Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jan Glauber | 6194 | 72.22% | 48 | 43.24% |
Julian Wiedmann | 1215 | 14.17% | 35 | 31.53% |
Frank Blaschka | 456 | 5.32% | 1 | 0.90% |
Eugene Crosser | 409 | 4.77% | 1 | 0.90% |
Sebastian Ott | 121 | 1.41% | 6 | 5.41% |
Ursula Braun-Krahl | 85 | 0.99% | 4 | 3.60% |
Swen Schillig | 23 | 0.27% | 1 | 0.90% |
Kees Cook | 16 | 0.19% | 1 | 0.90% |
Stefan Raspl | 14 | 0.16% | 1 | 0.90% |
Steffen Maier | 14 | 0.16% | 1 | 0.90% |
Michael Holzheu | 7 | 0.08% | 1 | 0.90% |
Martin Schwidefsky | 7 | 0.08% | 3 | 2.70% |
Fabian Frederick | 6 | 0.07% | 1 | 0.90% |
Heiko Carstens | 3 | 0.03% | 3 | 2.70% |
Tejun Heo | 3 | 0.03% | 1 | 0.90% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.90% |
Arun Sharma | 1 | 0.01% | 1 | 0.90% |
Coly Li | 1 | 0.01% | 1 | 0.90% |
Total | 8576 | 111 |
// SPDX-License-Identifier: GPL-2.0 /* * Linux for s390 qdio support, buffer handling, qdio API and module support. * * Copyright IBM Corp. 2000, 2008 * Author(s): Utz Bacher <utz.bacher@de.ibm.com> * Jan Glauber <jang@linux.vnet.ibm.com> * 2.6 cio integration by Cornelia Huck <cornelia.huck@de.ibm.com> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/timer.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/io.h> #include <linux/atomic.h> #include <asm/debug.h> #include <asm/qdio.h> #include <asm/ipl.h> #include "cio.h" #include "css.h" #include "device.h" #include "qdio.h" #include "qdio_debug.h" MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com>,"\ "Jan Glauber <jang@linux.vnet.ibm.com>"); MODULE_DESCRIPTION("QDIO base support"); MODULE_LICENSE("GPL"); static inline int do_siga_sync(unsigned long schid, unsigned int out_mask, unsigned int in_mask, unsigned int fc) { register unsigned long __fc asm ("0") = fc; register unsigned long __schid asm ("1") = schid; register unsigned long out asm ("2") = out_mask; register unsigned long in asm ("3") = in_mask; int cc; asm volatile( " siga 0\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : "d" (__fc), "d" (__schid), "d" (out), "d" (in) : "cc"); return cc; } static inline int do_siga_input(unsigned long schid, unsigned int mask, unsigned int fc) { register unsigned long __fc asm ("0") = fc; register unsigned long __schid asm ("1") = schid; register unsigned long __mask asm ("2") = mask; int cc; asm volatile( " siga 0\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc) : "d" (__fc), "d" (__schid), "d" (__mask) : "cc"); return cc; } /** * do_siga_output - perform SIGA-w/wt function * @schid: subchannel id or in case of QEBSM the subchannel token * @mask: which output queues to process * @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer * @fc: function code to perform * @aob: asynchronous operation block * * Returns condition code. * Note: For IQDC unicast queues only the highest priority queue is processed. */ static inline int do_siga_output(unsigned long schid, unsigned long mask, unsigned int *bb, unsigned int fc, unsigned long aob) { register unsigned long __fc asm("0") = fc; register unsigned long __schid asm("1") = schid; register unsigned long __mask asm("2") = mask; register unsigned long __aob asm("3") = aob; int cc; asm volatile( " siga 0\n" " ipm %0\n" " srl %0,28\n" : "=d" (cc), "+d" (__fc), "+d" (__aob) : "d" (__schid), "d" (__mask) : "cc"); *bb = __fc >> 31; return cc; } /** * qdio_do_eqbs - extract buffer states for QEBSM * @q: queue to manipulate * @state: state of the extracted buffers * @start: buffer number to start at * @count: count of buffers to examine * @auto_ack: automatically acknowledge buffers * * Returns the number of successfully extracted equal buffer states. * Stops processing if a state is different from the last buffers state. */ static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state, int start, int count, int auto_ack) { int tmp_count = count, tmp_start = start, nr = q->nr; unsigned int ccq = 0; qperf_inc(q, eqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count, auto_ack); switch (ccq) { case 0: case 32: /* all done, or next buffer state different */ return count - tmp_count; case 96: /* not all buffers processed */ qperf_inc(q, eqbs_partial); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "EQBS part:%02x", tmp_count); return count - tmp_count; case 97: /* no buffer processed */ DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x EQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_GET_BUF_STATE, q->nr, q->first_to_kick, count, q->irq_ptr->int_parm); return 0; } } /** * qdio_do_sqbs - set buffer states for QEBSM * @q: queue to manipulate * @state: new state of the buffers * @start: first buffer number to change * @count: how many buffers to change * * Returns the number of successfully changed buffers. * Does retrying until the specified count of buffer states is set or an * error occurs. */ static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start, int count) { unsigned int ccq = 0; int tmp_count = count, tmp_start = start; int nr = q->nr; if (!count) return 0; qperf_inc(q, sqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count); switch (ccq) { case 0: case 32: /* all done, or active buffer adapter-owned */ WARN_ON_ONCE(tmp_count); return count - tmp_count; case 96: /* not all buffers processed */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq); qperf_inc(q, sqbs_partial); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x SQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_SET_BUF_STATE, q->nr, q->first_to_kick, count, q->irq_ptr->int_parm); return 0; } } /* * Returns number of examined buffers and their common state in *state. * Requested number of buffers-to-examine must be > 0. */ static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr, unsigned char *state, unsigned int count, int auto_ack, int merge_pending) { unsigned char __state = 0; int i = 1; if (is_qebsm(q)) return qdio_do_eqbs(q, state, bufnr, count, auto_ack); /* get initial state: */ __state = q->slsb.val[bufnr]; /* Bail out early if there is no work on the queue: */ if (__state & SLSB_OWNER_CU) goto out; if (merge_pending && __state == SLSB_P_OUTPUT_PENDING) __state = SLSB_P_OUTPUT_EMPTY; for (; i < count; i++) { bufnr = next_buf(bufnr); /* merge PENDING into EMPTY: */ if (merge_pending && q->slsb.val[bufnr] == SLSB_P_OUTPUT_PENDING && __state == SLSB_P_OUTPUT_EMPTY) continue; /* stop if next state differs from initial state: */ if (q->slsb.val[bufnr] != __state) break; } out: *state = __state; return i; } static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state, int auto_ack) { return get_buf_states(q, bufnr, state, 1, auto_ack, 0); } /* wrap-around safe setting of slsb states, returns number of changed buffers */ static inline int set_buf_states(struct qdio_q *q, int bufnr, unsigned char state, int count) { int i; if (is_qebsm(q)) return qdio_do_sqbs(q, state, bufnr, count); for (i = 0; i < count; i++) { xchg(&q->slsb.val[bufnr], state); bufnr = next_buf(bufnr); } return count; } static inline int set_buf_state(struct qdio_q *q, int bufnr, unsigned char state) { return set_buf_states(q, bufnr, state, 1); } /* set slsb states to initial state */ static void qdio_init_buf_states(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); for_each_output_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); } static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output, unsigned int input) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_SYNC; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr); qperf_inc(q, siga_sync); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_sync(schid, output, input, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } static inline int qdio_siga_sync_q(struct qdio_q *q) { if (q->is_input_q) return qdio_siga_sync(q, 0, q->mask); else return qdio_siga_sync(q, q->mask, 0); } static int qdio_siga_output(struct qdio_q *q, unsigned int count, unsigned int *busy_bit, unsigned long aob) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_WRITE; u64 start_time = 0; int retries = 0, cc; if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) { if (count > 1) fc = QDIO_SIGA_WRITEM; else if (aob) fc = QDIO_SIGA_WRITEQ; } if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } again: cc = do_siga_output(schid, q->mask, busy_bit, fc, aob); /* hipersocket busy condition */ if (unlikely(*busy_bit)) { retries++; if (!start_time) { start_time = get_tod_clock_fast(); goto again; } if (get_tod_clock_fast() - start_time < QDIO_BUSY_BIT_PATIENCE) goto again; } if (retries) { DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "%4x cc2 BB1:%1d", SCH_NO(q), q->nr); DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "count:%u", retries); } return cc; } static inline int qdio_siga_input(struct qdio_q *q) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_READ; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr); qperf_inc(q, siga_read); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_input(schid, q->mask, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } #define qdio_siga_sync_out(q) qdio_siga_sync(q, ~0U, 0) #define qdio_siga_sync_all(q) qdio_siga_sync(q, ~0U, ~0U) static inline void qdio_sync_queues(struct qdio_q *q) { /* PCI capable outbound queues will also be scanned so sync them too */ if (pci_out_supported(q->irq_ptr)) qdio_siga_sync_all(q); else qdio_siga_sync_q(q); } int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state) { if (need_siga_sync(q)) qdio_siga_sync_q(q); return get_buf_state(q, bufnr, state, 0); } static inline void qdio_stop_polling(struct qdio_q *q) { if (!q->u.in.ack_count) return; qperf_inc(q, stop_polling); /* show the card that we are not polling anymore */ set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT, q->u.in.ack_count); q->u.in.ack_count = 0; } static inline void account_sbals(struct qdio_q *q, unsigned int count) { int pos; q->q_stats.nr_sbal_total += count; if (count == QDIO_MAX_BUFFERS_MASK) { q->q_stats.nr_sbals[7]++; return; } pos = ilog2(count); q->q_stats.nr_sbals[pos]++; } static void process_buffer_error(struct qdio_q *q, unsigned int start, int count) { q->qdio_error = QDIO_ERROR_SLSB_STATE; /* special handling for no target buffer empty */ if (queue_type(q) == QDIO_IQDIO_QFMT && !q->is_input_q && q->sbal[start]->element[15].sflags == 0x10) { qperf_inc(q, target_full); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%02x", start); return; } DBF_ERROR("%4x BUF ERROR", SCH_NO(q)); DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr); DBF_ERROR("FTC:%3d C:%3d", start, count); DBF_ERROR("F14:%2x F15:%2x", q->sbal[start]->element[14].sflags, q->sbal[start]->element[15].sflags); } static inline void inbound_primed(struct qdio_q *q, unsigned int start, int count) { int new; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim:%1d %02x", q->nr, count); /* for QEBSM the ACK was already set by EQBS */ if (is_qebsm(q)) { if (!q->u.in.ack_count) { q->u.in.ack_count = count; q->u.in.ack_start = start; return; } /* delete the previous ACK's */ set_buf_states(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT, q->u.in.ack_count); q->u.in.ack_count = count; q->u.in.ack_start = start; return; } /* * ACK the newest buffer. The ACK will be removed in qdio_stop_polling * or by the next inbound run. */ new = add_buf(start, count - 1); if (q->u.in.ack_count) { /* reset the previous ACK but first set the new one */ set_buf_state(q, new, SLSB_P_INPUT_ACK); set_buf_state(q, q->u.in.ack_start, SLSB_P_INPUT_NOT_INIT); } else { q->u.in.ack_count = 1; set_buf_state(q, new, SLSB_P_INPUT_ACK); } q->u.in.ack_start = new; count--; if (!count) return; /* need to change ALL buffers to get more interrupts */ set_buf_states(q, start, SLSB_P_INPUT_NOT_INIT, count); } static int get_inbound_buffer_frontier(struct qdio_q *q, unsigned int start) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); /* * Don't check 128 buffers, as otherwise qdio_inbound_q_moved * would return 0. */ count = min(atomic_read(&q->nr_buf_used), QDIO_MAX_BUFFERS_MASK); if (!count) return 0; /* * No siga sync here, as a PCI or we after a thin interrupt * already sync'ed the queues. */ count = get_buf_states(q, start, &state, count, 1, 0); if (!count) return 0; switch (state) { case SLSB_P_INPUT_PRIMED: inbound_primed(q, start, count); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_INPUT_ERROR: process_buffer_error(q, start, count); /* * Interrupts may be avoided as long as the error is present * so change the buffer state immediately to avoid starvation. */ set_buf_states(q, start, SLSB_P_INPUT_NOT_INIT, count); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_INPUT_EMPTY: case SLSB_P_INPUT_NOT_INIT: case SLSB_P_INPUT_ACK: if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop:%1d %#02x", q->nr, start); return 0; default: WARN_ON_ONCE(1); return 0; } } static int qdio_inbound_q_moved(struct qdio_q *q, unsigned int start) { int count; count = get_inbound_buffer_frontier(q, start); if (count && !is_thinint_irq(q->irq_ptr) && MACHINE_IS_LPAR) q->u.in.timestamp = get_tod_clock(); return count; } static inline int qdio_inbound_q_done(struct qdio_q *q, unsigned int