = ICTRL0_AUTOINC; } sys = set_cis_map(s, 0, MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0)); if (!sys) { dev_dbg(&s->dev, "could not map memory\n"); return -EINVAL; } writeb(flags, sys+CISREG_ICTRL0); writeb(addr & 0xff, sys+CISREG_IADDR0); writeb((addr>>8) & 0xff, sys+CISREG_IADDR1); writeb((addr>>16) & 0xff, sys+CISREG_IADDR2); writeb((addr>>24) & 0xff, sys+CISREG_IADDR3); for ( ; len > 0; len--, buf++) writeb(*buf, sys+CISREG_IDATA0); } else { u_int inc = 1, card_offset, flags; flags = MAP_ACTIVE | ((cis_width) ? MAP_16BIT : 0); if (attr & IS_ATTR) { flags |= MAP_ATTRIB; inc++; addr *= 2; } card_offset = addr & ~(s->map_size-1); while (len) { sys = set_cis_map(s, card_offset, flags); if (!sys) { dev_dbg(&s->dev, "could not map memory\n"); return -EINVAL; } end = sys + s->map_size; sys = sys + (addr & (s->map_size-1)); for ( ; len > 0; len--, buf++, sys += inc) { if (sys == end) break; writeb(*buf, sys); } card_offset += s->map_size; addr = 0; } } return 0; } /** * read_cis_cache() - read CIS memory or its associated cache * * This is a wrapper around read_cis_mem, with the same interface, * but which caches information, for cards whose CIS may not be * readable all the time. */ static int read_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, size_t len, void *ptr) { struct cis_cache_entry *cis; int ret = 0; if (s->state & SOCKET_CARDBUS) return -EINVAL; mutex_lock(&s->ops_mutex); if (s->fake_cis) { if (s->fake_cis_len >= addr+len) memcpy(ptr, s->fake_cis+addr, len); else { memset(ptr, 0xff, len); ret = -EINVAL; } mutex_unlock(&s->ops_mutex); return ret; } list_for_each_entry(cis, &s->cis_cache, node) { if (cis->addr == addr && cis->len == len && cis->attr == attr) { memcpy(ptr, cis->cache, len); mutex_unlock(&s->ops_mutex); return 0; } } ret = pcmcia_read_cis_mem(s, attr, addr, len, ptr); if (ret == 0) { /* Copy data into the cache */ cis = kmalloc(sizeof(struct cis_cache_entry) + len, GFP_KERNEL); if (cis) { cis->addr = addr; cis->len = len; cis->attr = attr; memcpy(cis->cache, ptr, len); list_add(&cis->node, &s->cis_cache); } } mutex_unlock(&s->ops_mutex); return ret; } static void remove_cis_cache(struct pcmcia_socket *s, int attr, u_int addr, u_int len) { struct cis_cache_entry *cis; mutex_lock(&s->ops_mutex); list_for_each_entry(cis, &s->cis_cache, node) if (cis->addr == addr && cis->len == len && cis->attr == attr) { list_del(&cis->node); kfree(cis); break; } mutex_unlock(&s->ops_mutex); } /** * destroy_cis_cache() - destroy the CIS cache * @s: pcmcia_socket for which CIS cache shall be destroyed * * This destroys the CIS cache but keeps any fake CIS alive. Must be * called with ops_mutex held. */ void destroy_cis_cache(struct pcmcia_socket *s) { struct list_head *l, *n; struct cis_cache_entry *cis; list_for_each_safe(l, n, &s->cis_cache) { cis = list_entry(l, struct cis_cache_entry, node); list_del(&cis->node); kfree(cis); } } /** * verify_cis_cache() - does the CIS match what is in the CIS cache? */ int verify_cis_cache(struct pcmcia_socket *s) { struct cis_cache_entry *cis; char *buf; int ret; if (s->state & SOCKET_CARDBUS) return -EINVAL; buf = kmalloc(256, GFP_KERNEL); if (buf == NULL) { dev_warn(&s->dev, "no memory for verifying CIS\n"); return -ENOMEM; } mutex_lock(&s->ops_mutex); list_for_each_entry(cis, &s->cis_cache, node) { int len = cis->len; if (len > 256) len = 256; ret = pcmcia_read_cis_mem(s, cis->attr, cis->addr, len, buf); if (ret || memcmp(buf, cis->cache, len) != 