Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 2303 | 33.40% | 23 | 18.11% |
Russell King | 1521 | 22.06% | 18 | 14.17% |
Daniel Ritz | 1033 | 14.98% | 14 | 11.02% |
Dominik Brodowski | 947 | 13.73% | 16 | 12.60% |
Linus Torvalds | 318 | 4.61% | 9 | 7.09% |
Bernhard Kaindl | 152 | 2.20% | 1 | 0.79% |
Rafael J. Wysocki | 99 | 1.44% | 2 | 1.57% |
Jens Künzer | 76 | 1.10% | 3 | 2.36% |
Yinghai Lu | 65 | 0.94% | 2 | 1.57% |
Takeshi Yoshimura | 52 | 0.75% | 1 | 0.79% |
Manfred Spraul | 38 | 0.55% | 1 | 0.79% |
Wolfram Sang | 29 | 0.42% | 1 | 0.79% |
OGAWA Hirofumi | 27 | 0.39% | 2 | 1.57% |
Justin P. Mattock | 27 | 0.39% | 2 | 1.57% |
Jeff Garzik | 21 | 0.30% | 1 | 0.79% |
Alan Cox | 19 | 0.28% | 1 | 0.79% |
Ivan Kokshaysky | 18 | 0.26% | 1 | 0.79% |
Joe Perches | 18 | 0.26% | 1 | 0.79% |
Matthew Wilcox | 16 | 0.23% | 2 | 1.57% |
Kees Cook | 14 | 0.20% | 1 | 0.79% |
Shaohua Li | 12 | 0.17% | 1 | 0.79% |
Björn Helgaas | 11 | 0.16% | 1 | 0.79% |
Yijing Wang | 11 | 0.16% | 1 | 0.79% |
Alex Williamson | 9 | 0.13% | 1 | 0.79% |
Thomas Gleixner | 8 | 0.12% | 3 | 2.36% |
Greg Kroah-Hartman | 7 | 0.10% | 2 | 1.57% |
Vaishali Thakkar | 7 | 0.10% | 1 | 0.79% |
Alexey Dobriyan | 6 | 0.09% | 2 | 1.57% |
Takashi Iwai | 5 | 0.07% | 1 | 0.79% |
Randy Dunlap | 4 | 0.06% | 2 | 1.57% |
Roger Luethi | 4 | 0.06% | 1 | 0.79% |
Michał Pecio | 4 | 0.06% | 1 | 0.79% |
Rusty Russell | 3 | 0.04% | 1 | 0.79% |
Tejun Heo | 3 | 0.04% | 1 | 0.79% |
Chuhong Yuan | 2 | 0.03% | 1 | 0.79% |
Libo Chen | 2 | 0.03% | 1 | 0.79% |
Maximilian Attems | 2 | 0.03% | 1 | 0.79% |
Adrian Bunk | 1 | 0.01% | 1 | 0.79% |
Maciej S. Szmigiero | 1 | 0.01% | 1 | 0.79% |
Ingo Molnar | 1 | 0.01% | 1 | 0.79% |
Total | 6896 | 127 |
// SPDX-License-Identifier: GPL-2.0-only /* * Regular cardbus driver ("yenta_socket") * * (C) Copyright 1999, 2000 Linus Torvalds * * Changelog: * Aug 2002: Manfred Spraul <manfred@colorfullife.com> * Dynamically adjust the size of the bridge resource * * May 2003: Dominik Brodowski <linux@brodo.de> * Merge pci_socket.c and yenta.c into one file */ #include <linux/init.h> #include <linux/pci.h> #include <linux/workqueue.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/io.h> #include <linux/slab.h> #include <pcmcia/ss.h> #include "yenta_socket.h" #include "i82365.h" static bool disable_clkrun; module_param(disable_clkrun, bool, 0444); MODULE_PARM_DESC(disable_clkrun, "If PC card doesn't function properly, please try this option (TI and Ricoh bridges only)"); static bool isa_probe = 1; module_param(isa_probe, bool, 0444); MODULE_PARM_DESC(isa_probe, "If set ISA interrupts are probed (default). Set to N to disable probing"); static bool pwr_irqs_off; module_param(pwr_irqs_off, bool, 0644); MODULE_PARM_DESC(pwr_irqs_off, "Force IRQs off during power-on of slot. Use only when seeing IRQ storms!"); static char o2_speedup[] = "default"; module_param_string(o2_speedup, o2_speedup, sizeof(o2_speedup), 0444); MODULE_PARM_DESC(o2_speedup, "Use prefetch/burst for O2-bridges: 'on', 'off' " "or 'default' (uses recommended behaviour for the detected bridge)"); /* * Only probe "regular" interrupts, don't * touch dangerous spots like the mouse irq, * because there are mice that apparently * get really confused if they get fondled * too intimately. * * Default to 11, 10, 9, 7, 6, 5, 4, 3. */ static u32 isa_interrupts = 0x0ef8; #define debug(x, s, args...) dev_dbg(&s->dev->dev, x, ##args) /* Don't ask.. */ #define to_cycles(ns) ((ns)/120) #define to_ns(cycles) ((cycles)*120) /* * yenta PCI irq probing. * currently only used in the TI/EnE initialization code */ #ifdef CONFIG_YENTA_TI static int yenta_probe_cb_irq(struct yenta_socket *socket); static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mask); #endif static unsigned int override_bios; module_param(override_bios, uint, 0000); MODULE_PARM_DESC(override_bios, "yenta ignore bios resource allocation"); /* * Generate easy-to-use ways of reading a cardbus sockets * regular memory space ("cb_xxx"), configuration space * ("config_xxx") and compatibility space ("exca_xxxx") */ static inline u32 cb_readl(struct yenta_socket *socket, unsigned reg) { u32 val = readl(socket->base + reg); debug("%04x %08x\n", socket, reg, val); return val; } static inline void cb_writel(struct yenta_socket *socket, unsigned reg, u32 val) { debug("%04x %08x\n", socket, reg, val); writel(val, socket->base + reg); readl(socket->base + reg); /* avoid problems with PCI write posting */ } static inline u8 config_readb(struct yenta_socket *socket, unsigned offset) { u8 val; pci_read_config_byte(socket->dev, offset, &val); debug("%04x %02x\n", socket, offset, val); return val; } static inline u16 config_readw(struct yenta_socket *socket, unsigned offset) { u16 val; pci_read_config_word(socket->dev, offset, &val); debug("%04x %04x\n", socket, offset, val); return val; } static inline u32 config_readl(struct yenta_socket *socket, unsigned offset) { u32 val; pci_read_config_dword(socket->dev, offset, &val); debug("%04x %08x\n", socket, offset, val); return val; } static inline void config_writeb(struct yenta_socket *socket, unsigned offset, u8 val) { debug("%04x %02x\n", socket, offset, val); pci_write_config_byte(socket->dev, offset, val); } static inline void config_writew(struct yenta_socket *socket, unsigned offset, u16 val) { debug("%04x %04x\n", socket, offset, val); pci_write_config_word(socket->dev, offset, val); } static inline void config_writel(struct yenta_socket *socket, unsigned offset, u32 val) { debug("%04x %08x\n", socket, offset, val); pci_write_config_dword(socket->dev, offset, val); } static inline u8 exca_readb(struct yenta_socket *socket, unsigned reg) { u8 val = readb(socket->base + 0x800 + reg); debug("%04x %02x\n", socket, reg, val); return val; } static inline u8 exca_readw(struct yenta_socket *socket, unsigned reg) { u16 val; val = readb(socket->base + 0x800 + reg); val |= readb(socket->base + 0x800 + reg + 1) << 8; debug("%04x %04x\n", socket, reg, val); return val; } static inline void exca_writeb(struct yenta_socket *socket, unsigned reg, u8 val) { debug("%04x %02x\n", socket, reg, val); writeb(val, socket->base + 0x800 + reg); readb(socket->base + 0x800 + reg); /* PCI write posting... */ } static void exca_writew(struct yenta_socket *socket, unsigned reg, u16 val) { debug("%04x %04x\n", socket, reg, val); writeb(val, socket->base + 0x800 + reg); writeb(val >> 8, socket->base + 0x800 + reg + 1); /* PCI write posting... */ readb(socket->base + 0x800 + reg); readb(socket->base + 0x800 + reg + 1); } static ssize_t show_yenta_registers(struct device *yentadev, struct device_attribute *attr, char *buf) { struct yenta_socket *socket = dev_get_drvdata(yentadev); int offset = 0, i; offset = snprintf(buf, PAGE_SIZE, "CB registers:"); for (i = 0; i < 0x24; i += 4) { unsigned val; if (!(i & 15)) offset += scnprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i); val = cb_readl(socket, i); offset += scnprintf(buf + offset, PAGE_SIZE - offset, " %08x", val); } offset += scnprintf(buf + offset, PAGE_SIZE - offset, "\n\nExCA registers:"); for (i = 0; i < 0x45; i++) { unsigned char val; if (!(i & 7)) { if (i & 8) { memcpy(buf + offset, " -", 2); offset += 2; } else offset += scnprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i); } val = exca_readb(socket, i); offset += scnprintf(buf + offset, PAGE_SIZE - offset, " %02x", val); } buf[offset++] = '\n'; return offset; } static DEVICE_ATTR(yenta_registers, S_IRUSR, show_yenta_registers, NULL); /* * Ugh, mixed-mode cardbus and 16-bit pccard state: things depend * on what kind of card is inserted.. */ static int yenta_get_status(struct pcmcia_socket *sock, unsigned int *value) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); unsigned int val; u32 state = cb_readl(socket, CB_SOCKET_STATE); val = (state & CB_3VCARD) ? SS_3VCARD : 0; val |= (state & CB_XVCARD) ? SS_XVCARD : 0; val |= (state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) ? 0 : SS_PENDING; val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? SS_PENDING : 0; if (state & CB_CBCARD) { val |= SS_CARDBUS; val |= (state & CB_CARDSTS) ? SS_STSCHG : 0; val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? 0 : SS_DETECT; val |= (state & CB_PWRCYCLE) ? SS_POWERON | SS_READY : 0; } else if (state & CB_16BITCARD) { u8 status = exca_readb(socket, I365_STATUS); val |= ((status & I365_CS_DETECT) == I365_CS_DETECT) ? SS_DETECT : 0; if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) { val |= (status & I365_CS_STSCHG) ? 0 : SS_STSCHG; } else { val |= (status & I365_CS_BVD1) ? 0 : SS_BATDEAD; val |= (status & I365_CS_BVD2) ? 0 : SS_BATWARN; } val |= (status & I365_CS_WRPROT) ? SS_WRPROT : 0; val |= (status & I365_CS_READY) ? SS_READY : 0; val |= (status & I365_CS_POWERON) ? SS_POWERON : 0; } *value = val; return 0; } static void yenta_set_power(struct yenta_socket *socket, socket_state_t *state) { /* some birdges require to use the ExCA registers to power 16bit cards */ if (!(cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) && (socket->flags & YENTA_16BIT_POWER_EXCA)) { u8 reg, old; reg = old = exca_readb(socket, I365_POWER); reg &= ~(I365_VCC_MASK | I365_VPP1_MASK | I365_VPP2_MASK); /* i82365SL-DF style */ if (socket->flags & YENTA_16BIT_POWER_DF) { switch (state->Vcc) { case 33: reg |= I365_VCC_3V; break; case 50: reg |= I365_VCC_5V; break; default: reg = 0; break; } switch (state->Vpp) { case 33: case 50: reg |= I365_VPP1_5V; break; case 120: reg |= I365_VPP1_12V; break; } } else { /* i82365SL-B style */ switch (state->Vcc) { case 50: reg |= I365_VCC_5V; break; default: reg = 0; break; } switch (state->Vpp) { case 50: reg |= I365_VPP1_5V | I365_VPP2_5V; break; case 120: reg |= I365_VPP1_12V | I365_VPP2_12V; break; } } if (reg != old) exca_writeb(socket, I365_POWER, reg); } else { u32 reg = 0; /* CB_SC_STPCLK? */ switch (state->Vcc) { case 33: reg = CB_SC_VCC_3V; break; case 50: reg = CB_SC_VCC_5V; break; default: reg = 0; break; } switch (state->Vpp) { case 