Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vincent Cheng | 5762 | 99.81% | 2 | 50.00% |
Wei Yongjun | 10 | 0.17% | 1 | 25.00% |
Julia Lawall | 1 | 0.02% | 1 | 25.00% |
Total | 5773 | 4 |
// SPDX-License-Identifier: GPL-2.0+ /* * PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and * synchronization devices. * * Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company. */ #include <linux/firmware.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include "ptp_private.h" #include "ptp_clockmatrix.h" MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family"); MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); #define SETTIME_CORRECTION (0) static int char_array_to_timespec(u8 *buf, u8 count, struct timespec64 *ts) { u8 i; u64 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; /* Sub-nanoseconds are in buf[0]. */ nsec = buf[4]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[3 - i]; } sec = buf[10]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[9 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; return 0; } static int timespec_to_char_array(struct timespec64 const *ts, u8 *buf, u8 count) { u8 i; s32 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; nsec = ts->tv_nsec; sec = ts->tv_sec; /* Sub-nanoseconds are in buf[0]. */ buf[0] = 0; for (i = 1; i < 5; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 5; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } return 0; } static int idtcm_xfer(struct idtcm *idtcm, u8 regaddr, u8 *buf, u16 count, bool write) { struct i2c_client *client = idtcm->client; struct i2c_msg msg[2]; int cnt; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = ®addr; msg[1].addr = client->addr; msg[1].flags = write ? 0 : I2C_M_RD; msg[1].len = count; msg[1].buf = buf; cnt = i2c_transfer(client->adapter, msg, 2); if (cnt < 0) { dev_err(&client->dev, "i2c_transfer returned %d\n", cnt); return cnt; } else if (cnt != 2) { dev_err(&client->dev, "i2c_transfer sent only %d of %d messages\n", cnt, 2); return -EIO; } return 0; } static int idtcm_page_offset(struct idtcm *idtcm, u8 val) { u8 buf[4]; int err; if (idtcm->page_offset == val) return 0; buf[0] = 0x0; buf[1] = val; buf[2] = 0x10; buf[3] = 0x20; err = idtcm_xfer(idtcm, PAGE_ADDR, buf, sizeof(buf), 1); if (err) dev_err(&idtcm->client->dev, "failed to set page offset\n"); else idtcm->page_offset = val; return err; } static int _idtcm_rdwr(struct idtcm *idtcm, u16 regaddr, u8 *buf, u16 count, bool write) { u8 hi; u8 lo; int err; hi = (regaddr >> 8) & 0xff; lo = regaddr & 0xff; err = idtcm_page_offset(idtcm, hi); if (err) goto out; err = idtcm_xfer(idtcm, lo, buf, count, write); out: return err; } static int idtcm_read(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return _idtcm_rdwr(idtcm, module + regaddr, buf, count, false); } static int idtcm_write(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return _idtcm_rdwr(idtcm, module + regaddr, buf, count, true); } static int _idtcm_gettime(struct idtcm_channel *channel, struct timespec64 *ts) { struct idtcm *idtcm = channel->idtcm; u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; err = idtcm_read(idtcm, channel->tod_read_primary, TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger)); if (err) return err; trigger &= ~(TOD_READ_TRIGGER_MASK << TOD_READ_TRIGGER_SHIFT); trigger |= (1 << TOD_READ_TRIGGER_SHIFT); trigger |= TOD_READ_TRIGGER_MODE; err = idtcm_write(idtcm, channel->tod_read_primary, TOD_READ_PRIMARY_CMD, &trigger, sizeof(trigger)); if (err) return err; if (idtcm->calculate_overhead_flag) idtcm->start_time = ktime_get_raw(); err = idtcm_read(idtcm, channel->tod_read_primary, TOD_READ_PRIMARY, buf, sizeof(buf)); if (err) return err; err = char_array_to_timespec(buf, sizeof(buf), ts); return err; } static int _sync_pll_output(struct idtcm *idtcm, u8 pll, u8 sync_src, u8 qn, u8 qn_plus_1) { int err; u8 val; u16 sync_ctrl0; u16 sync_ctrl1; if ((qn == 0) && (qn_plus_1 == 0)) return 0; switch (pll) { case 0: sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1; break; case 1: sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1; break; case 2: sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1; break; case 3: sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1; break; case 4: sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1; break; case 5: sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1; break; case 6: sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1; break; case 7: sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1; break; default: return -EINVAL; } val = SYNCTRL1_MASTER_SYNC_RST; /* Place master sync in reset */ err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src)); if (err) return err; /* Set sync trigger mask */ val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG; if (qn) val |= SYNCTRL1_Q0_DIV_SYNC_TRIG; if (qn_plus_1) val |= SYNCTRL1_Q1_DIV_SYNC_TRIG; err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; /* Place master sync out of reset */ val &= ~(SYNCTRL1_MASTER_SYNC_RST); err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); return err; } static int idtcm_sync_pps_output(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; u8 pll; u8 sync_src; u8 qn; u8 qn_plus_1; int err = 0; u16 output_mask = channel->output_mask; switch (channel->dpll_n) { case DPLL_0: sync_src = SYNC_SOURCE_DPLL0_TOD_PPS; break; case DPLL_1: sync_src = SYNC_SOURCE_DPLL1_TOD_PPS; break; case DPLL_2: sync_src = SYNC_SOURCE_DPLL2_TOD_PPS; break; case DPLL_3: sync_src = SYNC_SOURCE_DPLL3_TOD_PPS; break; default: return -EINVAL; } for (pll = 0; pll < 8; pll++) { qn = output_mask & 0x1; output_mask = output_mask >> 1; if (pll < 4) { /* First 4 pll has 2 outputs */ qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } else { qn_plus_1 = 0; } if ((qn != 0) || (qn_plus_1 != 0)) err = _sync_pll_output(idtcm, pll, sync_src, qn, qn_plus_1); if (err) return err; } return err; } static int _idtcm_set_dpll_tod(struct idtcm_channel *channel, struct timespec64 const *ts, enum hw_tod_write_trig_sel wr_trig) { struct idtcm *idtcm = channel->idtcm; u8 buf[TOD_BYTE_COUNT]; u8 cmd; int err; struct timespec64 local_ts = *ts; s64 total_overhead_ns; /* Configure HW TOD write trigger. */ err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; cmd &= ~(0x0f); cmd |= wr_trig | 0x08; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) { err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; } /* ARM HW TOD write trigger. */ cmd &= ~(0x08); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) { if (idtcm->calculate_overhead_flag) { /* Assumption: I2C @ 400KHz */ total_overhead_ns = ktime_to_ns(ktime_get_raw() - idtcm->start_time) + idtcm->tod_write_overhead_ns + SETTIME_CORRECTION; timespec64_add_ns(&local_ts, total_overhead_ns); idtcm->calculate_overhead_flag = 0; } err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); } return err; } static int _idtcm_settime(struct idtcm_channel *channel, struct timespec64 const *ts, enum hw_tod_write_trig_sel wr_trig) { struct idtcm *idtcm = channel->idtcm; s32 retval; int err; int i; u8 trig_sel; err = _idtcm_set_dpll_tod(channel, ts, wr_trig); if (err) return err; /* Wait for the operation to complete. */ for (i = 0; i < 10000; i++) { err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &trig_sel, sizeof(trig_sel)); if (err) return err; if (trig_sel == 0x4a) break; err = 1; } if (err) return err; retval = idtcm_sync_pps_output(channel); return retval; } static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel, s32 offset_ns) { int err; int i; struct idtcm *idtcm = channel->idtcm; u8 buf[4]; for (i = 0; i < 4; i++) { buf[i] = 0xff & (offset_ns); offset_ns >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET, buf, sizeof(buf)); return err; } static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel, u32 max_ffo_ppb) { int err; u8 i; struct idtcm *idtcm = channel->idtcm; u8 buf[3]; if (max_ffo_ppb & 0xff000000) max_ffo_ppb = 0; for (i = 0; i < 3; i++) { buf[i] = 0xff & (max_ffo_ppb); max_ffo_ppb >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_SLOPE_LIMIT, buf, sizeof(buf)); return err; } static int idtcm_start_phase_pull_in(struct idtcm_channel *channel) { int err; struct idtcm *idtcm = channel->idtcm; u8 buf; err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); if (err) return err; if (buf == 0) { buf = 0x01; err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); } else { err = -EBUSY; } return err; } static int idtcm_do_phase_pull_in(struct idtcm_channel *channel, s32 offset_ns, u32 max_ffo_ppb) { int err; err = idtcm_set_phase_pull_in_offset(channel, -offset_ns); if (err) return err; err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb); if (err) return err; err = idtcm_start_phase_pull_in(channel); return err; } static int _idtcm_adjtime(struct idtcm_channel *channel, s64 delta) { int err; struct idtcm *idtcm = channel->idtcm; struct timespec64 ts; s64 now; if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) { err = idtcm_do_phase_pull_in(channel, delta, 0); } else { idtcm->calculate_overhead_flag = 1; err = _idtcm_gettime(channel, &ts); if (err) return err; now = timespec64_to_ns(&ts); now += delta; ts = ns_to_timespec64(now); err = _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB); } return err; } static int idtcm_state_machine_reset(struct idtcm *idtcm) { int err; u8 byte = SM_RESET_CMD; err = idtcm_write(idtcm, RESET_CTRL, SM_RESET, &byte, sizeof(byte)); if (!err) msleep_interruptible(POST_SM_RESET_DELAY_MS); return err; } static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id) { return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8)); } static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id) { int err; u8 buf[2] = {0}; err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf)); *product_id = (buf[1] << 8) | buf[0]; return err; } static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major) { int err; u8 buf = 0; err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf)); *major = buf >> 1; return err; } static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor) { return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8)); } static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix) { return idtcm_read(idtcm, GENERAL_STATUS, HOTFIX_REL, hotfix, sizeof(u8)); } static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm, u8 *config_select) { return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT, config_select, sizeof(u8)); } static int process_pll_mask(struct idtcm *idtcm, u32 addr, u8 val, u8 *mask) { int err = 0; if (addr == PLL_MASK_ADDR) { if ((val & 0xf0) || !(val & 0xf)) { dev_err(&idtcm->client->dev, "Invalid PLL mask 0x%hhx\n", val); err = -EINVAL; } *mask = val; } return err; } static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val) { int err = 0; switch (addr) { case OUTPUT_MASK_PLL0_ADDR: SET_U16_LSB(idtcm->channel[0].output_mask, val); break; case OUTPUT_MASK_PLL0_ADDR + 1: SET_U16_MSB(idtcm->channel[0].output_mask, val); break; case OUTPUT_MASK_PLL1_ADDR: SET_U16_LSB(idtcm->channel[1].output_mask, val); break; case OUTPUT_MASK_PLL1_ADDR + 1: SET_U16_MSB(idtcm->channel[1].output_mask, val); break; case OUTPUT_MASK_PLL2_ADDR: SET_U16_LSB(idtcm->channel[2].output_mask, val); break; case OUTPUT_MASK_PLL2_ADDR + 1: SET_U16_MSB(idtcm->channel[2].output_mask, val); break; case OUTPUT_MASK_PLL3_ADDR: SET_U16_LSB(idtcm->channel[3].output_mask, val); break; case OUTPUT_MASK_PLL3_ADDR + 1: SET_U16_MSB(idtcm->channel[3].output_mask, val); break; default: err = -EINVAL; break; } return err; } static int check_and_set_masks(struct idtcm *idtcm, u16 regaddr, u8 val) { int err = 0; if (set_pll_output_mask(idtcm, regaddr, val)) { /* Not an output mask, check for pll mask */ err = process_pll_mask(idtcm, regaddr, val, &idtcm->pll_mask); } return err; } static void