0) { kfree(buf); mutex_unlock(&s->ops_mutex); return -1; } } kfree(buf); mutex_unlock(&s->ops_mutex); return 0; } /** * pcmcia_replace_cis() - use a replacement CIS instead of the card's CIS * * For really bad cards, we provide a facility for uploading a * replacement CIS. */ int pcmcia_replace_cis(struct pcmcia_socket *s, const u8 *data, const size_t len) { if (len > CISTPL_MAX_CIS_SIZE) { dev_warn(&s->dev, "replacement CIS too big\n"); return -EINVAL; } mutex_lock(&s->ops_mutex); kfree(s->fake_cis); s->fake_cis = kmalloc(len, GFP_KERNEL); if (s->fake_cis == NULL) { dev_warn(&s->dev, "no memory to replace CIS\n"); mutex_unlock(&s->ops_mutex); return -ENOMEM; } s->fake_cis_len = len; memcpy(s->fake_cis, data, len); dev_info(&s->dev, "Using replacement CIS\n"); mutex_unlock(&s->ops_mutex); return 0; } /* The high-level CIS tuple services */ struct tuple_flags { u_int link_space:4; u_int has_link:1; u_int mfc_fn:3; u_int space:4; }; #define LINK_SPACE(f) (((struct tuple_flags *)(&(f)))->link_space) #define HAS_LINK(f) (((struct tuple_flags *)(&(f)))->has_link) #define MFC_FN(f) (((struct tuple_flags *)(&(f)))->mfc_fn) #define SPACE(f) (((struct tuple_flags *)(&(f)))->space) int pccard_get_first_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple) { if (!s) return -EINVAL; if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS)) return -ENODEV; tuple->TupleLink = tuple->Flags = 0; /* Assume presence of a LONGLINK_C to address 0 */ tuple->CISOffset = tuple->LinkOffset = 0; SPACE(tuple->Flags) = HAS_LINK(tuple->Flags) = 1; if ((s->functions > 1) && !(tuple->Attributes & TUPLE_RETURN_COMMON)) { cisdata_t req = tuple->DesiredTuple; tuple->DesiredTuple = CISTPL_LONGLINK_MFC; if (pccard_get_next_tuple(s, function, tuple) == 0) { tuple->DesiredTuple = CISTPL_LINKTARGET; if (pccard_get_next_tuple(s, function, tuple) != 0) return -ENOSPC; } else tuple->CISOffset = tuple->TupleLink = 0; tuple->DesiredTuple = req; } return pccard_get_next_tuple(s, function, tuple); } static int follow_link(struct pcmcia_socket *s, tuple_t *tuple) { u_char link[5]; u_int ofs; int ret; if (MFC_FN(tuple->Flags)) { /* Get indirect link from the MFC tuple */ ret = read_cis_cache(s, LINK_SPACE(tuple->Flags), tuple->LinkOffset, 5, link); if (ret) return -1; ofs = get_unaligned_le32(link + 1); SPACE(tuple->Flags) = (link[0] == CISTPL_MFC_ATTR); /* Move to the next indirect link */ tuple->LinkOffset += 5; MFC_FN(tuple->Flags)--; } else if (HAS_LINK(tuple->Flags)) { ofs = tuple->LinkOffset; SPACE(tuple->Flags) = LINK_SPACE(tuple->Flags); HAS_LINK(tuple->Flags) = 0; } else return -1; if (SPACE(tuple->Flags)) { /* This is ugly, but a common CIS error is to code the long link offset incorrectly, so we check the right spot... */ ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link); if (ret) return -1; if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) && (strncmp(link+2, "CIS", 3) == 0)) return ofs; remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5); /* Then, we try the wrong spot... */ ofs = ofs >> 1; } ret = read_cis_cache(s, SPACE(tuple->Flags), ofs, 5, link); if (ret) return -1; if ((link[0] == CISTPL_LINKTARGET) && (link[1] >= 3) && (strncmp(link+2, "CIS", 3) == 0)) return ofs; remove_cis_cache(s, SPACE(tuple->Flags), ofs, 5); return -1; } int pccard_get_next_tuple(struct pcmcia_socket *s, unsigned int function, tuple_t *tuple) { u_char link[2], tmp; int ofs, i, attr; int ret; if (!s) return -EINVAL; if (!