Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sreedhara DS | 1025 | 64.34% | 3 | 8.57% |
Andy Shevchenko | 253 | 15.88% | 10 | 28.57% |
Kuppuswamy Sathyanarayanan | 125 | 7.85% | 5 | 14.29% |
Mika Westerberg | 115 | 7.22% | 6 | 17.14% |
Alan Cox | 25 | 1.57% | 3 | 8.57% |
Arjan van de Ven | 14 | 0.88% | 2 | 5.71% |
Paul Gortmaker | 11 | 0.69% | 1 | 2.86% |
Hong Liu | 6 | 0.38% | 1 | 2.86% |
Christophe Jaillet | 6 | 0.38% | 1 | 2.86% |
Benoit Taine | 6 | 0.38% | 1 | 2.86% |
Axel Lin | 4 | 0.25% | 1 | 2.86% |
Feng Tang | 3 | 0.19% | 1 | 2.86% |
Total | 1593 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Intel SCU IPC mechanism * * (C) Copyright 2008-2010,2015 Intel Corporation * Author: Sreedhara DS (sreedhara.ds@intel.com) * * SCU running in ARC processor communicates with other entity running in IA * core through IPC mechanism which in turn messaging between IA core ad SCU. * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) * along with other APIs. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/pm.h> #include <linux/sfi.h> #include <asm/intel-mid.h> #include <asm/intel_scu_ipc.h> /* IPC defines the following message types */ #define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */ /* Command id associated with message IPCMSG_PCNTRL */ #define IPC_CMD_PCNTRL_W 0 /* Register write */ #define IPC_CMD_PCNTRL_R 1 /* Register read */ #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ /* * IPC register summary * * IPC register blocks are memory mapped at fixed address of PCI BAR 0. * To read or write information to the SCU, driver writes to IPC-1 memory * mapped registers. The following is the IPC mechanism * * 1. IA core cDMI interface claims this transaction and converts it to a * Transaction Layer Packet (TLP) message which is sent across the cDMI. * * 2. South Complex cDMI block receives this message and writes it to * the IPC-1 register block, causing an interrupt to the SCU * * 3. SCU firmware decodes this interrupt and IPC message and the appropriate * message handler is called within firmware. */ #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ #define IPC_IOC 0x100 /* IPC command register IOC bit */ struct intel_scu_ipc_dev { struct device *dev; void __iomem *ipc_base; struct completion cmd_complete; u8 irq_mode; }; static struct intel_scu_ipc_dev ipcdev; /* Only one for now */ #define IPC_STATUS 0x04 #define IPC_STATUS_IRQ BIT(2) #define IPC_STATUS_ERR BIT(1) #define IPC_STATUS_BUSY BIT(0) /* * IPC Write/Read Buffers: * 16 byte buffer for sending and receiving data to and from SCU. */ #define IPC_WRITE_BUFFER 0x80 #define IPC_READ_BUFFER 0x90 /* Timeout in jiffies */ #define IPC_TIMEOUT (3 * HZ) static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ /* * Send ipc command * Command Register (Write Only): * A write to this register results in an interrupt to the SCU core processor * Format: * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| */ static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd) { reinit_completion(&scu->cmd_complete); writel(cmd | IPC_IOC, scu->ipc_base); } /* * Write ipc data * IPC Write Buffer (Write Only): * 16-byte buffer for sending data associated with IPC command to * SCU. Size of the data is specified in the IPC_COMMAND_REG register */ static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset) { writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset); } /* * Status Register (Read Only): * Driver will read this register to get the ready/busy status of the IPC * block and error status of the IPC command that was just processed by SCU * Format: * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| */ static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu) { return __raw_readl(scu->ipc_base + IPC_STATUS); } /* Read ipc byte data */ static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset) { return readb(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Read ipc u32 data */ static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset) { return readl(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Wait till scu status is busy */ static inline int busy_loop(struct intel_scu_ipc_dev *scu) { unsigned long end = jiffies + msecs_to_jiffies(IPC_TIMEOUT); do { u32 status; status = ipc_read_status(scu); if (!(status & IPC_STATUS_BUSY)) return (status & IPC_STATUS_ERR) ? -EIO : 0; usleep_range(50, 100); } while (time_before(jiffies, end)); dev_err(scu->dev, "IPC timed out"); return -ETIMEDOUT; } /* Wait till ipc ioc interrupt is received or timeout in 3 HZ */ static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu) { int status; if (!wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT)) { dev_err(scu->dev, "IPC timed out\n"); return -ETIMEDOUT; } status = ipc_read_status(scu); if (status & IPC_STATUS_ERR) return -EIO; return 0; } static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu) { return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu); } /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id) { struct intel_scu_ipc_dev *scu = &ipcdev; int nc; u32 offset = 0; int err; u8 cbuf[IPC_WWBUF_SIZE]; u32 *wbuf = (u32 *)&cbuf; memset(cbuf, 0, sizeof(cbuf)); mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } for (nc = 0; nc < count; nc++, offset += 2) { cbuf[offset] = addr[nc]; cbuf[offset + 1] = addr[nc] >> 8; } if (id == IPC_CMD_PCNTRL_R) { for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_W) { for (nc = 0; nc < count; nc++, offset += 1) cbuf[offset] = data[nc]; for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_M) { cbuf[offset] = data[0]; cbuf[offset + 1] = data[1]; ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */ ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op); } err = intel_scu_ipc_check_status(scu); if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ /* Workaround: values are read as 0 without memcpy_fromio */ memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16); for (nc = 0; nc < count; nc++) data[nc] = ipc_data_readb(scu, nc); } mutex_unlock(&ipclock); return err; } /** * intel_scu_ipc_ioread8 - read a word via the SCU * @addr: Register on SCU * @data: Return pointer for read byte * * Read a single register. Returns %0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_ioread8(u16 addr, u8 *data) { return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_ioread8); /** * intel_scu_ipc_iowrite8 - write a byte via the SCU * @addr: Register on SCU * @data: Byte to write * * Write a single register. Returns %0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_iowrite8(u16 addr, u8 data) { return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_iowrite8); /** * intel_scu_ipc_readvv - read a set of registers * @addr: Register list * @data: Bytes to return * @len: Length of array * * Read registers. Returns %0 on success or an error code. All locking * between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_readv(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_readv); /** * intel_scu_ipc_writev - write a set of registers * @addr: Register list * @data: Bytes to write * @len: Length of array * * Write registers. Returns %0 on success or an error code. All locking * between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_writev(u16 *addr, u8 *data, int len) { return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_writev); /** * intel_scu_ipc_update_register - r/m/w a register * @addr: Register address * @bits: Bits to update * @mask: Mask of bits to update * * Read-modify-write power control unit register. The first data argument * must be register value and second is mask value mask is a bitmap that * indicates which bits to update. %0 = masked. Don't modify this bit, %1 = * modify this bit. returns %0 on success or an error code. * * This function may sleep. Locking between SCU accesses is handled * for the caller. */ int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask) { u8 data[2] = { bits, mask }; return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); } EXPORT_SYMBOL(intel_scu_ipc_update_register); /** * intel_scu_ipc_simple_command - send a simple command * @cmd: Command * @sub: Sub type * * Issue a simple command to the SCU. Do not use this interface if you must * then access data as any data values may be overwritten by another SCU * access by the time this function returns. * * This function may sleep. Locking for SCU accesses is handled for the * caller. */ int intel_scu_ipc_simple_command(int cmd, int sub) { struct intel_scu_ipc_dev *scu = &ipcdev; int err; mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } ipc_command(scu, sub << 12 | cmd); err = intel_scu_ipc_check_status(scu); mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_simple_command); /** * intel_scu_ipc_command - command with data * @cmd: Command * @sub: Sub type * @in: Input data * @inlen: Input length in dwords * @out: Output data * @outlen: Output length in dwords * * Issue a command to the SCU which involves data transfers. Do the * data copies under the lock but leave it for the caller to interpret. */ int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen, u32 *out, int outlen) { struct intel_scu_ipc_dev *scu = &ipcdev; int i, err; mutex_lock(&ipclock); if (scu->dev == NULL) { mutex_unlock(&ipclock); return -ENODEV; } for (i = 0; i < inlen; i++) ipc_data_writel(scu, *in++, 4 * i); ipc_command(scu, (inlen << 16) | (sub << 12) | cmd); err = intel_scu_ipc_check_status(scu); if (!err) { for (i = 0; i < outlen; i++) *out++ = ipc_data_readl(scu, 4 * i); } mutex_unlock(&ipclock); return err; } EXPORT_SYMBOL(intel_scu_ipc_command); /* * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 * When ioc bit is set to 1, caller api must wait for interrupt handler called * which in turn unlocks the caller api. Currently this is not used * * This is edge triggered so we need take no action to clear anything */ static irqreturn_t ioc(int irq, void *dev_id) { struct intel_scu_ipc_dev *scu = dev_id; int status = ipc_read_status(scu); writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS); complete(&scu->cmd_complete); return IRQ_HANDLED; } /** * ipc_probe - probe an Intel SCU IPC * @pdev: the PCI device matching * @id: entry in the match table * * Enable and install an intel SCU IPC. This appears in the PCI space * but uses some hard coded addresses as well. */ static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int err; struct intel_scu_ipc_dev *scu = &ipcdev; if (scu->dev) /* We support only one SCU */ return -EBUSY; err = pcim_enable_device(pdev); if (err) return err; err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev)); if (err) return err; init_completion(&scu->cmd_complete); scu->ipc_base = pcim_iomap_table(pdev)[0]; err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc", scu); if (err) return err; /* Assign device at last */ scu->dev = &pdev->dev; intel_scu_devices_create(); pci_set_drvdata(pdev, scu); return 0; } static const struct pci_device_id pci_ids[] = { { PCI_VDEVICE(INTEL, 0x080e) }, { PCI_VDEVICE(INTEL, 0x08ea) }, { PCI_VDEVICE(INTEL, 0x11a0) }, {} }; static struct pci_driver ipc_driver = { .driver = { .suppress_bind_attrs = true, }, .name = "intel_scu_ipc", .id_table = pci_ids, .probe = ipc_probe, }; builtin_pci_driver(ipc_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1