Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 2620 | 32.20% | 21 | 16.67% |
Stephen Warren | 1701 | 20.91% | 21 | 16.67% |
Tony Lindgren | 1343 | 16.51% | 11 | 8.73% |
Patrice Chotard | 337 | 4.14% | 1 | 0.79% |
Christian Ruppert | 269 | 3.31% | 2 | 1.59% |
Laxman Dewangan | 223 | 2.74% | 2 | 1.59% |
Dong Aisheng | 219 | 2.69% | 5 | 3.97% |
Haojian Zhuang | 155 | 1.91% | 3 | 2.38% |
Richard Genoud | 132 | 1.62% | 7 | 5.56% |
Mika Westerberg | 106 | 1.30% | 1 | 0.79% |
Doug Anderson | 100 | 1.23% | 1 | 0.79% |
Julien Delacou | 96 | 1.18% | 1 | 0.79% |
Jan Kundrát | 86 | 1.06% | 1 | 0.79% |
Stefan Wahren | 84 | 1.03% | 1 | 0.79% |
Masahiro Yamada | 73 | 0.90% | 6 | 4.76% |
Viresh Kumar | 64 | 0.79% | 2 | 1.59% |
Axel Lin | 58 | 0.71% | 3 | 2.38% |
Joachim Eastwood | 51 | 0.63% | 1 | 0.79% |
Benjamin Gaignard | 48 | 0.59% | 1 | 0.79% |
Shiraz Hashim | 45 | 0.55% | 1 | 0.79% |
Florian Fainelli | 40 | 0.49% | 1 | 0.79% |
Andy Shevchenko | 36 | 0.44% | 3 | 2.38% |
Ulf Hansson | 31 | 0.38% | 1 | 0.79% |
Antoine Tenart | 23 | 0.28% | 1 | 0.79% |
Chanho Park | 23 | 0.28% | 1 | 0.79% |
Jim Lin | 22 | 0.27% | 1 | 0.79% |
Nikita Yushchenko | 20 | 0.25% | 1 | 0.79% |
Florian Vaussard | 16 | 0.20% | 1 | 0.79% |
Arnd Bergmann | 15 | 0.18% | 1 | 0.79% |
Stanislaw Gruszka | 12 | 0.15% | 1 | 0.79% |
Hans de Goede | 11 | 0.14% | 1 | 0.79% |
Wei Yongjun | 11 | 0.14% | 2 | 1.59% |
Sachin Kamat | 10 | 0.12% | 3 | 2.38% |
Thierry Reding | 9 | 0.11% | 1 | 0.79% |
John Crispin | 9 | 0.11% | 1 | 0.79% |
SF Markus Elfring | 7 | 0.09% | 2 | 1.59% |
Baolin Wang | 5 | 0.06% | 1 | 0.79% |
Björn Andersson | 5 | 0.06% | 1 | 0.79% |
Richard Fitzgerald | 5 | 0.06% | 1 | 0.79% |
Yanjiang Jin | 4 | 0.05% | 1 | 0.79% |
Stephen Rothwell | 3 | 0.04% | 1 | 0.79% |
Devendra Naga | 2 | 0.02% | 1 | 0.79% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.79% |
Jon Hunter | 1 | 0.01% | 1 | 0.79% |
Jingoo Han | 1 | 0.01% | 1 | 0.79% |
Fan Wu | 1 | 0.01% | 1 | 0.79% |
Daniel Mack | 1 | 0.01% | 1 | 0.79% |
Charles Keepax | 1 | 0.01% | 1 | 0.79% |
Total | 8136 | 126 |
// SPDX-License-Identifier: GPL-2.0-only /* * Core driver for the pin control subsystem * * Copyright (C) 2011-2012 ST-Ericsson SA * Written on behalf of Linaro for ST-Ericsson * Based on bits of regulator core, gpio core and clk core * * Author: Linus Walleij <linus.walleij@linaro.org> * * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. */ #define pr_fmt(fmt) "pinctrl core: " fmt #include <linux/kernel.h> #include <linux/kref.h> #include <linux/export.h> #include <linux/init.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/list.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/pinctrl/consumer.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/machine.h> #ifdef CONFIG_GPIOLIB #include <asm-generic/gpio.h> #endif #include "core.h" #include "devicetree.h" #include "pinmux.h" #include "pinconf.h" static bool pinctrl_dummy_state; /* Mutex taken to protect pinctrl_list */ static DEFINE_MUTEX(pinctrl_list_mutex); /* Mutex taken to protect pinctrl_maps */ DEFINE_MUTEX(pinctrl_maps_mutex); /* Mutex taken to protect pinctrldev_list */ static DEFINE_MUTEX(pinctrldev_list_mutex); /* Global list of pin control devices (struct pinctrl_dev) */ static LIST_HEAD(pinctrldev_list); /* List of pin controller handles (struct pinctrl) */ static LIST_HEAD(pinctrl_list); /* List of pinctrl maps (struct pinctrl_maps) */ LIST_HEAD(pinctrl_maps); /** * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support * * Usually this function is called by platforms without pinctrl driver support * but run with some shared drivers using pinctrl APIs. * After calling this function, the pinctrl core will return successfully * with creating a dummy state for the driver to keep going smoothly. */ void pinctrl_provide_dummies(void) { pinctrl_dummy_state = true; } const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) { /* We're not allowed to register devices without name */ return pctldev->desc->name; } EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) { return dev_name(pctldev->dev); } EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) { return pctldev->driver_data; } EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); /** * get_pinctrl_dev_from_devname() - look up pin controller device * @devname: the name of a device instance, as returned by dev_name() * * Looks up a pin control device matching a certain device name or pure device * pointer, the pure device pointer will take precedence. */ struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) { struct pinctrl_dev *pctldev; if (!devname) return NULL; mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) { if (!strcmp(dev_name(pctldev->dev), devname)) { /* Matched on device name */ mutex_unlock(&pinctrldev_list_mutex); return pctldev; } } mutex_unlock(&pinctrldev_list_mutex); return NULL; } struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) { struct pinctrl_dev *pctldev; mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) if (pctldev->dev->of_node == np) { mutex_unlock(&pinctrldev_list_mutex); return pctldev; } mutex_unlock(&pinctrldev_list_mutex); return NULL; } /** * pin_get_from_name() - look up a pin number from a name * @pctldev: the pin control device to lookup the pin on * @name: the name of the pin to look up */ int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) { unsigned i, pin; /* The pin number can be retrived from the pin controller descriptor */ for (i = 0; i < pctldev->desc->npins; i++) { struct pin_desc *desc; pin = pctldev->desc->pins[i].number; desc = pin_desc_get(pctldev, pin); /* Pin space may be sparse */ if (desc && !strcmp(name, desc->name)) return pin; } return -EINVAL; } /** * pin_get_name_from_id() - look up a pin name from a pin id * @pctldev: the pin control device to lookup the pin on * @name: the name of the pin to look up */ const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) { const struct pin_desc *desc; desc = pin_desc_get(pctldev, pin); if (!desc) { dev_err(pctldev->dev, "failed to get pin(%d) name\n", pin); return NULL; } return desc->name; } EXPORT_SYMBOL_GPL(pin_get_name); /* Deletes a range of pin descriptors */ static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, const struct pinctrl_pin_desc *pins, unsigned num_pins) { int i; for (i = 0; i < num_pins; i++) { struct pin_desc *pindesc; pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, pins[i].number); if (pindesc) { radix_tree_delete(&pctldev->pin_desc_tree, pins[i].number); if (pindesc->dynamic_name) kfree(pindesc->name); } kfree(pindesc); } } static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, const struct pinctrl_pin_desc *pin) { struct pin_desc *pindesc; pindesc = pin_desc_get(pctldev, pin->number); if (pindesc) { dev_err(pctldev->dev, "pin %d already registered\n", pin->number); return -EINVAL; } pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); if (!pindesc) return -ENOMEM; /* Set owner */ pindesc->pctldev = pctldev; /* Copy basic pin info */ if (pin->name) { pindesc->name = pin->name; } else { pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); if (!pindesc->name) { kfree(pindesc); return -ENOMEM; } pindesc->dynamic_name = true; } pindesc->drv_data = pin->drv_data; radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); pr_debug("registered pin %d (%s) on %s\n", pin->number, pindesc->name, pctldev->desc->name); return 0; } static int pinctrl_register_pins(struct pinctrl_dev *pctldev, const struct pinctrl_pin_desc *pins, unsigned num_descs) { unsigned i; int ret = 0; for (i = 0; i < num_descs; i++) { ret = pinctrl_register_one_pin(pctldev, &pins[i]); if (ret) return ret; } return 0; } /** * gpio_to_pin() - GPIO range GPIO number to pin number translation * @range: GPIO range used for the translation * @gpio: gpio pin to translate to a pin number * * Finds the pin number for a given GPIO using the specified GPIO range * as a base for translation. The distinction between linear GPIO ranges * and pin list based GPIO ranges is managed correctly by this function. * * This function assumes the gpio is part of the specified GPIO range, use * only after making sure this is the case (e.g. by calling it on the * result of successful pinctrl_get_device_gpio_range calls)! */ static inline int gpio_to_pin(struct pinctrl_gpio_range *range, unsigned int gpio) { unsigned int offset = gpio - range->base; if (range->pins) return range->pins[offset]; else return range->pin_base + offset; } /** * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range * @pctldev: pin controller device to check * @gpio: gpio pin to check taken from the global GPIO pin space * * Tries to match a GPIO pin number to the ranges handled by a certain pin * controller, return the range or NULL */ static struct pinctrl_gpio_range * pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) { struct pinctrl_gpio_range *range; mutex_lock(&pctldev->mutex); /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if we're in the valid range */ if (gpio >= range->base && gpio < range->base + range->npins) { mutex_unlock(&pctldev->mutex); return range; } } mutex_unlock(&pctldev->mutex); return NULL; } /** * pinctrl_ready_for_gpio_range() - check if other GPIO pins of * the same GPIO chip are in range * @gpio: gpio pin to check taken from the global GPIO pin space * * This function is complement of pinctrl_match_gpio_range(). If the return * value of pinctrl_match_gpio_range() is NULL, this function could be used * to check whether pinctrl device is ready or not. Maybe some GPIO pins * of the same GPIO chip don't have back-end pinctrl interface. * If the return value is true, it means that pinctrl device is ready & the * certain GPIO pin doesn't have back-end pinctrl device. If the return value * is false, it means that pinctrl device may not be ready. */ #ifdef CONFIG_GPIOLIB static bool pinctrl_ready_for_gpio_range(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range = NULL; struct gpio_chip *chip = gpio_to_chip(gpio); if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) return false; mutex_lock(&pinctrldev_list_mutex); /* Loop over the pin controllers */ list_for_each_entry(pctldev, &pinctrldev_list, node) { /* Loop over the ranges */ mutex_lock(&pctldev->mutex); list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if any gpio range overlapped with gpio chip */ if (range->base + range->npins - 1 < chip->base || range->base > chip->base + chip->ngpio - 1) continue; mutex_unlock(&pctldev->mutex); mutex_unlock(&pinctrldev_list_mutex); return true; } mutex_unlock(&pctldev->mutex); } mutex_unlock(&pinctrldev_list_mutex); return false; } #else static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } #endif /** * pinctrl_get_device_gpio_range() - find device for GPIO range * @gpio: the pin to locate the pin controller for * @outdev: the pin control device if found * @outrange: the GPIO range if found * * Find the pin controller handling a certain GPIO pin from the pinspace of * the GPIO subsystem, return the device and the matching GPIO range. Returns * -EPROBE_DEFER if the GPIO range could not be found in any device since it * may still have not been registered. */ static int pinctrl_get_device_gpio_range(unsigned gpio, struct pinctrl_dev **outdev, struct pinctrl_gpio_range **outrange) { struct pinctrl_dev *pctldev; mutex_lock(&pinctrldev_list_mutex); /* Loop over the pin controllers */ list_for_each_entry(pctldev, &pinctrldev_list, node) { struct pinctrl_gpio_range *range; range = pinctrl_match_gpio_range(pctldev, gpio); if (range) { *outdev = pctldev; *outrange = range; mutex_unlock(&pinctrldev_list_mutex); return 0; } } mutex_unlock(&pinctrldev_list_mutex); return -EPROBE_DEFER; } /** * pinctrl_add_gpio_range() - register a GPIO range for a controller * @pctldev: pin controller device to add the range to * @range: the GPIO range to add * * This adds a range of GPIOs to be handled by a certain pin controller. Call * this to register handled ranges after registering your pin controller. */ void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range) { mutex_lock(&pctldev->mutex); list_add_tail(&range->node, &pctldev->gpio_ranges); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *ranges, unsigned nranges) { int i; for (i = 0; i < nranges; i++) pinctrl_add_gpio_range(pctldev, &ranges[i]); } EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, struct pinctrl_gpio_range *range) { struct pinctrl_dev *pctldev; pctldev = get_pinctrl_dev_from_devname(devname); /* * If we can't find this device, let's assume that is because * it has not probed yet, so the driver trying to register this * range need to defer probing. */ if (!pctldev) { return ERR_PTR(-EPROBE_DEFER); } pinctrl_add_gpio_range(pctldev, range); return pctldev; } EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, const unsigned **pins, unsigned *num_pins) { const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; int gs; if (!pctlops->get_group_pins) return -EINVAL; gs = pinctrl_get_group_selector(pctldev, pin_group); if (gs < 0) return gs; return pctlops->get_group_pins(pctldev, gs, pins, num_pins); } EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); struct pinctrl_gpio_range * pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, unsigned int pin) { struct pinctrl_gpio_range *range; /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { /* Check if we're in the valid range */ if (range->pins) { int a; for (a = 0; a < range->npins; a++) { if (range->pins[a] == pin) return range; } } else if (pin >= range->pin_base && pin < range->pin_base + range->npins) return range; } return NULL; } EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); /** * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin * @pctldev: the pin controller device to look in * @pin: a controller-local number to find the range for */ struct pinctrl_gpio_range * pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, unsigned int pin) { struct pinctrl_gpio_range *range; mutex_lock(&pctldev->mutex); range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); mutex_unlock(&pctldev->mutex); return range; } EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); /** * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller * @pctldev: pin controller device to remove the range from * @range: the GPIO range to remove */ void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range) { mutex_lock(&pctldev->mutex); list_del(&range->node); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); #ifdef CONFIG_GENERIC_PINCTRL_GROUPS /** * pinctrl_generic_get_group_count() - returns the number of pin groups * @pctldev: pin controller device */ int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) { return pctldev->num_groups; } EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); /** * pinctrl_generic_get_group_name() - returns the name of a pin group * @pctldev: pin controller device * @selector: group number */ const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, unsigned int selector) { struct group_desc *group; group = radix_tree_lookup(&pctldev->pin_group_tree, selector); if (!group) return NULL; return group->name; } EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); /** * pinctrl_generic_get_group_pins() - gets the pin group pins * @pctldev: pin controller device * @selector: group number * @pins: pins in the group * @num_pins: number of pins in the group */ int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, unsigned int selector, const unsigned int **pins, unsigned int *num_pins) { struct group_desc *group; group = radix_tree_lookup(&pctldev->pin_group_tree, selector); if (!group) { dev_err(pctldev->dev, "%s could not find pingroup%i\n", __func__, selector); return -EINVAL; } *pins = group->pins; *num_pins = group->num_pins; return 0; } EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); /** * pinctrl_generic_get_group() - returns a pin group based on the number * @pctldev: pin controller device * @gselector: group number */ struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, unsigned int selector) { struct group_desc *group; group = radix_tree_lookup(&pctldev->pin_group_tree, selector); if (!group) return NULL; return group; } EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, const char *function) { const struct pinctrl_ops *ops = pctldev->desc->pctlops; int ngroups = ops->get_groups_count(pctldev); int selector = 0; /* See if this pctldev has this group */ while (selector < ngroups) { const char *gname = ops->get_group_name(pctldev, selector); if (gname && !strcmp(function, gname)) return selector; selector++; } return -EINVAL; } /** * pinctrl_generic_add_group() - adds a new pin group * @pctldev: pin controller device * @name: name of the pin group * @pins: pins in the pin group * @num_pins: number of pins in the pin group * @data: pin controller driver specific data * * Note that the caller must take care of locking. */ int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, int *pins, int num_pins, void *data) { struct group_desc *group; int selector; if (!name) return -EINVAL; selector = pinctrl_generic_group_name_to_selector(pctldev, name); if (selector >= 0) return selector; selector = pctldev->num_groups; group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); if (!group) return -ENOMEM; group->name = name; group->pins = pins; group->num_pins = num_pins; group->data = data; radix_tree_insert(&pctldev->pin_group_tree, selector, group); pctldev->num_groups++; return selector; } EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); /** * pinctrl_generic_remove_group() - removes a numbered pin group * @pctldev: pin controller device * @selector: group number * * Note that the caller must take care of locking. */ int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, unsigned int selector) { struct group_desc *group; group = radix_tree_lookup(&pctldev->pin_group_tree, selector); if (!group) return -ENOENT; radix_tree_delete(&pctldev->pin_group_tree, selector); devm_kfree(pctldev->dev, group); pctldev->num_groups--; return 0; } EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); /** * pinctrl_generic_free_groups() - removes all pin groups * @pctldev: pin controller device * * Note that the caller must take care of locking. The pinctrl groups * are allocated with devm_kzalloc() so no need to free them here. */ static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) { struct radix_tree_iter iter; void __rcu **slot; radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) radix_tree_delete(&pctldev->pin_group_tree, iter.index); pctldev->num_groups = 0; } #else static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) { } #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ /** * pinctrl_get_group_selector() - returns the group selector for a group * @pctldev: the pin controller handling the group * @pin_group: the pin group to look up */ int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, const char *pin_group) { const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; unsigned ngroups = pctlops->get_groups_count(pctldev); unsigned group_selector = 0; while (group_selector < ngroups) { const char *gname = pctlops->get_group_name(pctldev, group_selector); if (gname && !strcmp(gname, pin_group)) { dev_dbg(pctldev->dev, "found group selector %u for %s\n", group_selector, pin_group); return group_selector; } group_selector++; } dev_err(pctldev->dev, "does not have pin group %s\n", pin_group); return -EINVAL; } bool pinctrl_gpio_can_use_line(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; bool result; int pin; /* * Try to obtain GPIO range, if it fails * we're probably dealing with GPIO driver * without a backing pin controller - bail out. */ if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) return true; mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio_to_pin(range, gpio); result = pinmux_can_be_used_for_gpio(pctldev, pin); mutex_unlock(&pctldev->mutex); return result; } EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); /** * pinctrl_gpio_request() - request a single pin to be used as GPIO * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_request() semantics, platforms and individual drivers * shall *NOT* request GPIO pins to be muxed in. */ int