(s->state & SOCKET_PRESENT) || (s->state & SOCKET_CARDBUS)) return -ENODEV; link[1] = tuple->TupleLink; ofs = tuple->CISOffset + tuple->TupleLink; attr = SPACE(tuple->Flags); for (i = 0; i < MAX_TUPLES; i++) { if (link[1] == 0xff) link[0] = CISTPL_END; else { ret = read_cis_cache(s, attr, ofs, 2, link); if (ret) return -1; if (link[0] == CISTPL_NULL) { ofs++; continue; } } /* End of chain? Follow long link if possible */ if (link[0] == CISTPL_END) { ofs = follow_link(s, tuple); if (ofs < 0) return -ENOSPC; attr = SPACE(tuple->Flags); ret = read_cis_cache(s, attr, ofs, 2, link); if (ret) return -1; } /* Is this a link tuple? Make a note of it */ if ((link[0] == CISTPL_LONGLINK_A) || (link[0] == CISTPL_LONGLINK_C) || (link[0] == CISTPL_LONGLINK_MFC) || (link[0] == CISTPL_LINKTARGET) || (link[0] == CISTPL_INDIRECT) || (link[0] == CISTPL_NO_LINK)) { switch (link[0]) { case CISTPL_LONGLINK_A: HAS_LINK(tuple->Flags) = 1; LINK_SPACE(tuple->Flags) = attr | IS_ATTR; ret = read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset); if (ret) return -1; break; case CISTPL_LONGLINK_C: HAS_LINK(tuple->Flags) = 1; LINK_SPACE(tuple->Flags) = attr & ~IS_ATTR; ret = read_cis_cache(s, attr, ofs+2, 4, &tuple->LinkOffset); if (ret) return -1; break; case CISTPL_INDIRECT: HAS_LINK(tuple->Flags) = 1; LINK_SPACE(tuple->Flags) = IS_ATTR | IS_INDIRECT; tuple->LinkOffset = 0; break; case CISTPL_LONGLINK_MFC: tuple->LinkOffset = ofs + 3; LINK_SPACE(tuple->Flags) = attr; if (function == BIND_FN_ALL) { /* Follow all the MFC links */ ret = read_cis_cache(s, attr, ofs+2, 1, &tmp); if (ret) return -1; MFC_FN(tuple->Flags) = tmp; } else { /* Follow exactly one of the links */ MFC_FN(tuple->Flags) = 1; tuple->LinkOffset += function * 5; } break; case CISTPL_NO_LINK: HAS_LINK(tuple->Flags) = 0; break; } if ((tuple->Attributes & TUPLE_RETURN_LINK) && (tuple->DesiredTuple == RETURN_FIRST_TUPLE)) break; } else if (tuple->DesiredTuple == RETURN_FIRST_TUPLE) break; if (link[0] == tuple->DesiredTuple) break; ofs += link[1] + 2; } if (i == MAX_TUPLES) { dev_dbg(&s->dev, "cs: overrun in pcmcia_get_next_tuple\n"); return -ENOSPC; } tuple->TupleCode = link[0]; tuple->TupleLink = link[1]; tuple->CISOffset = ofs + 2; return 0; } int pccard_get_tuple_data(struct pcmcia_socket *s, tuple_t *tuple) { u_int len; int ret; if (!s) return -EINVAL; if (tuple->TupleLink < tuple->TupleOffset) return -ENOSPC; len = tuple->TupleLink - tuple->TupleOffset; tuple->TupleDataLen = tuple->TupleLink; if (len == 0) return 0; ret = read_cis_cache(s, SPACE(tuple->Flags), tuple->CISOffset + tuple->TupleOffset, min(len, (u_int) tuple->TupleDataMax), tuple->TupleData); if (ret) return -1; return 0; } /* Parsing routines for individual tuples */ static int parse_device(tuple_t *tuple, cistpl_device_t *device) { int i; u_char scale; u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; device->ndev = 0; for (i = 0; i < CISTPL_MAX_DEVICES; i++) { if (*p == 0xff) break; device->dev[i].type = (*p >> 4); device->dev[i].wp = (*p & 0x08) ? 