33: reg |= CB_SC_VPP_3V; break; case 50: reg |= CB_SC_VPP_5V; break; case 120: reg |= CB_SC_VPP_12V; break; } if (reg != cb_readl(socket, CB_SOCKET_CONTROL)) cb_writel(socket, CB_SOCKET_CONTROL, reg); } } static int yenta_set_socket(struct pcmcia_socket *sock, socket_state_t *state) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); u16 bridge; /* if powering down: do it immediately */ if (state->Vcc == 0) yenta_set_power(socket, state); socket->io_irq = state->io_irq; bridge = config_readw(socket, CB_BRIDGE_CONTROL) & ~(CB_BRIDGE_CRST | CB_BRIDGE_INTR); if (cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) { u8 intr; bridge |= (state->flags & SS_RESET) ? CB_BRIDGE_CRST : 0; /* ISA interrupt control? */ intr = exca_readb(socket, I365_INTCTL); intr = (intr & ~0xf); if (!socket->dev->irq) { intr |= socket->cb_irq ? socket->cb_irq : state->io_irq; bridge |= CB_BRIDGE_INTR; } exca_writeb(socket, I365_INTCTL, intr); } else { u8 reg; reg = exca_readb(socket, I365_INTCTL) & (I365_RING_ENA | I365_INTR_ENA); reg |= (state->flags & SS_RESET) ? 0 : I365_PC_RESET; reg |= (state->flags & SS_IOCARD) ? I365_PC_IOCARD : 0; if (state->io_irq != socket->dev->irq) { reg |= state->io_irq; bridge |= CB_BRIDGE_INTR; } exca_writeb(socket, I365_INTCTL, reg); reg = exca_readb(socket, I365_POWER) & (I365_VCC_MASK|I365_VPP1_MASK); reg |= I365_PWR_NORESET; if (state->flags & SS_PWR_AUTO) reg |= I365_PWR_AUTO; if (state->flags & SS_OUTPUT_ENA) reg |= I365_PWR_OUT; if (exca_readb(socket, I365_POWER) != reg) exca_writeb(socket, I365_POWER, reg); /* CSC interrupt: no ISA irq for CSC */ reg = exca_readb(socket, I365_CSCINT); reg &= I365_CSC_IRQ_MASK; reg |= I365_CSC_DETECT; if (state->flags & SS_IOCARD) { if (state->csc_mask & SS_STSCHG) reg |= I365_CSC_STSCHG; } else { if (state->csc_mask & SS_BATDEAD) reg |= I365_CSC_BVD1; if (state->csc_mask & SS_BATWARN) reg |= I365_CSC_BVD2; if (state->csc_mask & SS_READY) reg |= I365_CSC_READY; } exca_writeb(socket, I365_CSCINT, reg); exca_readb(socket, I365_CSC); if (sock->zoom_video) sock->zoom_video(sock, state->flags & SS_ZVCARD); } config_writew(socket, CB_BRIDGE_CONTROL, bridge); /* Socket event mask: get card insert/remove events.. */ cb_writel(socket, CB_SOCKET_EVENT, -1); cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK); /* if powering up: do it as the last step when the socket is configured */ if (state->Vcc != 0) yenta_set_power(socket, state); return 0; } static int yenta_set_io_map(struct pcmcia_socket *sock, struct pccard_io_map *io) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); int map; unsigned char ioctl, addr, enable; map = io->map; if (map > 1) return -EINVAL; enable = I365_ENA_IO(map); addr = exca_readb(socket, I365_ADDRWIN); /* Disable the window before changing it.. */ if (addr & enable) { addr &= ~enable; exca_writeb(socket, I365_ADDRWIN, addr); } exca_writew(socket, I365_IO(map)+I365_W_START, io->start); exca_writew(socket, I365_IO(map)+I365_W_STOP, io->stop); ioctl = exca_readb(socket, I365_IOCTL) & ~I365_IOCTL_MASK(map); if (io->flags & MAP_0WS) ioctl |= I365_IOCTL_0WS(map); if (io->flags & MAP_16BIT) ioctl |= I365_IOCTL_16BIT(map); if (io->flags & MAP_AUTOSZ) ioctl |= I365_IOCTL_IOCS16(map); exca_writeb(socket, I365_IOCTL, ioctl); if (io->flags & MAP_ACTIVE) exca_writeb(socket, I365_ADDRWIN, addr | enable); return 0; } static int yenta_set_mem_map(struct pcmcia_socket *sock, struct pccard_mem_map *mem) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); struct pci_bus_region region; int map; unsigned char addr, enable; unsigned int start, stop, card_start; unsigned short word; pcibios_resource_to_bus(socket->dev->bus, ®ion, mem->res); map = mem->map; start = region.start; stop = region.end; card_start = mem->card_start; if (map > 4 || start > stop || ((start ^ stop) >> 24) || (card_start >> 26) || mem->speed > 1000) return -EINVAL; enable = I365_ENA_MEM(map); addr = exca_readb(socket, I365_ADDRWIN); if (addr & enable) { addr &= ~enable; exca_writeb(socket, I365_ADDRWIN, addr); } exca_writeb(socket, CB_MEM_PAGE(map), start >> 24); word = (start >> 12) & 0x0fff; if (mem->flags & MAP_16BIT) word |= I365_MEM_16BIT; if (mem->flags & MAP_0WS) word |= I365_MEM_0WS; exca_writew(socket, I365_MEM(map) + I365_W_START, word); word = (stop >> 12) & 0x0fff; switch (to_cycles(mem->speed)) { case 0: break; case 1: word |= I365_MEM_WS0; break; case 2: word |= I365_MEM_WS1; break; default: word |= I365_MEM_WS1 | I365_MEM_WS0; break; } exca_writew(socket, I365_MEM(map) + I365_W_STOP, word); word = ((card_start - start) >> 12) & 0x3fff; if (mem->flags & MAP_WRPROT) word |= I365_MEM_WRPROT; if (mem->flags & MAP_ATTRIB) word |= I365_MEM_REG; exca_writew(socket, I365_MEM(map) + I365_W_OFF, word); if (mem->flags & MAP_ACTIVE) exca_writeb(socket, I365_ADDRWIN, addr | enable); return 0; } static irqreturn_t yenta_interrupt(int irq, void *dev_id) { unsigned int events; struct yenta_socket *socket = (struct yenta_socket *) dev_id; u8 csc; u32 cb_event; /* Clear interrupt status for the event */ cb_event = cb_readl(socket, CB_SOCKET_EVENT); cb_writel(socket, CB_SOCKET_EVENT, cb_event); csc = exca_readb(socket, I365_CSC); if (!