pinctrl_gpio_request(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { if (pinctrl_ready_for_gpio_range(gpio)) ret = 0; return ret; } mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio_to_pin(range, gpio); ret = pinmux_request_gpio(pctldev, range, pin, gpio); mutex_unlock(&pctldev->mutex); return ret; } EXPORT_SYMBOL_GPL(pinctrl_gpio_request); /** * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_free() semantics, platforms and individual drivers * shall *NOT* request GPIO pins to be muxed out. */ void pinctrl_gpio_free(unsigned gpio) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { return; } mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio_to_pin(range, gpio); pinmux_free_gpio(pctldev, pin, range); mutex_unlock(&pctldev->mutex); } EXPORT_SYMBOL_GPL(pinctrl_gpio_free); static int pinctrl_gpio_direction(unsigned gpio, bool input) { struct pinctrl_dev *pctldev; struct pinctrl_gpio_range *range; int ret; int pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) { return ret; } mutex_lock(&pctldev->mutex); /* Convert to the pin controllers number space */ pin = gpio_to_pin(range, gpio); ret = pinmux_gpio_direction(pctldev, range, pin, input); mutex_unlock(&pctldev->mutex); return ret; } /** * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_direction_input() semantics, platforms and individual * drivers shall *NOT* touch pin control GPIO calls. */ int pinctrl_gpio_direction_input(unsigned gpio) { return pinctrl_gpio_direction(gpio, true); } EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); /** * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode * @gpio: the GPIO pin number from the GPIO subsystem number space * * This function should *ONLY* be used from gpiolib-based GPIO drivers, * as part of their gpio_direction_output() semantics, platforms and individual * drivers shall *NOT* touch pin control GPIO calls. */ int pinctrl_gpio_direction_output(unsigned gpio) { return pinctrl_gpio_direction(gpio, false); } EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); /** * pinctrl_gpio_set_config() - Apply config to given GPIO pin * @gpio: the GPIO pin number from the GPIO subsystem number space * @config: the configuration to apply to the GPIO * * This function should *ONLY* be used from gpiolib-based GPIO drivers, if * they need to call the underlying pin controller to change GPIO config * (for example set debounce time). */ int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) { unsigned long configs[] = { config }; struct pinctrl_gpio_range *range; struct pinctrl_dev *pctldev; int ret, pin; ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); if (ret) return ret; mutex_lock(&pctldev->mutex); pin = gpio_to_pin(range, gpio); ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); mutex_unlock(&pctldev->mutex); return ret; } EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); static struct pinctrl_state *find_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; list_for_each_entry(state, &p->states, node) if (!strcmp(state->name, name)) return state; return NULL; } static struct pinctrl_state *create_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return ERR_PTR(-ENOMEM); state->name = name; INIT_LIST_HEAD(&state->settings); list_add_tail(&state->node, &p->states); return state; } static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, const struct pinctrl_map *map) { struct pinctrl_state *state; struct pinctrl_setting *setting; int ret; state = find_state(p, map->name); if (!state) state = create_state(p, map->name); if (IS_ERR(state)) return PTR_ERR(state); if (map->type == PIN_MAP_TYPE_DUMMY_STATE) return 0; setting = kzalloc(sizeof(*setting), GFP_KERNEL); if (!setting) return -ENOMEM; setting->type = map->type; if (pctldev) setting->pctldev = pctldev; else setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); if (!setting->pctldev) { kfree(setting); /* Do not defer probing of hogs (circular loop) */ if (!strcmp(map->ctrl_dev_name, map->dev_name)) return -ENODEV; /* * OK let us guess that the driver is not there yet, and * let's defer obtaining this pinctrl handle to later... */ dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", map->ctrl_dev_name); return -EPROBE_DEFER; } setting->dev_name = map->dev_name; switch (map->type) { case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_map_to_setting(map, setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_map_to_setting(map, setting); break; default: ret = -EINVAL; break; } if (ret < 0) { kfree(setting); return ret; } list_add_tail(&setting->node, &state->settings); return 0; } static struct pinctrl *find_pinctrl(struct device *dev) { struct pinctrl *p; mutex_lock(&pinctrl_list_mutex); list_for_each_entry(p, &pinctrl_list, node) if (p->dev == dev) { mutex_unlock(&pinctrl_list_mutex); return p; } mutex_unlock(&pinctrl_list_mutex); return NULL; } static void pinctrl_free(struct pinctrl *p, bool inlist); static struct pinctrl *create_pinctrl(struct device *dev, struct pinctrl_dev *pctldev) { struct pinctrl *p; const char *devname; struct pinctrl_maps *maps_node; int i; const struct pinctrl_map *map; int ret; /* * create the state cookie holder struct pinctrl for each * mapping, this is what consumers will get when requesting * a pin control handle with pinctrl_get() */ p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return ERR_PTR(-ENOMEM); p->dev = dev; INIT_LIST_HEAD(&p->states); INIT_LIST_HEAD(&p->dt_maps); ret = pinctrl_dt_to_map(p, pctldev); if (ret < 0) { kfree(p); return ERR_PTR(ret); } devname = dev_name(dev); mutex_lock(&pinctrl_maps_mutex); /* Iterate over the pin control maps to locate the right ones */ for_each_maps(maps_node, i, map) { /* Map must be for this device */ if (strcmp(map->dev_name, devname)) continue; /* * If pctldev is not null, we are claiming hog for it, * that means, setting that is served by pctldev by itself. * * Thus we must skip map that is for this device but is served * by other device. */ if (pctldev && strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) continue; ret = add_setting(p, pctldev, map); /* * At this point the adding of a setting may: * * - Defer, if the pinctrl device is not yet available * - Fail, if the pinctrl device is not yet available, * AND the setting is a hog. We cannot defer that, since * the hog will kick in immediately after the device * is registered. * * If the error returned was not -EPROBE_DEFER then we * accumulate the errors to see if we end up with * an -EPROBE_DEFER later, as that is the worst case. */ if (ret == -EPROBE_DEFER) { pinctrl_free(p, false); mutex_unlock(&pinctrl_maps_mutex); return ERR_PTR(ret); } } mutex_unlock(&pinctrl_maps_mutex); if (ret < 0) { /* If some other error than deferral occurred, return here */ pinctrl_free(p, false); return ERR_PTR(ret); } kref_init(&p->users); /* Add