display_pll_and_output_masks(struct idtcm *idtcm) { u8 i; u8 mask; dev_dbg(&idtcm->client->dev, "pllmask = 0x%02x\n", idtcm->pll_mask); for (i = 0; i < MAX_PHC_PLL; i++) { mask = 1 << i; if (mask & idtcm->pll_mask) dev_dbg(&idtcm->client->dev, "PLL%d output_mask = 0x%04x\n", i, idtcm->channel[i].output_mask); } } static int idtcm_load_firmware(struct idtcm *idtcm, struct device *dev) { const struct firmware *fw; struct idtcm_fwrc *rec; u32 regaddr; int err; s32 len; u8 val; u8 loaddr; dev_dbg(&idtcm->client->dev, "requesting firmware '%s'\n", FW_FILENAME); err = request_firmware(&fw, FW_FILENAME, dev); if (err) return err; dev_dbg(&idtcm->client->dev, "firmware size %zu bytes\n", fw->size); rec = (struct idtcm_fwrc *) fw->data; if (fw->size > 0) idtcm_state_machine_reset(idtcm); for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(&idtcm->client->dev, "bad firmware, reserved field non-zero\n"); err = -EINVAL; } else { regaddr = rec->hiaddr << 8; regaddr |= rec->loaddr; val = rec->value; loaddr = rec->loaddr; rec++; err = check_and_set_masks(idtcm, regaddr, val); } if (err == 0) { /* Top (status registers) and bottom are read-only */ if ((regaddr < GPIO_USER_CONTROL) || (regaddr >= SCRATCH)) continue; /* Page size 128, last 4 bytes of page skipped */ if (((loaddr > 0x7b) && (loaddr <= 0x7f)) || ((loaddr > 0xfb) && (loaddr <= 0xff))) continue; err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val)); } if (err) goto out; } display_pll_and_output_masks(idtcm); out: release_firmware(fw); return err; } static int idtcm_pps_enable(struct idtcm_channel *channel, bool enable) { struct idtcm *idtcm = channel->idtcm; u32 module; u8 val; int err; /* * This assumes that the 1-PPS is on the second of the two * output. But is this always true? */ switch (channel->dpll_n) { case DPLL_0: module = OUTPUT_1; break; case DPLL_1: module = OUTPUT_3; break; case DPLL_2: module = OUTPUT_5; break; case DPLL_3: module = OUTPUT_7; break; default: return -EINVAL; } err = idtcm_read(idtcm, module, OUT_CTRL_1, &val, sizeof(val)); if (err) return err; if (enable) val |= SQUELCH_DISABLE; else val &= ~SQUELCH_DISABLE; err = idtcm_write(idtcm, module, OUT_CTRL_1, &val, sizeof(val)); if (err) return err; return 0; } static int idtcm_set_pll_mode(struct idtcm_channel *channel, enum pll_mode pll_mode) { struct idtcm *idtcm = channel->idtcm; int err; u8 dpll_mode; err = idtcm_read(idtcm, channel->dpll_n, DPLL_MODE, &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (pll_mode << PLL_MODE_SHIFT); channel->pll_mode = pll_mode; err = idtcm_write(idtcm, channel->dpll_n, DPLL_MODE, &dpll_mode, sizeof(dpll_mode)); if (err) return err; return 0; } /* PTP Hardware Clock interface */ static int idtcm_adjfreq(struct ptp_clock_info *ptp, s32 ppb) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; u8 i; bool neg_adj = 0; int err; u8 buf[6] = {0}; s64 fcw; if (channel->pll_mode != PLL_MODE_WRITE_FREQUENCY) { err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY); if (err) return err; } /* * Frequency Control Word unit is: 1.11 * 10^-10 ppm * * adjfreq: * ppb * 10^9 * FCW = ---------- * 111 * * adjfine: * ppm_16 * 5^12 * FCW = ------------- * 111 * 2^4 */ if (ppb < 0) { neg_adj = 1; ppb = -ppb; } /* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */ fcw = ppb * 1000000000000ULL; fcw = div_u64(fcw, 111022); if (neg_adj) fcw = -fcw; for (i = 0; i < 6; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } mutex_lock(&idtcm->reg_lock); err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ, buf, sizeof(buf)); mutex_unlock(&idtcm->reg_lock); return err; } static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(&idtcm->reg_lock); err = _idtcm_gettime(channel, ts); mutex_unlock(&idtcm->reg_lock); return err; } static int idtcm_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(&idtcm->reg_lock); err = _idtcm_settime(channel, ts, HW_TOD_WR_TRIG_SEL_MSB); mutex_unlock(&idtcm->reg_lock); return