(cb_event || csc)) return IRQ_NONE; events = (cb_event & (CB_CD1EVENT | CB_CD2EVENT)) ? SS_DETECT : 0 ; events |= (csc & I365_CSC_DETECT) ? SS_DETECT : 0; if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) { events |= (csc & I365_CSC_STSCHG) ? SS_STSCHG : 0; } else { events |= (csc & I365_CSC_BVD1) ? SS_BATDEAD : 0; events |= (csc & I365_CSC_BVD2) ? SS_BATWARN : 0; events |= (csc & I365_CSC_READY) ? SS_READY : 0; } if (events) pcmcia_parse_events(&socket->socket, events); return IRQ_HANDLED; } static void yenta_interrupt_wrapper(struct timer_list *t) { struct yenta_socket *socket = from_timer(socket, t, poll_timer); yenta_interrupt(0, (void *)socket); socket->poll_timer.expires = jiffies + HZ; add_timer(&socket->poll_timer); } static void yenta_clear_maps(struct yenta_socket *socket) { int i; struct resource res = { .start = 0, .end = 0x0fff }; pccard_io_map io = { 0, 0, 0, 0, 1 }; pccard_mem_map mem = { .res = &res, }; yenta_set_socket(&socket->socket, &dead_socket); for (i = 0; i < 2; i++) { io.map = i; yenta_set_io_map(&socket->socket, &io); } for (i = 0; i < 5; i++) { mem.map = i; yenta_set_mem_map(&socket->socket, &mem); } } /* redoes voltage interrogation if required */ static void yenta_interrogate(struct yenta_socket *socket) { u32 state; state = cb_readl(socket, CB_SOCKET_STATE); if (!(state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) || (state & (CB_CDETECT1 | CB_CDETECT2 | CB_NOTACARD | CB_BADVCCREQ)) || ((state & (CB_16BITCARD | CB_CBCARD)) == (CB_16BITCARD | CB_CBCARD))) cb_writel(socket, CB_SOCKET_FORCE, CB_CVSTEST); } /* Called at resume and initialization events */ static int yenta_sock_init(struct pcmcia_socket *sock) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); exca_writeb(socket, I365_GBLCTL, 0x00); exca_writeb(socket, I365_GENCTL, 0x00); /* Redo card voltage interrogation */ yenta_interrogate(socket); yenta_clear_maps(socket); if (socket->type && socket->type->sock_init) socket->type->sock_init(socket); /* Re-enable CSC interrupts */ cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK); return 0; } static int yenta_sock_suspend(struct pcmcia_socket *sock) { struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket); /* Disable CSC interrupts */ cb_writel(socket, CB_SOCKET_MASK, 0x0); return 0; } /* * Use an adaptive allocation for the memory resource, * sometimes the memory behind pci bridges is limited: * 1/8 of the size of the io window of the parent. * max 4 MB, min 16 kB. We try very hard to not get below * the "ACC" values, though. */ #define BRIDGE_MEM_MAX (4*1024*1024) #define BRIDGE_MEM_ACC (128*1024) #define BRIDGE_MEM_MIN (16*1024) #define BRIDGE_IO_MAX 512 #define BRIDGE_IO_ACC 256 #define BRIDGE_IO_MIN 32 #ifndef PCIBIOS_MIN_CARDBUS_IO #define PCIBIOS_MIN_CARDBUS_IO PCIBIOS_MIN_IO #endif static int yenta_search_one_res(struct resource *root, struct resource *res, u32 min) { u32 align, size, start, end; if (res->flags & IORESOURCE_IO) { align = 1024; size = BRIDGE_IO_MAX; start = PCIBIOS_MIN_CARDBUS_IO; end = ~0U; } else { unsigned long avail = root->end - root->start; int i; size = BRIDGE_MEM_MAX; if (size > avail/8) { size = (avail+1)/8; /* round size down to next power of 2 */ i = 0; while ((size /= 2) != 0) i++; size = 1 << i; } if (size < min) size = min; align = size; start = PCIBIOS_MIN_MEM; end = ~0U; } do { if (allocate_resource(root, res, size, start, end, align, NULL, NULL) == 0) { return 1; } size = size/2; align = size; } while (size >= min); return 0; } static int yenta_search_res(struct yenta_socket *socket, struct resource *res, u32 min) { struct resource *root; int i; pci_bus_for_each_resource(socket->dev->bus, root, i) { if (!root) continue; if ((res->flags ^ root->flags) & (IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH)) continue; /* Wrong type */ if (yenta_search_one_res(root, res, min)) return 1; } return 0; } static int yenta_allocate_res(struct yenta_socket *socket, int nr, unsigned type, int addr_start, int addr_end) { struct pci_dev *dev = socket->dev; struct resource *res; struct pci_bus_region region; unsigned mask; res = dev->resource + PCI_BRIDGE_RESOURCES + nr; /* Already allocated? */ if (res->parent) return 0; /* The granularity of the memory limit is 4kB, on IO it's 4 bytes */ mask = ~0xfff; if (type & IORESOURCE_IO) mask = ~3; res->name = dev->subordinate->name; res->flags = type; region.start = config_readl(socket, addr_start) & mask; region.end = config_readl(socket, addr_end) | ~mask; if (region.start && region.end > region.start && !override_bios) { pcibios_bus_to_resource(dev->bus, res, ®ion); if (pci_claim_resource(dev, PCI_BRIDGE_RESOURCES + nr) == 0) return 0; dev_info(&dev->dev, "Preassigned resource %d busy or not available, reconfiguring...