the pinctrl handle to the global list */ mutex_lock(&pinctrl_list_mutex); list_add_tail(&p->node, &pinctrl_list); mutex_unlock(&pinctrl_list_mutex); return p; } /** * pinctrl_get() - retrieves the pinctrl handle for a device * @dev: the device to obtain the handle for */ struct pinctrl *pinctrl_get(struct device *dev) { struct pinctrl *p; if (WARN_ON(!dev)) return ERR_PTR(-EINVAL); /* * See if somebody else (such as the device core) has already * obtained a handle to the pinctrl for this device. In that case, * return another pointer to it. */ p = find_pinctrl(dev); if (p) { dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); kref_get(&p->users); return p; } return create_pinctrl(dev, NULL); } EXPORT_SYMBOL_GPL(pinctrl_get); static void pinctrl_free_setting(bool disable_setting, struct pinctrl_setting *setting) { switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: if (disable_setting) pinmux_disable_setting(setting); pinmux_free_setting(setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_free_setting(setting); break; default: break; } } static void pinctrl_free(struct pinctrl *p, bool inlist) { struct pinctrl_state *state, *n1; struct pinctrl_setting *setting, *n2; mutex_lock(&pinctrl_list_mutex); list_for_each_entry_safe(state, n1, &p->states, node) { list_for_each_entry_safe(setting, n2, &state->settings, node) { pinctrl_free_setting(state == p->state, setting); list_del(&setting->node); kfree(setting); } list_del(&state->node); kfree(state); } pinctrl_dt_free_maps(p); if (inlist) list_del(&p->node); kfree(p); mutex_unlock(&pinctrl_list_mutex); } /** * pinctrl_release() - release the pinctrl handle * @kref: the kref in the pinctrl being released */ static void pinctrl_release(struct kref *kref) { struct pinctrl *p = container_of(kref, struct pinctrl, users); pinctrl_free(p, true); } /** * pinctrl_put() - decrease use count on a previously claimed pinctrl handle * @p: the pinctrl handle to release */ void pinctrl_put(struct pinctrl *p) { kref_put(&p->users, pinctrl_release); } EXPORT_SYMBOL_GPL(pinctrl_put); /** * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle * @p: the pinctrl handle to retrieve the state from * @name: the state name to retrieve */ struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name) { struct pinctrl_state *state; state = find_state(p, name); if (!state) { if (pinctrl_dummy_state) { /* create dummy state */ dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", name); state = create_state(p, name); } else state = ERR_PTR(-ENODEV); } return state; } EXPORT_SYMBOL_GPL(pinctrl_lookup_state); static void pinctrl_link_add(struct pinctrl_dev *pctldev, struct device *consumer) { if (pctldev->desc->link_consumers) device_link_add(consumer, pctldev->dev, DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER); } /** * pinctrl_commit_state() - select/activate/program a pinctrl state to HW * @p: the pinctrl handle for the device that requests configuration * @state: the state handle to select/activate/program */ static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) { struct pinctrl_setting *setting, *setting2; struct pinctrl_state *old_state = p->state; int ret; if (p->state) { /* * For each pinmux setting in the old state, forget SW's record * of mux owner for that pingroup. Any pingroups which are * still owned by the new state will be re-acquired by the call * to pinmux_enable_setting() in the loop below. */ list_for_each_entry(setting, &p->state->settings, node) { if (setting->type != PIN_MAP_TYPE_MUX_GROUP) continue; pinmux_disable_setting(setting); } } p->state = NULL; /* Apply all the settings for the new state */ list_for_each_entry(setting, &state->settings, node) { switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_enable_setting(setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_apply_setting(setting); break; default: ret = -EINVAL; break; } if (ret < 0) { goto unapply_new_state; } /* Do not link hogs (circular dependency) */ if (p != setting->pctldev->p) pinctrl_link_add(setting->pctldev, p->dev); } p->state = state; return 0; unapply_new_state: dev_err(p->dev, "Error applying setting, reverse things back\n"); list_for_each_entry(setting2, &state->settings, node) { if (&setting2->node == &setting->node) break; /* * All we can do here is pinmux_disable_setting. * That means that some pins are muxed differently now * than they were before applying the setting (We can't * "unmux a pin"!), but it's not a big deal since the pins * are free to be muxed by another apply_setting. */ if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) pinmux_disable_setting(setting2); } /* There's no infinite recursive loop here because p->state is NULL */ if (old_state) pinctrl_select_state(p, old_state); return ret; } /** * pinctrl_select_state() - select/activate/program a pinctrl state to HW * @p: the pinctrl handle for the device that requests configuration * @state: the state handle to select/activate/program */ int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) { if (p->state == state) return 0; return pinctrl_commit_state(p, state); } EXPORT_SYMBOL_GPL(pinctrl_select_state); static void devm_pinctrl_release(struct device *dev, void *res) { pinctrl_put(*(struct pinctrl **)res); } /** * struct devm_pinctrl_get() - Resource managed pinctrl_get() * @dev: the device to obtain the handle for * * If there is a need to explicitly destroy the returned struct pinctrl, * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). */ struct pinctrl *devm_pinctrl_get(struct device *dev) { struct pinctrl **ptr, *p; ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); p = pinctrl_get(dev); if (!IS_ERR(p)) { *ptr = p; devres_add(dev, ptr); } else { devres_free(ptr); } return p; } EXPORT_SYMBOL_GPL(devm_pinctrl_get); static int devm_pinctrl_match(struct device *dev, void *res, void *data) { struct pinctrl **p = res; return *p == data; } /** * devm_pinctrl_put() - Resource managed pinctrl_put() * @p: the pinctrl handle to release * * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally * this function will not need to be called and the resource management * code will ensure that the resource is freed. */ void devm_pinctrl_put(struct pinctrl *p) { WARN_ON(devres_release(p->dev, devm_pinctrl_release, devm_pinctrl_match, p)); } EXPORT_SYMBOL_GPL(devm_pinctrl_put); /** * pinctrl_register_mappings() - register a set of pin controller mappings * @maps: the pincontrol mappings table to register. Note the pinctrl-core * keeps a reference to the passed in maps, so they should _not_ be * marked with __initdata. * @num_maps: the number of maps in the mapping table */ int pinctrl_register_mappings(const struct pinctrl_map *maps, unsigned num_maps) { int i, ret; struct pinctrl_maps *maps_node; pr_debug("add %u pinctrl maps\n", num_maps); /* First sanity check the new mapping */ for (i = 0; i < num_maps; i++) { if (!maps[i].dev_name) { pr_err("failed to register map %s (%d): no device given\n", maps[i].name, i); return -EINVAL; } if (!maps[i].name) { pr_err("failed to register map %d: no map name given\n", i); return -EINVAL; } if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && !maps[i].ctrl_dev_name) { pr_err("failed to register map %s (%d): no pin control device given\n", maps[i].name, i); return -EINVAL; } switch (maps[i].type) { case PIN_MAP_TYPE_DUMMY_STATE: break; case PIN_MAP_TYPE_MUX_GROUP: ret = pinmux_validate_map(&maps[i], i); if (ret < 0) return ret; break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: ret = pinconf_validate_map(&maps[i], i); if (ret < 0) return ret; break; default: pr_err("failed to register map %s (%d): invalid type given\n", maps[i].name, i); return -EINVAL; } } maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); if (!maps_node) return -ENOMEM; maps_node->maps = maps; maps_node->num_maps = num_maps; mutex_lock(&pinctrl_maps_mutex); list_add_tail(&maps_node->node, &pinctrl_maps); mutex_unlock(&pinctrl_maps_mutex); return 0; } EXPORT_SYMBOL_GPL(pinctrl_register_mappings); /** * pinctrl_unregister_mappings() - unregister a set of pin controller mappings * @maps: the pincontrol mappings table passed to pinctrl_register_mappings() * when registering the mappings. */ void pinctrl_unregister_mappings(const struct pinctrl_map *map) { struct pinctrl_maps *maps_node; mutex_lock(&pinctrl_maps_mutex); list_for_each_entry(maps_node, &pinctrl_maps, node) { if (maps_node->maps == map) { list_del(&maps_node->node); kfree(maps_node); mutex_unlock(&pinctrl_maps_mutex); return; } } mutex_unlock(&pinctrl_maps_mutex); } EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); /** * pinctrl_force_sleep() - turn a given controller device into sleep state * @pctldev: pin controller device */ int pinctrl_force_sleep(struct pinctrl_dev *pctldev) { if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); return 0; } EXPORT_SYMBOL_GPL(pinctrl_force_sleep); /** * pinctrl_force_default() - turn a given controller device into default state * @pctldev: pin controller device */ int pinctrl_force_default(struct pinctrl_dev *pctldev) { if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) return pinctrl_commit_state(pctldev->p, pctldev->hog_default); return 0; } EXPORT_SYMBOL_GPL(pinctrl_force_default); /** * pinctrl_init_done() - tell pinctrl probe is done * * We'll use this time to switch the pins from "init" to "default" unless the * driver selected some other state. * * @dev: device to that's done probing */ int pinctrl_init_done(struct device *dev) { struct dev_pin_info *pins = dev->pins; int ret; if (!pins) return 0; if (IS_ERR(pins->init_state)) return 0; /* No such state */ if (pins->p->state != pins->init_state) return 0; /* Not at init anyway */ if (IS_ERR(pins->default_state)) return 0; /* No default state */ ret = pinctrl_select_state(pins->p, pins->default_state); if (ret) dev_err(dev, "failed to activate default pinctrl state\n"); return ret; } static int pinctrl_select_bound_state(struct device *dev, struct pinctrl_state *state) { struct dev_pin_info *pins = dev->pins; int ret; if (IS_ERR(state)) return 0; /* No such state */ ret = pinctrl_select_state(pins->p, state); if (ret) dev_err(dev, "failed to activate pinctrl state %s\n", state->name); return ret; } /** * pinctrl_select_default_state() - select default pinctrl state * @dev: device to select default state for */ int pinctrl_select_default_state(struct device *dev) { if (!dev->pins) return 0; return pinctrl_select_bound_state(dev, dev->pins->default_state); } EXPORT_SYMBOL_GPL(pinctrl_select_default_state); #ifdef CONFIG_PM /** * pinctrl_pm_select_default_state() - select default pinctrl state for PM * @dev: device to select default state for */ int pinctrl_pm_select_default_state(struct device *dev) { return pinctrl_select_default_state(dev); } EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); /** * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM * @dev: device to select sleep state for */ int pinctrl_pm_select_sleep_state(struct device *dev) { if (!dev->pins) return 0; return pinctrl_select_bound_state(dev, dev->pins->sleep_state); } EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); /** * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM * @dev: device to select idle state for */ int pinctrl_pm_select_idle_state(struct device *dev) { if (!dev->pins) return 0; return pinctrl_select_bound_state(dev, dev->pins->idle_state); } EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); #endif #ifdef CONFIG_DEBUG_FS static int pinctrl_pins_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; const struct pinctrl_ops *ops = pctldev->desc->pctlops; unsigned i, pin; seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); mutex_lock(&pctldev->mutex); /* The pin number can be retrived from the pin controller descriptor */ for (i = 0; i < pctldev->desc->npins; i++) { struct pin_desc *desc; pin = pctldev->desc->pins[i].number; desc = pin_desc_get(pctldev, pin); /* Pin space may be sparse */ if (!desc) continue; seq_printf(s, "pin %d (%s) ", pin, desc->name); /* Driver-specific info per pin */ if (ops->pin_dbg_show) ops->pin_dbg_show(pctldev, s, pin); seq_puts(s, "\n"); } mutex_unlock(&pctldev->mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); static int pinctrl_groups_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; const struct pinctrl_ops *ops = pctldev->desc->pctlops; unsigned ngroups, selector = 0; mutex_lock(&pctldev->mutex); ngroups = ops->get_groups_count(pctldev); seq_puts(s, "registered pin groups:\n"); while (selector < ngroups) { const unsigned *pins = NULL; unsigned num_pins = 0; const char *gname = ops->get_group_name(pctldev, selector); const char *pname; int ret = 0; int i; if (ops->get_group_pins) ret = ops->get_group_pins(pctldev, selector, &pins, &num_pins); if (ret) seq_printf(s, "%s [ERROR GETTING PINS]\n", gname); else { seq_printf(s, "group: %s\n", gname); for (i = 0; i < num_pins; i++) { pname = pin_get_name(pctldev, pins[i]); if (WARN_ON(!pname)) { mutex_unlock(&pctldev->mutex); return -EINVAL; } seq_printf(s, "pin %d (%s)\n", pins[i], pname); } seq_puts(s, "\n"); } selector++; } mutex_unlock(&pctldev->mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); static int pinctrl_gpioranges_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev = s->private; struct pinctrl_gpio_range *range; seq_puts(s, "GPIO ranges handled:\n"); mutex_lock(&pctldev->mutex); /* Loop over the ranges */ list_for_each_entry(range, &pctldev->gpio_ranges, node) { if (range->pins) { int a; seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", range->id, range->name, range->base, (range->base + range->npins - 1)); for (a = 0; a < range->npins - 1; a++) seq_printf(s, "%u, ", range->pins[a]); seq_printf(s, "%u}\n", range->pins[a]); } else seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", range->id, range->name, range->base, (range->base + range->npins - 1), range->pin_base, (range->pin_base + range->npins - 1)); } mutex_unlock(&pctldev->mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); static int pinctrl_devices_show(struct seq_file *s, void *what) { struct pinctrl_dev *pctldev; seq_puts(s, "name [pinmux] [pinconf]\n"); mutex_lock(&pinctrldev_list_mutex); list_for_each_entry(pctldev, &pinctrldev_list, node) { seq_printf(s, "%s ", pctldev->desc->name); if (pctldev->desc->pmxops) seq_puts(s, "yes "); else seq_puts(s, "no "); if (pctldev->desc->confops) seq_puts(s, "yes"); else seq_puts(s, "no"); seq_puts(s, "\n"); } mutex_unlock(&pinctrldev_list_mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); static inline const char *map_type(enum pinctrl_map_type type) { static const char * const names[] = { "INVALID", "DUMMY_STATE", "MUX_GROUP", "CONFIGS_PIN", "CONFIGS_GROUP", }; if (type >= ARRAY_SIZE(names)) return "UNKNOWN"; return names[type]; } static int pinctrl_maps_show(struct seq_file *s, void *what) { struct pinctrl_maps *maps_node; int i; const struct pinctrl_map *map; seq_puts(s, "Pinctrl maps:\n"); mutex_lock(&pinctrl_maps_mutex); for_each_maps(maps_node, i, map) { seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", map->dev_name, map->name, map_type(map->type), map->type); if (map->type != PIN_MAP_TYPE_DUMMY_STATE) seq_printf(s, "controlling device %s\n", map->ctrl_dev_name); switch (map->type) { case PIN_MAP_TYPE_MUX_GROUP: pinmux_show_map(s, map); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_show_map(s, map); break; default: break; } seq_putc(s, '\n'); } mutex_unlock(&pinctrl_maps_mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); static int pinctrl_show(struct seq_file *s, void *what) { struct pinctrl *p; struct pinctrl_state *state; struct pinctrl_setting *setting; seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); mutex_lock(&pinctrl_list_mutex); list_for_each_entry(p, &pinctrl_list, node) { seq_printf(s, "device: %s current state: %s\n", dev_name(p->dev), p->state ? p->state->name : "none"); list_for_each_entry(state, &p->states, node) { seq_printf(s, " state: %s\n", state->name); list_for_each_entry(setting, &state->settings, node) { struct pinctrl_dev *pctldev = setting->pctldev; seq_printf(s, " type: %s controller %s ", map_type(setting->type), pinctrl_dev_get_name(pctldev)); switch (setting->type) { case PIN_MAP_TYPE_MUX_GROUP: pinmux_show_setting(s, setting); break; case PIN_MAP_TYPE_CONFIGS_PIN: case PIN_MAP_TYPE_CONFIGS_GROUP: pinconf_show_setting(s, setting); break; default: break; } } } } mutex_unlock(&pinctrl_list_mutex); return 0; } DEFINE_SHOW_ATTRIBUTE(pinctrl); static struct dentry *debugfs_root; static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) { struct dentry *device_root; const char *debugfs_name; if (pctldev->desc->name && strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, "%s-%s", dev_name(pctldev->dev), pctldev->desc->name); if (!debugfs_name) { pr_warn("failed to determine debugfs dir name for %s\n", dev_name(pctldev->dev)); return; } } else { debugfs_name = dev_name(pctldev->dev); } device_root = debugfs_create_dir(debugfs_name, debugfs_root); pctldev->device_root = device_root; if (IS_ERR(device_root) || !device_root) { pr_warn("failed to create debugfs directory for %s\n", dev_name(pctldev->dev)); return; } debugfs_create_file("pins", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_pins_fops); debugfs_create_file("pingroups", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_groups_fops); debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, device_root, pctldev, &pinctrl_gpioranges_fops); if (pctldev->desc->pmxops) pinmux_init_device_debugfs(device_root, pctldev); if (pctldev->desc->confops) pinconf_init_device_debugfs(device_root, pctldev); } static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) { debugfs_remove_recursive(pctldev->device_root); } static void pinctrl_init_debugfs(void) { debugfs_root = debugfs_create_dir("pinctrl", NULL); if (IS_ERR(debugfs_root) || !debugfs_root) { pr_warn("failed to create debugfs directory\n"); debugfs_root = NULL; return; } debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_devices_fops); debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_maps_fops); debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, debugfs_root, NULL, &pinctrl_fops); } #else /* CONFIG_DEBUG_FS */ static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) { } static void pinctrl_init_debugfs(void) { } static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) { } #endif static int pinctrl_check_ops(struct pinctrl_dev *pctldev) { const struct pinctrl_ops *ops = pctldev->desc->pctlops; if (!ops || !ops->get_groups_count || !ops->get_group_name) return -EINVAL; return 0; } /** * pinctrl_init_controller() - init a pin controller device * @pctldesc: descriptor for this pin controller * @dev: parent device for this pin controller * @driver_data: private pin controller data for this pin controller */ static struct pinctrl_dev * pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, void *driver_data) { struct pinctrl_dev *pctldev; int ret; if (!pctldesc) return ERR_PTR(-EINVAL); if (!pctldesc->name) return ERR_PTR(-EINVAL); pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); if (!pctldev) return ERR_PTR(-ENOMEM); /* Initialize pin control device struct */ pctldev->owner = pctldesc->owner; pctldev->desc = pctldesc; pctldev->driver_data = driver_data; INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); #ifdef CONFIG_GENERIC_PINCTRL_GROUPS INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); #endif #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); #endif INIT_LIST_HEAD(&pctldev->gpio_ranges); INIT_LIST_HEAD(&pctldev->node); pctldev->dev = dev; mutex_init(&pctldev->mutex); /* check core ops for sanity */ ret = pinctrl_check_ops(pctldev); if (ret) { dev_err(dev, "pinctrl ops lacks necessary functions\n"); goto out_err; } /* If we're implementing pinmuxing, check the ops for sanity */ if (pctldesc->pmxops) { ret = pinmux_check_ops(pctldev); if (ret) goto out_err; } /* If we're implementing pinconfig, check the ops for sanity */ if (pctldesc->confops) { ret = pinconf_check_ops(pctldev); if (ret) goto out_err; } /* Register all the pins */ dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); if (ret) { dev_err(dev, "error during pin registration\n"); pinctrl_free_pindescs(pctldev, pctldesc->pins, pctldesc->npins); goto