1 : 0; switch (*p & 0x07) { case 0: device->dev[i].speed = 0; break; case 1: device->dev[i].speed = 250; break; case 2: device->dev[i].speed = 200; break; case 3: device->dev[i].speed = 150; break; case 4: device->dev[i].speed = 100; break; case 7: if (++p == q) return -EINVAL; device->dev[i].speed = SPEED_CVT(*p); while (*p & 0x80) if (++p == q) return -EINVAL; break; default: return -EINVAL; } if (++p == q) return -EINVAL; if (*p == 0xff) break; scale = *p & 7; if (scale == 7) return -EINVAL; device->dev[i].size = ((*p >> 3) + 1) * (512 << (scale*2)); device->ndev++; if (++p == q) break; } return 0; } static int parse_checksum(tuple_t *tuple, cistpl_checksum_t *csum) { u_char *p; if (tuple->TupleDataLen < 5) return -EINVAL; p = (u_char *) tuple->TupleData; csum->addr = tuple->CISOffset + get_unaligned_le16(p) - 2; csum->len = get_unaligned_le16(p + 2); csum->sum = *(p + 4); return 0; } static int parse_longlink(tuple_t *tuple, cistpl_longlink_t *link) { if (tuple->TupleDataLen < 4) return -EINVAL; link->addr = get_unaligned_le32(tuple->TupleData); return 0; } static int parse_longlink_mfc(tuple_t *tuple, cistpl_longlink_mfc_t *link) { u_char *p; int i; p = (u_char *)tuple->TupleData; link->nfn = *p; p++; if (tuple->TupleDataLen <= link->nfn*5) return -EINVAL; for (i = 0; i < link->nfn; i++) { link->fn[i].space = *p; p++; link->fn[i].addr = get_unaligned_le32(p); p += 4; } return 0; } static int parse_strings(u_char *p, u_char *q, int max, char *s, u_char *ofs, u_char *found) { int i, j, ns; if (p == q) return -EINVAL; ns = 0; j = 0; for (i = 0; i < max; i++) { if (*p == 0xff) break; ofs[i] = j; ns++; for (;;) { s[j++] = (*p == 0xff) ? '\0' : *p; if ((*p == '\0') || (*p == 0xff)) break; if (++p == q) return -EINVAL; } if ((*p == 0xff) || (++p == q)) break; } if (found) { *found = ns; return 0; } return (ns == max) ? 0 : -EINVAL; } static int parse_vers_1(tuple_t *tuple, cistpl_vers_1_t *vers_1) { u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; vers_1->major = *p; p++; vers_1->minor = *p; p++; if (p >= q) return -EINVAL; return parse_strings(p, q, CISTPL_VERS_1_MAX_PROD_STRINGS, vers_1->str, vers_1->ofs, &vers_1->ns); } static int parse_altstr(tuple_t *tuple, cistpl_altstr_t *altstr) { u_char *p, *q; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; return parse_strings(p, q, CISTPL_MAX_ALTSTR_STRINGS, altstr->str, altstr->ofs, &altstr->ns); } static int parse_jedec(tuple_t *tuple, cistpl_jedec_t *jedec) { u_char *p, *q; int nid; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; for (nid = 0; nid < CISTPL_MAX_DEVICES; nid++) { if (p > q-2) break; jedec->id[nid].mfr = p[0]; jedec->id[nid].info = p[1]; p += 2; } jedec->nid = nid; return 0; } static int parse_manfid(tuple_t *tuple, cistpl_manfid_t *m) { if (tuple->TupleDataLen < 4) return -EINVAL; m->manf = get_unaligned_le16(tuple->TupleData); m->card = get_unaligned_le16(tuple->TupleData + 2); return 0; } static int parse_funcid(tuple_t *tuple, cistpl_funcid_t *f) { u_char *p; if (tuple->TupleDataLen < 2) return -EINVAL; p = (u_char *)tuple->TupleData; f->func = p[0]; f->sysinit = p[1]; return 0; } static int parse_funce(tuple_t *tuple, cistpl_funce_t *f) { u_char *p; int i; if (tuple->TupleDataLen < 1) return -EINVAL; p = (u_char *)tuple->TupleData; f->type = p[0]; for (i = 1; i < tuple->TupleDataLen; i++) f->data[i-1] = p[i]; return 0; } static int parse_config(tuple_t *tuple, cistpl_config_t *config) { int rasz, rmsz, i; u_char *p; p = (u_char *)tuple->TupleData; rasz = *p & 0x03; rmsz = (*p & 0x3c) >> 2; if (tuple->TupleDataLen < rasz+rmsz+4) return -EINVAL; config->last_idx = *(++p); p++; config->base = 0; for (i = 0; i <= rasz; i++) config->base += p[i] << (8*i); p += rasz+1; for (i = 0; i < 4; i++) config->rmask[i] = 0; for (i = 0; i <= rmsz; i++) config->rmask[i>>2] += p[i] << (8*(i%4)); config->subtuples = tuple->TupleDataLen - (rasz+rmsz+4); return 0; } /* The following routines are all used to parse the nightmarish * config table entries. */ static u_char *parse_power(u_char *p, u_char *q, cistpl_power_t *pwr) { int i; u_int scale; if (p == q) return NULL; pwr->present = *p; pwr->flags = 0; p++; for (i = 0; i < 7; i++) if (pwr->present & (1<<i)) { if (p == q) return NULL; pwr->param[i] = POWER_CVT(*p); scale = POWER_SCALE(*p); while (*p & 0x80) { if (++p == q) return NULL; if ((*p & 0x7f) < 100) pwr->param[i] += (*p & 0x7f) * scale / 100; else if (*p == 0x7d) pwr->flags |= CISTPL_POWER_HIGHZ_OK; else if (*p == 0x7e) pwr->param[i] = 0; else if (*p == 0x7f) pwr->flags |= CISTPL_POWER_HIGHZ_REQ; else return NULL; } p++; } return p; } static u_char *parse_timing(u_char *p, u_char *q, cistpl_timing_t *timing) { u_char scale; if (p == q) return NULL; scale = *p; if ((scale & 3) != 3) { if (++p == q) return NULL; timing->wait = SPEED_CVT(*p); timing->waitscale = exponent[scale & 3]; } else timing->wait = 0; scale >>= 2; if ((scale & 7) != 7) { if (++p == q) return NULL; timing->ready = SPEED_CVT(*p); timing->rdyscale = exponent[scale & 7]; } else timing->ready = 0; scale >>= 3; if (scale != 7) { if (++p == q) return NULL; timing->reserved = SPEED_CVT(*p); timing->rsvscale = exponent[scale]; } else timing->reserved = 0; p++; return p; } static u_char *parse_io(u_char *p, u_char *q, cistpl_io_t *io) { int i, j, bsz, lsz; if (p == q) return NULL; io->flags = *p; if (!(*p & 0x80)) { io->nwin = 1; io->win[0].base = 0; io->win[0].len = (1 << (io->flags & CISTPL_IO_LINES_MASK)); return p+1; } if (++p == q) return NULL; io->nwin = (*p & 0x0f) + 1; bsz = (*p & 0x30) >> 4; if (bsz == 3) bsz++; lsz = (*p & 0xc0) >> 6; if (lsz == 3) lsz++; p++; for (i = 0; i < io->nwin; i++) { io->win[i].base = 0; io->win[i].len = 1; for (j = 0; j < bsz; j++, p++) { if (p == q) return NULL; io->win[i].base += *p << (j*8); } for (j = 0; j < lsz; j++, p++) { if (p == q) return NULL; io->win[i].len += *p << (j*8); } } return p; } static u_char *parse_mem(u_char *p, u_char *q, cistpl_mem_t *mem) { int i, j, asz, lsz, has_ha; u_int len, ca, ha; if (p == q) return NULL; mem->nwin = (*p & 0x07) + 1; lsz = (*p & 0x18) >> 3; asz = (*p & 0x60) >> 5; has_ha = (*p & 0x80); if (++p == q) return NULL; for (i = 0; i < mem->nwin; i++) { len = ca = ha = 0; for (j = 0; j < lsz; j++, p++) { if (p == q) return NULL; len += *p << (j*8); } for (j = 0; j < asz; j++, p++) { if (p == q) return NULL; ca += *p << (j*8); } if (has_ha) for (j = 0; j < asz; j++, p++) { if (p == q) return NULL; ha += *p << (j*8); } mem->win[i].len = len << 8; mem->win[i].card_addr = ca << 8; mem->win[i].host_addr = ha << 8; } return p; } static u_char *parse_irq(u_char *p, u_char *q, cistpl_irq_t *irq) { if (p == q) return NULL; irq->IRQInfo1 = *p; p++; if (irq->IRQInfo1 & IRQ_INFO2_VALID) { if (p+2 > q) return NULL; irq->IRQInfo2 = (p[1]<<8) + p[0]; p += 2; } return p; } static int parse_cftable_entry(tuple_t *tuple, cistpl_cftable_entry_t *entry) { u_char *p, *q, features; p = tuple->TupleData; q = p + tuple->TupleDataLen; entry->index = *p & 0x3f; entry->flags = 0; if (*p & 0x40) entry->flags |= CISTPL_CFTABLE_DEFAULT; if (*p & 0x80) { if (++p == q) return -EINVAL; if (*p & 0x10) entry->flags |= CISTPL_CFTABLE_BVDS; if (*p & 0x20) entry->flags |= CISTPL_CFTABLE_WP; if (*p & 0x40) entry->flags |= CISTPL_CFTABLE_RDYBSY; if (*p & 0x80) entry->flags |= CISTPL_CFTABLE_MWAIT; entry->interface = *p & 0x0f; } else entry->interface = 0; /* Process optional features */ if (++p == q) return -EINVAL; features = *p; p++; /* Power options */ if ((features & 3) > 0) { p = parse_power(p, q, &entry->vcc); if (p == NULL) return -EINVAL; } else entry->vcc.present = 0; if ((features & 3) > 1) { p = parse_power(p, q, &entry->vpp1); if (p == NULL) return -EINVAL; } else entry->vpp1.present = 0; if ((features & 3) > 2) { p = parse_power(p, q, &entry->vpp2); if (p == NULL) return -EINVAL; } else entry->vpp2.present = 0; /* Timing options */ if (features & 0x04) { p = parse_timing(p, q, &entry->timing); if (p == NULL) return -EINVAL; } else { entry->timing.wait = 0; entry->timing.ready = 0; entry->timing.reserved = 0; } /* I/O window options */ if (features & 0x08) { p = parse_io(p, q, &entry->io); if (p == NULL) return -EINVAL; } else entry->io.nwin = 0; /* Interrupt options */ if (features & 0x10) { p = parse_irq(p, q, &entry->irq); if (p == NULL) return -EINVAL; } else entry->irq.IRQInfo1 = 0; switch (features & 0x60) { case 0x00: entry->mem.nwin = 0; break; case 0x20: entry->mem.nwin = 1; entry->mem.win[0].len = get_unaligned_le16(p) << 8; entry->mem.win[0].card_addr = 0; entry->mem.win[0].host_addr = 0; p += 2; if (p > q) return -EINVAL; break; case 0x40: entry->mem.nwin = 1; entry->mem.win[0].len = get_unaligned_le16(p) << 8; entry->mem.win[0].card_addr = get_unaligned_le16(p + 2) << 8; entry->mem.win[0].host_addr = 0; p += 4; if (p > q) return -EINVAL; break; case 0x60: p = parse_mem(p, q, &entry->mem); if (p == NULL) return -EINVAL; break; } /* Misc features */ if (features & 0x80) { if (p == q) return -EINVAL; entry->flags |= (*p << 8); while (*p & 0x80) if (++p == q) return -EINVAL; p++; } entry->subtuples = q-p; return 0; } static int parse_device_geo(tuple_t *tuple, cistpl_device_geo_t *geo) { u_char *p, *q; int n; p = (u_char *)tuple->TupleData; q = p + tuple->TupleDataLen; for (n = 0; n < CISTPL_MAX_DEVICES; n++) { if (p > q-6) break; geo->geo[n].buswidth = p[0]; geo->geo[n].erase_block = 1 << (p[1]-1); geo->geo[n].read_block = 1 << (p[2]-1); geo->geo[n].write_block = 1 << (p[3]-1); geo->geo[n].partition = 1 << (p[4]-1); geo->geo[n].interleave = 1 << (p[5]-1); p += 6; } geo->ngeo = n; return 0; } static int parse_vers_2(tuple_t *tuple, cistpl_vers_2_t *v2) { u_char *p, *q; if (tuple->TupleDataLen < 10) return -EINVAL; p = tuple->TupleData; q = p + tuple->TupleDataLen; v2->vers = p[0]; v2->comply = p[1]; v2->dindex = get_unaligned_le16(p + 2); v2->vspec8 = p[6]; v2->vspec9 = p[7]; v2->nhdr = p[8]; p += 9; return parse_strings(p, q, 2, v2->str, &v2->vendor, NULL); } static int parse_org(tuple_t *tuple, cistpl_org_t *org) { u_char *p, *q; int i; p = tuple->TupleData; q = p + tuple->TupleDataLen; if (p == q) return -EINVAL; org->data_org = *p; if (++p == q) return -EINVAL; for (i = 0; i < 30; i++) { org->desc[i] = *p; if (*p == '\0') break; if (++p == q) return -EINVAL; } return 0; } static int parse_format(tuple_t *tuple, cistpl_format_t *fmt) { u_char *p; if (tuple->TupleDataLen < 10) return -EINVAL; p = tuple->TupleData; fmt->type = p[0]; fmt->edc = p[1]; fmt->offset = get_unaligned_le32(p + 2); fmt->length = get_unaligned_le32(p + 6); return 0; } int pcmcia_parse_tuple(tuple_t *tuple, cisparse_t *parse) { int ret = 0; if (tuple->TupleDataLen > tuple->TupleDataMax) return -EINVAL; switch (tuple->TupleCode) { case CISTPL_DEVICE: case CISTPL_DEVICE_A: ret = parse_device(tuple, &parse->device); break; case CISTPL_CHECKSUM: ret = parse_checksum(tuple, &parse->checksum); break; case CISTPL_LONGLINK_A: case CISTPL_LONGLINK_C: ret = parse_longlink(tuple, &parse->longlink); break; case CISTPL_LONGLINK_MFC: ret = parse_longlink_mfc(tuple, &parse->longlink_mfc); break; case CISTPL_VERS_1: ret = parse_vers_1(tuple, &parse->version_1); break; case CISTPL_ALTSTR: ret = parse_altstr(tuple, &parse->altstr); break; case CISTPL_JEDEC_A: case CISTPL_JEDEC_C: ret = parse_jedec(tuple, &parse->jedec); break; case CISTPL_MANFID: ret = parse_manfid(tuple, &parse->manfid); break; case CISTPL_FUNCID: ret = parse_funcid(tuple, &parse->funcid); break; case CISTPL_FUNCE: ret = parse_funce(tuple, &parse->funce); break; case CISTPL_CONFIG: ret = parse_config(tuple, &parse->config); break; case CISTPL_CFTABLE_ENTRY: ret = parse_cftable_entry(tuple, &parse->cftable_entry); break; case CISTPL_DEVICE_GEO: case CISTPL_DEVICE_GEO_A: ret = parse_device_geo(tuple, &parse->device_geo); break; case CISTPL_VERS_2: ret = parse_vers_2(tuple, &parse->vers_2); break; case CISTPL_ORG: ret = parse_org(tuple, &parse->org); break; case CISTPL_FORMAT: case CISTPL_FORMAT_A: ret = parse_format(tuple, &parse->format); break; case CISTPL_NO_LINK: case CISTPL_LINKTARGET: ret = 0; break; default: ret = -EINVAL; break; } if (ret) pr_debug("parse_tuple failed %d\n", ret); return ret; } EXPORT_SYMBOL(pcmcia_parse_tuple); /** * pccard_validate_cis() - check whether card has a sensible CIS * @s: the struct pcmcia_socket we are to check * @info: returns the number of tuples in the (valid) CIS, or 0 * * This tries to determine if a card has a sensible CIS. In @info, it * returns the number of tuples in the CIS, or 0 if the CIS looks bad. The * checks include making sure several critical tuples are present and * valid; seeing if the total number of tuples is reasonable; and * looking for tuples that use reserved codes. * * The function returns 0 on success. */ int pccard_validate_cis(struct pcmcia_socket *s, unsigned int *info) { tuple_t *tuple; cisparse_t *p; unsigned int count = 0; int ret, reserved, dev_ok = 0, ident_ok = 0; if (!s) return -EINVAL; if (s->functions || !(s->state & SOCKET_PRESENT)) { WARN_ON(1); return -EINVAL; } /* We do not want to validate the CIS cache... */ mutex_lock(&s->ops_mutex); destroy_cis_cache(s); mutex_unlock(&s->ops_mutex); tuple = kmalloc(sizeof(*tuple), GFP_KERNEL); if (tuple == NULL) { dev_warn(&s->dev, "no memory to validate CIS\n"); return -ENOMEM; } p = kmalloc(sizeof(*p), GFP_KERNEL); if (p == NULL) { kfree(tuple); dev_warn(&s->dev, "no memory to validate CIS\n"); return -ENOMEM; } count = reserved = 0; tuple->DesiredTuple = RETURN_FIRST_TUPLE; tuple->Attributes = TUPLE_RETURN_COMMON; ret = pccard_get_first_tuple(s, BIND_FN_ALL, tuple); if (ret != 0) goto done; /* First tuple should be DEVICE; we should really have either that or a CFTABLE_ENTRY of some sort */ if ((tuple->TupleCode == CISTPL_DEVICE) || (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY, p)) || (!pccard_read_tuple(s, BIND_FN_ALL, CISTPL_CFTABLE_ENTRY_CB, p))) dev_ok++; /* All cards should have a MANFID tuple, and/or a VERS_1 or VERS_2 tuple, for card identification. Certain old D-Link and Linksys cards have only a broken VERS_2 tuple; hence the bogus test. */ if ((pccard_read_tuple(s, BIND_FN_ALL, CISTPL_MANFID, p) == 0) || (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_1, p) == 0) || (pccard_read_tuple(s, BIND_FN_ALL, CISTPL_VERS_2, p) != -ENOSPC)) ident_ok++; if (!dev_ok && !ident_ok) goto done; for (count = 1; count < MAX_TUPLES; count++) { ret = pccard_get_next_tuple(s, BIND_FN_ALL, tuple); if (ret != 0) break; if (((tuple->TupleCode > 0x23) && (tuple->TupleCode < 0x40)) || ((tuple->TupleCode > 0x47) && (tuple->TupleCode < 0x80)) || ((tuple->TupleCode > 0x90) && (tuple->TupleCode < 0xff))) reserved++; } if ((count == MAX_TUPLES) || (reserved > 5) || ((!dev_ok || !ident_ok) && (count > 10))) count = 0; ret = 0; done: /* invalidate CIS cache on failure */ if (!dev_ok || !ident_ok || !count) { mutex_lock(&s->ops_mutex); destroy_cis_cache(s); mutex_unlock(&s->ops_mutex); /* We differentiate between dev_ok, ident_ok and count failures to allow for an override for anonymous cards in ds.c */ if (!dev_ok || !ident_ok) ret = -EIO; else ret = -EFAULT; } if (info) *info = count; kfree(tuple); kfree(p); return ret; } #define to_socket(_dev) container_of(_dev, struct pcmcia_socket, dev) static ssize_t pccard_extract_cis(struct pcmcia_socket *s, char *buf, loff_t off, size_t count) { tuple_t tuple; int status, i; loff_t pointer = 0; ssize_t ret = 0; u_char *tuplebuffer; u_char *tempbuffer; tuplebuffer = kmalloc_array(256, sizeof(u_char), GFP_KERNEL); if (!tuplebuffer) return -ENOMEM; tempbuffer = kmalloc_array(258, sizeof(u_char), GFP_KERNEL); if (!tempbuffer) { ret = -ENOMEM; goto free_tuple; } memset(&tuple, 0, sizeof(tuple_t)); tuple.Attributes = TUPLE_RETURN_LINK | TUPLE_RETURN_COMMON; tuple.DesiredTuple = RETURN_FIRST_TUPLE; tuple.TupleOffset = 0; status = pccard_get_first_tuple(s, BIND_FN_ALL, &tuple); while (!status) { tuple.TupleData = tuplebuffer; tuple.TupleDataMax = 255; memset(tuplebuffer, 0, sizeof(u_char) * 255); status = pccard_get_tuple_data(s, &tuple); if (status) break; if (off < (pointer + 2 + tuple.TupleDataLen)) { tempbuffer[0] = tuple.TupleCode & 0xff; tempbuffer[1] = tuple.TupleLink & 0xff; for (i = 0; i < tuple.TupleDataLen; i++) tempbuffer[i + 2] = tuplebuffer[i] & 0xff; for (i = 0; i < (2 + tuple.TupleDataLen); i++) { if (((i + pointer) >= off) && (i + pointer) < (off + count)) { buf[ret] = tempbuffer[i]; ret++; } } } pointer += 2 + tuple.TupleDataLen; if (pointer >= (off + count)) break; if (tuple.TupleCode == CISTPL_END) break; status = pccard_get_next_tuple(s, BIND_FN_ALL, &tuple); } kfree(tempbuffer); free_tuple: kfree(tuplebuffer); return ret; } static ssize_t pccard_show_cis(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { unsigned int size = 0x200; if (off >= size) count = 0; else { struct pcmcia_socket *s; unsigned int chains = 1; if (off + count > size) count = size - off; s = to_socket(container_of(kobj, struct device, kobj)); if (!(s->state & SOCKET_PRESENT)) return -ENODEV; if (!s->functions && pccard_validate_cis(s, &chains)) return -EIO; if (!chains) return -ENODATA; count = pccard_extract_cis(s, buf, off, count); } return count; } static ssize_t pccard_store_cis(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct pcmcia_socket *s; int error; error = security_locked_down(LOCKDOWN_PCMCIA_CIS); if (error) return error; s = to_socket(container_of(kobj, struct device, kobj)); if (off) return -EINVAL; if (count >= CISTPL_MAX_CIS_SIZE) return -EINVAL; if (!(s->state & SOCKET_PRESENT)) return -ENODEV; error = pcmcia_replace_cis(s, buf, count); if (error) return -EIO; pcmcia_parse_uevents(s, PCMCIA_UEVENT_REQUERY); return count; } const struct bin_attribute pccard_cis_attr = { .attr = { .name = "cis", .mode = S_IRUGO | S_IWUSR }, .size = 0x200, .read = pccard_show_cis, .write = pccard_store_cis, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1