\n", nr); } if (type & IORESOURCE_IO) { if ((yenta_search_res(socket, res, BRIDGE_IO_MAX)) || (yenta_search_res(socket, res, BRIDGE_IO_ACC)) || (yenta_search_res(socket, res, BRIDGE_IO_MIN))) return 1; } else { if (type & IORESOURCE_PREFETCH) { if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) || (yenta_search_res(socket, res, BRIDGE_MEM_ACC)) || (yenta_search_res(socket, res, BRIDGE_MEM_MIN))) return 1; /* Approximating prefetchable by non-prefetchable */ res->flags = IORESOURCE_MEM; } if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) || (yenta_search_res(socket, res, BRIDGE_MEM_ACC)) || (yenta_search_res(socket, res, BRIDGE_MEM_MIN))) return 1; } dev_info(&dev->dev, "no resource of type %x available, trying to continue...\n", type); res->start = res->end = res->flags = 0; return 0; } /* * Allocate the bridge mappings for the device.. */ static void yenta_allocate_resources(struct yenta_socket *socket) { int program = 0; program += yenta_allocate_res(socket, 0, IORESOURCE_IO, PCI_CB_IO_BASE_0, PCI_CB_IO_LIMIT_0); program += yenta_allocate_res(socket, 1, IORESOURCE_IO, PCI_CB_IO_BASE_1, PCI_CB_IO_LIMIT_1); program += yenta_allocate_res(socket, 2, IORESOURCE_MEM|IORESOURCE_PREFETCH, PCI_CB_MEMORY_BASE_0, PCI_CB_MEMORY_LIMIT_0); program += yenta_allocate_res(socket, 3, IORESOURCE_MEM, PCI_CB_MEMORY_BASE_1, PCI_CB_MEMORY_LIMIT_1); if (program) pci_setup_cardbus(socket->dev->subordinate); } /* * Free the bridge mappings for the device.. */ static void yenta_free_resources(struct yenta_socket *socket) { int i; for (i = 0; i < 4; i++) { struct resource *res; res = socket->dev->resource + PCI_BRIDGE_RESOURCES + i; if (res->start != 0 && res->end != 0) release_resource(res); res->start = res->end = res->flags = 0; } } /* * Close it down - release our resources and go home.. */ static void yenta_close(struct pci_dev *dev) { struct yenta_socket *sock = pci_get_drvdata(dev); /* Remove the register attributes */ device_remove_file(&dev->dev, &dev_attr_yenta_registers); /* we don't want a dying socket registered */ pcmcia_unregister_socket(&sock->socket); /* Disable all events so we don't die in an IRQ storm */ cb_writel(sock, CB_SOCKET_MASK, 0x0); exca_writeb(sock, I365_CSCINT, 0); if (sock->cb_irq) free_irq(sock->cb_irq, sock); else del_timer_sync(&sock->poll_timer); iounmap(sock->base); yenta_free_resources(sock); pci_release_regions(dev); pci_disable_device(dev); pci_set_drvdata(dev, NULL); kfree(sock); } static struct pccard_operations yenta_socket_operations = { .init = yenta_sock_init, .suspend = yenta_sock_suspend, .get_status = yenta_get_status, .set_socket = yenta_set_socket, .set_io_map = yenta_set_io_map, .set_mem_map = yenta_set_mem_map, }; #ifdef CONFIG_YENTA_TI #include "ti113x.h" #endif #ifdef CONFIG_YENTA_RICOH #include "ricoh.h" #endif #ifdef CONFIG_YENTA_TOSHIBA #include "topic.h" #endif #ifdef CONFIG_YENTA_O2 #include "o2micro.h" #endif enum { CARDBUS_TYPE_DEFAULT = -1, CARDBUS_TYPE_TI, CARDBUS_TYPE_TI113X, CARDBUS_TYPE_TI12XX, CARDBUS_TYPE_TI1250, CARDBUS_TYPE_RICOH, CARDBUS_TYPE_TOPIC95, CARDBUS_TYPE_TOPIC97, CARDBUS_TYPE_O2MICRO, CARDBUS_TYPE_ENE, }; /* * Different cardbus controllers have slightly different * initialization sequences etc details. List them here.. */ static struct cardbus_type cardbus_type[] = { #ifdef CONFIG_YENTA_TI [CARDBUS_TYPE_TI] = { .override = ti_override, .save_state = ti_save_state, .restore_state = ti_restore_state, .sock_init = ti_init, }, [CARDBUS_TYPE_TI113X] = { .override = ti113x_override, .save_state = ti_save_state, .restore_state = ti_restore_state, .sock_init = ti_init, }, [CARDBUS_TYPE_TI12XX] = { .override = ti12xx_override, .save_state = ti_save_state, .restore_state = ti_restore_state, .sock_init = ti_init, }, [CARDBUS_TYPE_TI1250] = { .override = ti1250_override, .save_state = ti_save_state, .restore_state = ti_restore_state, .sock_init = ti_init, }, [CARDBUS_TYPE_ENE] = { .override = ene_override, .save_state = ti_save_state, .restore_state = ti_restore_state, .sock_init = ti_init, }, #endif #ifdef CONFIG_YENTA_RICOH [CARDBUS_TYPE_RICOH] = { .override = ricoh_override, .save_state = ricoh_save_state, .restore_state = ricoh_restore_state, }, #endif #ifdef CONFIG_YENTA_TOSHIBA [CARDBUS_TYPE_TOPIC95] = { .override = topic95_override, }, [CARDBUS_TYPE_TOPIC97] = { .override = topic97_override, }, #endif #ifdef CONFIG_YENTA_O2 [CARDBUS_TYPE_O2MICRO] = { .override = o2micro_override, .restore_state = o2micro_restore_state, }, #endif }; static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mask) { int i; unsigned long val; u32 mask; u8 reg; /* * Probe for usable interrupts using the force * register to generate bogus card status events. */ cb_writel(socket, CB_SOCKET_EVENT, -1); cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK); reg = exca_readb(socket, I365_CSCINT); exca_writeb(socket, I365_CSCINT, 0); val = probe_irq_on() & isa_irq_mask; for (i = 1; i < 16; i++) { if (!