out_err; } return pctldev; out_err: mutex_destroy(&pctldev->mutex); kfree(pctldev); return ERR_PTR(ret); } static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) { pctldev->p = create_pinctrl(pctldev->dev, pctldev); if (PTR_ERR(pctldev->p) == -ENODEV) { dev_dbg(pctldev->dev, "no hogs found\n"); return 0; } if (IS_ERR(pctldev->p)) { dev_err(pctldev->dev, "error claiming hogs: %li\n", PTR_ERR(pctldev->p)); return PTR_ERR(pctldev->p); } pctldev->hog_default = pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); if (IS_ERR(pctldev->hog_default)) { dev_dbg(pctldev->dev, "failed to lookup the default state\n"); } else { if (pinctrl_select_state(pctldev->p, pctldev->hog_default)) dev_err(pctldev->dev, "failed to select default state\n"); } pctldev->hog_sleep = pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_SLEEP); if (IS_ERR(pctldev->hog_sleep)) dev_dbg(pctldev->dev, "failed to lookup the sleep state\n"); return 0; } int pinctrl_enable(struct pinctrl_dev *pctldev) { int error; error = pinctrl_claim_hogs(pctldev); if (error) { dev_err(pctldev->dev, "could not claim hogs: %i\n", error); mutex_destroy(&pctldev->mutex); kfree(pctldev); return error; } mutex_lock(&pinctrldev_list_mutex); list_add_tail(&pctldev->node, &pinctrldev_list); mutex_unlock(&pinctrldev_list_mutex); pinctrl_init_device_debugfs(pctldev); return 0; } EXPORT_SYMBOL_GPL(pinctrl_enable); /** * pinctrl_register() - register a pin controller device * @pctldesc: descriptor for this pin controller * @dev: parent device for this pin controller * @driver_data: private pin controller data for this pin controller * * Note that pinctrl_register() is known to have problems as the pin * controller driver functions are called before the driver has a * struct pinctrl_dev handle. To avoid issues later on, please use the * new pinctrl_register_and_init() below instead. */ struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, struct device *dev, void *driver_data) { struct pinctrl_dev *pctldev; int error; pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); if (IS_ERR(pctldev)) return pctldev; error = pinctrl_enable(pctldev); if (error) return ERR_PTR(error); return pctldev; } EXPORT_SYMBOL_GPL(pinctrl_register); /** * pinctrl_register_and_init() - register and init pin controller device * @pctldesc: descriptor for this pin controller * @dev: parent device for this pin controller * @driver_data: private pin controller data for this pin controller * @pctldev: pin controller device * * Note that pinctrl_enable() still needs to be manually called after * this once the driver is ready. */ int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, struct device *dev, void *driver_data, struct pinctrl_dev **pctldev) { struct pinctrl_dev *p; p = pinctrl_init_controller(pctldesc, dev, driver_data); if (IS_ERR(p)) return PTR_ERR(p); /* * We have pinctrl_start() call functions in the pin controller * driver with create_pinctrl() for at least dt_node_to_map(). So * let's make sure pctldev is properly initialized for the * pin controller driver before we do anything. */ *pctldev = p; return 0; } EXPORT_SYMBOL_GPL(pinctrl_register_and_init); /** * pinctrl_unregister() - unregister pinmux * @pctldev: pin controller to unregister * * Called by pinmux drivers to unregister a pinmux. */ void pinctrl_unregister(struct pinctrl_dev *pctldev) { struct pinctrl_gpio_range *range, *n; if (!pctldev) return; mutex_lock(&pctldev->mutex); pinctrl_remove_device_debugfs(pctldev); mutex_unlock(&pctldev->mutex); if (!IS_ERR_OR_NULL(pctldev->p)) pinctrl_put(pctldev->p); mutex_lock(&pinctrldev_list_mutex); mutex_lock(&pctldev->mutex); /* TODO: check that no pinmuxes are still active? */ list_del(&pctldev->node); pinmux_generic_free_functions(pctldev); pinctrl_generic_free_groups(pctldev); /* Destroy descriptor tree */ pinctrl_free_pindescs(pctldev, pctldev->desc->pins, pctldev->desc->npins); /* remove gpio ranges map */ list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) list_del(&range->node); mutex_unlock(&pctldev->mutex); mutex_destroy(&pctldev->mutex); kfree(pctldev); mutex_unlock(&pinctrldev_list_mutex); } EXPORT_SYMBOL_GPL(pinctrl_unregister); static void devm_pinctrl_dev_release(struct device *dev, void *res) { struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; pinctrl_unregister(pctldev); } static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) { struct pctldev **r = res; if (WARN_ON(!r || !*r)) return 0; return *r == data; } /** * devm_pinctrl_register() - Resource managed version of pinctrl_register(). * @dev: parent device for this pin controller * @pctldesc: descriptor for this pin controller * @driver_data: private pin controller data for this pin controller * * Returns an error pointer if pincontrol register failed. Otherwise * it returns valid pinctrl handle. * * The pinctrl device will be automatically released when the device is unbound. */ struct pinctrl_dev *devm_pinctrl_register(struct device *dev, struct pinctrl_desc *pctldesc, void *driver_data) { struct pinctrl_dev **ptr, *pctldev; ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); pctldev = pinctrl_register(pctldesc, dev, driver_data); if (IS_ERR(pctldev)) { devres_free(ptr); return pctldev; } *ptr = pctldev; devres_add(dev, ptr); return pctldev; } EXPORT_SYMBOL_GPL(devm_pinctrl_register); /** * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init * @dev: parent device for this pin controller * @pctldesc: descriptor for this pin controller * @driver_data: private pin controller data for this pin controller * * Returns an error pointer if pincontrol register failed. Otherwise * it returns valid pinctrl handle. * * The pinctrl device will be automatically released when the device is unbound. */ int devm_pinctrl_register_and_init(struct device *dev, struct pinctrl_desc *pctldesc, void *driver_data, struct pinctrl_dev **pctldev) { struct pinctrl_dev **ptr; int error; ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); if (error) { devres_free(ptr); return error; } *ptr = *pctldev; devres_add(dev, ptr); return 0; } EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); /** * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). * @dev: device for which which resource was allocated * @pctldev: the pinctrl device to unregister. */ void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) { WARN_ON(devres_release(dev, devm_pinctrl_dev_release, devm_pinctrl_dev_match, pctldev)); } EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); static int __init pinctrl_init(void) { pr_info("initialized pinctrl subsystem\n"); pinctrl_init_debugfs(); return 0; } /* init early since many drivers really need to initialized pinmux early */ core_initcall(pinctrl_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1