err; } static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(&idtcm->reg_lock); err = _idtcm_adjtime(channel, delta); mutex_unlock(&idtcm->reg_lock); return err; } static int idtcm_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (!on) return idtcm_pps_enable(channel, false); /* Only accept a 1-PPS aligned to the second. */ if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) return -ERANGE; return idtcm_pps_enable(channel, true); default: break; } return -EOPNOTSUPP; } static int idtcm_enable_tod(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; struct timespec64 ts = {0, 0}; u8 cfg; int err; err = idtcm_pps_enable(channel, false); if (err) return err; /* * Start the TOD clock ticking. */ err = idtcm_read(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg)); if (err) return err; cfg |= TOD_ENABLE; err = idtcm_write(idtcm, channel->tod_n, TOD_CFG, &cfg, sizeof(cfg)); if (err) return err; return _idtcm_settime(channel, &ts, HW_TOD_WR_TRIG_SEL_MSB); } static void idtcm_display_version_info(struct idtcm *idtcm) { u8 major; u8 minor; u8 hotfix; u16 product_id; u8 hw_rev_id; u8 config_select; char *fmt = "%d.%d.%d, Id: 0x%04x HW Rev: %d OTP Config Select: %d\n"; idtcm_read_major_release(idtcm, &major); idtcm_read_minor_release(idtcm, &minor); idtcm_read_hotfix_release(idtcm, &hotfix); idtcm_read_product_id(idtcm, &product_id); idtcm_read_hw_rev_id(idtcm, &hw_rev_id); idtcm_read_otp_scsr_config_select(idtcm, &config_select); dev_info(&idtcm->client->dev, fmt, major, minor, hotfix, product_id, hw_rev_id, config_select); } static const struct ptp_clock_info idtcm_caps = { .owner = THIS_MODULE, .max_adj = 244000, .n_per_out = 1, .adjfreq = &idtcm_adjfreq, .adjtime = &idtcm_adjtime, .gettime64 = &idtcm_gettime, .settime64 = &idtcm_settime, .enable = &idtcm_enable, }; static int idtcm_enable_channel(struct idtcm *idtcm, u32 index) { struct idtcm_channel *channel; int err; if (!(index < MAX_PHC_PLL)) return -EINVAL; channel = &idtcm->channel[index]; switch (index) { case 0: channel->dpll_freq = DPLL_FREQ_0; channel->dpll_n = DPLL_0; channel->tod_read_primary = TOD_READ_PRIMARY_0; channel->tod_write = TOD_WRITE_0; channel->tod_n = TOD_0; channel->hw_dpll_n = HW_DPLL_0; channel->dpll_phase = DPLL_PHASE_0; channel->dpll_ctrl_n = DPLL_CTRL_0; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0; break; case 1: channel->dpll_freq = DPLL_FREQ_1; channel->dpll_n = DPLL_1; channel->tod_read_primary = TOD_READ_PRIMARY_1; channel->tod_write = TOD_WRITE_1; channel->tod_n = TOD_1; channel->hw_dpll_n = HW_DPLL_1; channel->dpll_phase = DPLL_PHASE_1; channel->dpll_ctrl_n = DPLL_CTRL_1; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1; break; case 2: channel->dpll_freq = DPLL_FREQ_2; channel->dpll_n = DPLL_2; channel->tod_read_primary = TOD_READ_PRIMARY_2; channel->tod_write = TOD_WRITE_2; channel->tod_n = TOD_2; channel->hw_dpll_n = HW_DPLL_2; channel->dpll_phase = DPLL_PHASE_2; channel->dpll_ctrl_n = DPLL_CTRL_2; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2; break; case 3: channel->dpll_freq = DPLL_FREQ_3; channel->dpll_n = DPLL_3; channel->tod_read_primary = TOD_READ_PRIMARY_3; channel->tod_write = TOD_WRITE_3; channel->tod_n = TOD_3; channel->hw_dpll_n = HW_DPLL_3; channel->dpll_phase = DPLL_PHASE_3; channel->dpll_ctrl_n = DPLL_CTRL_3; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3; break; default: return -EINVAL; } channel->idtcm = idtcm; channel->caps = idtcm_caps; snprintf(channel->caps.name, sizeof(channel->caps.name), "IDT CM PLL%u", index); err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY); if (err) return err; err = idtcm_enable_tod(channel); if (err) return err; channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; dev_info(&idtcm->client->dev, "PLL%d registered as ptp%d\n", index, channel->ptp_clock->index); return 0; } static void ptp_clock_unregister_all(struct idtcm *idtcm) { u8 i; struct idtcm_channel *channel; for (i = 0; i < MAX_PHC_PLL; i++) { channel = &idtcm->channel[i]; if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static void set_default_masks(struct idtcm *idtcm) { idtcm->pll_mask = DEFAULT_PLL_MASK; idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2; idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3; } static int set_tod_write_overhead(struct idtcm *idtcm) { int err; u8 i; s64 total_ns = 0; ktime_t start; ktime_t stop; char buf[TOD_BYTE_COUNT]; struct idtcm_channel *channel = &idtcm->channel[2]; /* Set page offset */ idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) { start = ktime_get_raw(); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; stop = ktime_get_raw(); total_ns += ktime_to_ns(stop - start); } idtcm->tod_write_overhead_ns = div_s64(total_ns, TOD_WRITE_OVERHEAD_COUNT_MAX); return err; } static int idtcm_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct idtcm *idtcm; int err; u8 i; /* Unused for now */ (void)id; idtcm = devm_kzalloc(&client->dev, sizeof(struct idtcm), GFP_KERNEL); if (!idtcm) return -ENOMEM; idtcm->client = client; idtcm->page_offset = 0xff; idtcm->calculate_overhead_flag = 0; set_default_masks(idtcm); mutex_init(&idtcm->reg_lock); mutex_lock(&idtcm->reg_lock); idtcm_display_version_info(idtcm); err = set_tod_write_overhead(idtcm); if (err) { mutex_unlock(&idtcm->reg_lock); return err; } err = idtcm_load_firmware(idtcm, &client->dev); if (err) dev_warn(&idtcm->client->dev, "loading firmware failed with %d\n", err); if (idtcm->pll_mask) { for (i = 0; i < MAX_PHC_PLL; i++) { if (idtcm->pll_mask & (1 << i)) { err = idtcm_enable_channel(idtcm, i); if (err) break; } } } else { dev_err(&idtcm->client->dev, "no PLLs flagged as PHCs, nothing to do\n"); err = -ENODEV; } mutex_unlock(&idtcm->reg_lock); if (err) { ptp_clock_unregister_all(idtcm); return err; } i2c_set_clientdata(client, idtcm); return 0; } static int idtcm_remove(struct i2c_client *client) { struct idtcm *idtcm = i2c_get_clientdata(client); ptp_clock_unregister_all(idtcm); mutex_destroy(&idtcm->reg_lock); return 0; } #ifdef CONFIG_OF static const struct of_device_id idtcm_dt_id[] = { { .compatible = "idt,8a34000" }, { .compatible = "idt,8a34001" }, { .compatible = "idt,8a34002" }, { .compatible = "idt,8a34003" }, { .compatible = "idt,8a34004" }, { .compatible = "idt,8a34005" }, { .compatible = "idt,8a34006" }, { .compatible = "idt,8a34007" }, { .compatible = "idt,8a34008" }, { .compatible = "idt,8a34009" }, { .compatible = "idt,8a34010" }, { .compatible = "idt,8a34011" }, { .compatible = "idt,8a34012" }, { .compatible = "idt,8a34013" }, { .compatible = "idt,8a34014" }, { .compatible = "idt,8a34015" }, { .compatible = "idt,8a34016" }, { .compatible = "idt,8a34017" }, { .compatible = "idt,8a34018" }, { .compatible = "idt,8a34019" }, { .compatible = "idt,8a34040" }, { .compatible = "idt,8a34041" }, { .compatible = "idt,8a34042" }, { .compatible = "idt,8a34043" }, { .compatible = "idt,8a34044" }, { .compatible = "idt,8a34045" }, { .compatible = "idt,8a34046" }, { .compatible = "idt,8a34047" }, { .compatible = "idt,8a34048" }, { .compatible = "idt,8a34049" }, {}, }; MODULE_DEVICE_TABLE(of, idtcm_dt_id); #endif static const struct i2c_device_id idtcm_i2c_id[] = { { "8a34000" }, { "8a34001" }, { "8a34002" }, { "8a34003" }, { "8a34004" }, { "8a34005" }, { "8a34006" }, { "8a34007" }, { "8a34008" }, { "8a34009" }, { "8a34010" }, { "8a34011" }, { "8a34012" }, { "8a34013" }, { "8a34014" }, { "8a34015" }, { "8a34016" }, { "8a34017" }, { "8a34018" }, { "8a34019" }, { "8a34040" }, { "8a34041" }, { "8a34042" }, { "8a34043" }, { "8a34044" }, { "8a34045" }, { "8a34046" }, { "8a34047" }, { "8a34048" }, { "8a34049" }, {}, }; MODULE_DEVICE_TABLE(i2c, idtcm_i2c_id); static struct i2c_driver idtcm_driver = { .driver = { .of_match_table = of_match_ptr(idtcm_dt_id), .name = "idtcm", }, .probe = idtcm_probe, .remove = idtcm_remove, .id_table = idtcm_i2c_id, }; module_i2c_driver(idtcm_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1