((val >> i) & 1)) continue; exca_writeb(socket, I365_CSCINT, I365_CSC_STSCHG | (i << 4)); cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS); udelay(100); cb_writel(socket, CB_SOCKET_EVENT, -1); } cb_writel(socket, CB_SOCKET_MASK, 0); exca_writeb(socket, I365_CSCINT, reg); mask = probe_irq_mask(val) & 0xffff; return mask; } /* * yenta PCI irq probing. * currently only used in the TI/EnE initialization code */ #ifdef CONFIG_YENTA_TI /* interrupt handler, only used during probing */ static irqreturn_t yenta_probe_handler(int irq, void *dev_id) { struct yenta_socket *socket = (struct yenta_socket *) dev_id; u8 csc; u32 cb_event; /* Clear interrupt status for the event */ cb_event = cb_readl(socket, CB_SOCKET_EVENT); cb_writel(socket, CB_SOCKET_EVENT, -1); csc = exca_readb(socket, I365_CSC); if (cb_event || csc) { socket->probe_status = 1; return IRQ_HANDLED; } return IRQ_NONE; } /* probes the PCI interrupt, use only on override functions */ static int yenta_probe_cb_irq(struct yenta_socket *socket) { u8 reg = 0; if (!socket->cb_irq) return -1; socket->probe_status = 0; if (request_irq(socket->cb_irq, yenta_probe_handler, IRQF_SHARED, "yenta", socket)) { dev_warn(&socket->dev->dev, "request_irq() in yenta_probe_cb_irq() failed!\n"); return -1; } /* generate interrupt, wait */ if (!socket->dev->irq) reg = exca_readb(socket, I365_CSCINT); exca_writeb(socket, I365_CSCINT, reg | I365_CSC_STSCHG); cb_writel(socket, CB_SOCKET_EVENT, -1); cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK); cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS); msleep(100); /* disable interrupts */ cb_writel(socket, CB_SOCKET_MASK, 0); exca_writeb(socket, I365_CSCINT, reg); cb_writel(socket, CB_SOCKET_EVENT, -1); exca_readb(socket, I365_CSC); free_irq(socket->cb_irq, socket); return (int) socket->probe_status; } #endif /* CONFIG_YENTA_TI */ /* * Set static data that doesn't need re-initializing.. */ static void yenta_get_socket_capabilities(struct yenta_socket *socket, u32 isa_irq_mask) { socket->socket.pci_irq = socket->cb_irq; if (isa_probe) socket->socket.irq_mask = yenta_probe_irq(socket, isa_irq_mask); else socket->socket.irq_mask = 0; dev_info(&socket->dev->dev, "ISA IRQ mask 0x%04x, PCI irq %d\n", socket->socket.irq_mask, socket->cb_irq); } /* * Initialize the standard cardbus registers */ static void yenta_config_init(struct yenta_socket *socket) { u16 bridge; struct pci_dev *dev = socket->dev; struct pci_bus_region region; pcibios_resource_to_bus(socket->dev->bus, ®ion, &dev->resource[0]); config_writel(socket, CB_LEGACY_MODE_BASE, 0); config_writel(socket, PCI_BASE_ADDRESS_0, region.start); config_writew(socket, PCI_COMMAND, PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_WAIT); /* MAGIC NUMBERS! Fixme */ config_writeb(socket, PCI_CACHE_LINE_SIZE, L1_CACHE_BYTES / 4); config_writeb(socket, PCI_LATENCY_TIMER, 168); config_writel(socket, PCI_PRIMARY_BUS, (176 << 24) | /* sec. latency timer */ ((unsigned int)dev->subordinate->busn_res.end << 16) | /* subordinate bus */ ((unsigned int)dev->subordinate->busn_res.start << 8) | /* secondary bus */ dev->subordinate->primary); /* primary bus */ /* * Set up the bridging state: * - enable write posting. * - memory window 0 prefetchable, window 1 non-prefetchable * - PCI interrupts enabled if a PCI interrupt exists.. */ bridge = config_readw(socket, CB_BRIDGE_CONTROL); bridge &= ~(CB_BRIDGE_CRST | CB_BRIDGE_PREFETCH1 | CB_BRIDGE_ISAEN | CB_BRIDGE_VGAEN); bridge |= CB_BRIDGE_PREFETCH0 | CB_BRIDGE_POSTEN; config_writew(socket, CB_BRIDGE_CONTROL, bridge); } /** * yenta_fixup_parent_bridge - Fix subordinate bus# of the parent bridge * @cardbus_bridge: The PCI bus which the CardBus bridge bridges to * * Checks if devices on the bus which the CardBus bridge bridges to would be * invisible during PCI scans because of a misconfigured subordinate number * of the parent brige - some BIOSes seem to be too lazy to set it right. * Does the fixup carefully by checking how far it can go without conflicts. * See http://bugzilla.kernel.org/show_bug.cgi?id=2944 for more information. */ static void yenta_fixup_parent_bridge(struct pci_bus *cardbus_bridge) { struct pci_bus *sibling; unsigned char upper_limit; /* * We only check and fix the parent bridge: All systems which need * this fixup that have been reviewed are laptops and the only bridge * which needed fixing was the parent bridge of the CardBus bridge: */ struct pci_bus *bridge_to_fix = cardbus_bridge->parent; /* Check bus numbers are already set up correctly: */ if (bridge_to_fix->busn_res.end >= cardbus_bridge->busn_res.end) return; /* The subordinate number is ok, nothing to do */ if (!bridge_to_fix->parent) return; /* Root bridges are ok */ /* stay within the limits of the bus range of the parent: */ upper_limit = bridge_to_fix->parent->busn_res.end; /* check the bus ranges of all sibling bridges to prevent overlap */ list_for_each_entry(sibling, &bridge_to_fix->parent->children, node) { /* * If the sibling has a higher secondary bus number * and it's secondary is equal or smaller than our * current upper limit, set the new upper limit to * the bus number below the sibling's range: */ if (sibling->busn_res.start > bridge_to_fix->busn_res.end && sibling->busn_res.start <= upper_limit) upper_limit = sibling->busn_res.start - 1; } /* Show that the wanted subordinate number is not possible: */ if (cardbus_bridge->busn_res.end > upper_limit) dev_warn(&cardbus_bridge->dev, "Upper limit for fixing this bridge's parent bridge: #%02x\n", upper_limit); /* If we have room to increase the bridge's subordinate number, */ if (bridge_to_fix->busn_res.end < upper_limit) { /* use the highest number of the hidden bus, within limits */ unsigned char subordinate_to_assign = min_t(int, cardbus_bridge->busn_res.end, upper_limit); dev_info(&bridge_to_fix->dev, "Raising subordinate bus# of parent bus (#%02x) from #%02x to #%02x\n", bridge_to_fix->number, (int)bridge_to_fix->busn_res.end, subordinate_to_assign); /* Save the new subordinate in the bus struct of the bridge */ bridge_to_fix->busn_res.end = subordinate_to_assign; /* and update the PCI config space with the new subordinate */ pci_write_config_byte(bridge_to_fix->self, PCI_SUBORDINATE_BUS, bridge_to_fix->busn_res.end); } } /* * Initialize a cardbus controller. Make sure we have a usable * interrupt, and that we can map the cardbus area. Fill in the * socket information structure.. */ static int yenta_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct yenta_socket *socket; int ret; /* * If we failed to assign proper bus numbers for this cardbus * controller during PCI probe, its subordinate pci_bus is NULL. * Bail out if so. */ if (!dev->subordinate) { dev_err(&dev->dev, "no bus associated! (try 'pci=assign-busses')\n"); return -ENODEV; } socket = kzalloc(sizeof(struct yenta_socket), GFP_KERNEL); if (!socket) return -ENOMEM; /* prepare pcmcia_socket */ socket->socket.ops = ¥ta_socket_operations; socket->socket.resource_ops = &pccard_nonstatic_ops; socket->socket.dev.parent = &dev->dev; socket->socket.driver_data = socket; socket->socket.owner = THIS_MODULE; socket->socket.features = SS_CAP_PAGE_REGS | SS_CAP_PCCARD; socket->socket.map_size = 0x1000; socket->socket.cb_dev = dev; /* prepare struct yenta_socket */ socket->dev = dev; pci_set_drvdata(dev, socket); /* * Do some basic sanity checking.. */ if (pci_enable_device(dev)) { ret = -EBUSY; goto free; } ret = pci_request_regions(dev, "yenta_socket"); if (ret) goto disable; if (!pci_resource_start(dev, 0)) { dev_err(&dev->dev, "No cardbus resource!\n"); ret = -ENODEV; goto release; } /* * Ok, start setup.. Map the cardbus registers, * and request the IRQ. */ socket->base = ioremap(pci_resource_start(dev, 0), 0x1000); if (!socket->base) { ret = -ENOMEM; goto release; } /* * report the subsystem vendor and device for help debugging * the irq stuff... */ dev_info(&dev->dev, "CardBus bridge found [%04x:%04x]\n", dev->subsystem_vendor, dev->subsystem_device); yenta_config_init(socket); /* Disable all events */ cb_writel(socket, CB_SOCKET_MASK, 0x0); /* Set up the bridge regions.. */ yenta_allocate_resources(socket); socket->cb_irq = dev->irq; /* Do we have special options for the device? */ if (id->driver_data != CARDBUS_TYPE_DEFAULT && id->driver_data < ARRAY_SIZE(cardbus_type)) { socket->type = &cardbus_type[id->driver_data]; ret = socket->type->override(socket); if (ret < 0) goto unmap; } /* We must finish initialization here */ if (!socket->cb_irq || request_irq(socket->cb_irq, yenta_interrupt, IRQF_SHARED, "yenta", socket)) { /* No IRQ or request_irq failed. Poll */ socket->cb_irq = 0; /* But zero is a valid IRQ number. */ timer_setup(&socket->poll_timer, yenta_interrupt_wrapper, 0); mod_timer(&socket->poll_timer, jiffies + HZ); dev_info(&dev->dev, "no PCI IRQ, CardBus support disabled for this socket.\n"); dev_info(&dev->dev, "check your BIOS CardBus, BIOS IRQ or ACPI settings.\n"); } else { socket->socket.features |= SS_CAP_CARDBUS; } /* Figure out what the dang thing can do for the PCMCIA layer... */ yenta_interrogate(socket); yenta_get_socket_capabilities(socket, isa_interrupts); dev_info(&dev->dev, "Socket status: %08x\n", cb_readl(socket, CB_SOCKET_STATE)); yenta_fixup_parent_bridge(dev->subordinate); /* Register it with the pcmcia layer.. */ ret = pcmcia_register_socket(&socket->socket); if (ret) goto free_irq; /* Add the yenta register attributes */ ret = device_create_file(&dev->dev, &dev_attr_yenta_registers); if (ret) goto unregister_socket; return ret; /* error path... */ unregister_socket: pcmcia_unregister_socket(&socket->socket); free_irq: if (socket->cb_irq) free_irq(socket->cb_irq, socket); else del_timer_sync(&socket->poll_timer); unmap: iounmap(socket->base); yenta_free_resources(socket); release: pci_release_regions(dev); disable: pci_disable_device(dev); free: pci_set_drvdata(dev, NULL); kfree(socket); return ret; } #ifdef CONFIG_PM static int yenta_dev_suspend_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct yenta_socket *socket = pci_get_drvdata(pdev); if (!socket) return 0; if (socket->type && socket->type->save_state) socket->type->save_state(socket); pci_save_state(pdev); pci_read_config_dword(pdev, 16*4, &socket->saved_state[0]); pci_read_config_dword(pdev, 17*4, &socket->saved_state[1]); pci_disable_device(pdev); return 0; } static int yenta_dev_resume_noirq(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct yenta_socket *socket = pci_get_drvdata(pdev); int ret; if (!socket) return 0; pci_write_config_dword(pdev, 16*4, socket->saved_state[0]); pci_write_config_dword(pdev, 17*4, socket->saved_state[1]); ret = pci_enable_device(pdev); if (ret) return ret; pci_set_master(pdev); if (socket->type && socket->type->restore_state) socket->type->restore_state(socket); return 0; } static const struct dev_pm_ops yenta_pm_ops = { .suspend_noirq = yenta_dev_suspend_noirq, .resume_noirq = yenta_dev_resume_noirq, .freeze_noirq = yenta_dev_suspend_noirq, .thaw_noirq = yenta_dev_resume_noirq, .poweroff_noirq = yenta_dev_suspend_noirq, .restore_noirq = yenta_dev_resume_noirq, }; #define YENTA_PM_OPS (¥ta_pm_ops) #else #define YENTA_PM_OPS NULL #endif #define CB_ID(vend, dev, type) \ { \ .vendor = vend, \ .device = dev, \ .subvendor = PCI_ANY_ID, \ .subdevice = PCI_ANY_ID, \ .class = PCI_CLASS_BRIDGE_CARDBUS << 8, \ .class_mask = ~0, \ .driver_data = CARDBUS_TYPE_##type, \ } static const struct pci_device_id yenta_table[] = { CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1031, TI), /* * TBD: Check if these TI variants can use more * advanced overrides instead. (I can't get the * data sheets for these devices. --rmk) */ #ifdef CONFIG_YENTA_TI CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1210, TI), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1130, TI113X), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1131, TI113X), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1211, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1220, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1221, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1225, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251A, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251B, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1420, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1450, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1451A, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1510, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1520, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1620, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4410, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4450, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4451, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4510, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4520, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1250, TI1250), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1410, TI1250), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX21_XX11, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X515, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX12, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X420, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X620, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7410, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7510, TI12XX), CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7610, TI12XX), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_710, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_712, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_720, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_722, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1211, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1225, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1410, ENE), CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1420, ENE), #endif /* CONFIG_YENTA_TI */ #ifdef CONFIG_YENTA_RICOH CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C465, RICOH), CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C466, RICOH), CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C475, RICOH), CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C476, RICOH), CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C478, RICOH), #endif #ifdef CONFIG_YENTA_TOSHIBA CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC95, TOPIC95), CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC97, TOPIC97), CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC100, TOPIC97), #endif #ifdef CONFIG_YENTA_O2 CB_ID(PCI_VENDOR_ID_O2, PCI_ANY_ID, O2MICRO), #endif /* match any cardbus bridge */ CB_ID(PCI_ANY_ID, PCI_ANY_ID, DEFAULT), { /* all zeroes */ } }; MODULE_DEVICE_TABLE(pci, yenta_table); static struct pci_driver yenta_cardbus_driver = { .name = "yenta_cardbus", .id_table = yenta_table, .probe = yenta_probe, .remove = yenta_close, .driver.pm = YENTA_PM_OPS, }; module_pci_driver(yenta_cardbus_driver); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1