start) { unsigned char state = 0; if (!atomic_read(&q->nr_buf_used)) return 1; if (need_siga_sync(q)) qdio_siga_sync_q(q); get_buf_state(q, start, &state, 0); if (state == SLSB_P_INPUT_PRIMED || state == SLSB_P_INPUT_ERROR) /* more work coming */ return 0; if (is_thinint_irq(q->irq_ptr)) return 1; /* don't poll under z/VM */ if (MACHINE_IS_VM) return 1; /* * At this point we know, that inbound first_to_check * has (probably) not moved (see qdio_inbound_processing). */ if (get_tod_clock_fast() > q->u.in.timestamp + QDIO_INPUT_THRESHOLD) { DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in done:%02x", start); return 1; } else return 0; } static inline void qdio_handle_aobs(struct qdio_q *q, int start, int count) { unsigned char state = 0; int j, b = start; for (j = 0; j < count; ++j) { get_buf_state(q, b, &state, 0); if (state == SLSB_P_OUTPUT_PENDING) { struct qaob *aob = q->u.out.aobs[b]; if (aob == NULL) continue; q->u.out.sbal_state[b].flags |= QDIO_OUTBUF_STATE_FLAG_PENDING; q->u.out.aobs[b] = NULL; } b = next_buf(b); } } static inline unsigned long qdio_aob_for_buffer(struct qdio_output_q *q, int bufnr) { unsigned long phys_aob = 0; if (!q->aobs[bufnr]) { struct qaob *aob = qdio_allocate_aob(); q->aobs[bufnr] = aob; } if (q->aobs[bufnr]) { q->aobs[bufnr]->user1 = (u64) q->sbal_state[bufnr].user; phys_aob = virt_to_phys(q->aobs[bufnr]); WARN_ON_ONCE(phys_aob & 0xFF); } q->sbal_state[bufnr].flags = 0; return phys_aob; } static void qdio_kick_handler(struct qdio_q *q, unsigned int count) { int start = q->first_to_kick; if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; if (q->is_input_q) { qperf_inc(q, inbound_handler); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "kih s:%02x c:%02x", start, count); } else { qperf_inc(q, outbound_handler); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "koh: s:%02x c:%02x", start, count); } q->handler(q->irq_ptr->cdev, q->qdio_error, q->nr, start, count, q->irq_ptr->int_parm); /* for the next time */ q->first_to_kick = add_buf(start, count); q->qdio_error = 0; } static inline int qdio_tasklet_schedule(struct qdio_q *q) { if (likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE)) { tasklet_schedule(&q->tasklet); return 0; } return -EPERM; } static void __qdio_inbound_processing(struct qdio_q *q) { unsigned int start = q->first_to_check; int count; qperf_inc(q, tasklet_inbound); count = qdio_inbound_q_moved(q, start); if (count == 0) return; start = add_buf(start, count); q->first_to_check = start; qdio_kick_handler(q, count); if (!qdio_inbound_q_done(q, start)) { /* means poll time is not yet over */ qperf_inc(q, tasklet_inbound_resched); if (!qdio_tasklet_schedule(q)) return; } qdio_stop_polling(q); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (!qdio_inbound_q_done(q, start)) { qperf_inc(q, tasklet_inbound_resched2); qdio_tasklet_schedule(q); } } void qdio_inbound_processing(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; __qdio_inbound_processing(q); } static int get_outbound_buffer_frontier(struct qdio_q *q, unsigned int start) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); if (need_siga_sync(q)) if (((queue_type(q) != QDIO_IQDIO_QFMT) && !pci_out_supported(q->irq_ptr)) || (queue_type(q) == QDIO_IQDIO_QFMT && multicast_outbound(q))) qdio_siga_sync_q(q); count = atomic_read(&q->nr_buf_used); if (!count) return 0; count = get_buf_states(q, start, &state, count, 0, q->u.out.use_cq); if (!count) return 0; switch (state) { case SLSB_P_OUTPUT_EMPTY: case SLSB_P_OUTPUT_PENDING: /* the adapter got it */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out empty:%1d %02x", q->nr, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_OUTPUT_ERROR: process_buffer_error(q, start, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_OUTPUT_PRIMED: /* the adapter has not fetched the output yet */ if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d", q->nr); return 0; case SLSB_P_OUTPUT_NOT_INIT: case SLSB_P_OUTPUT_HALTED: return 0; default: WARN_ON_ONCE(1); return 0; } } /* all buffers processed? */ static inline int qdio_outbound_q_done(struct qdio_q *q) { return atomic_read(&q->nr_buf_used) == 0; } static inline int qdio_outbound_q_moved(struct qdio_q *q, unsigned int start) { int count; count = get_outbound_buffer_frontier(q, start); if (count) { DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out moved:%1d", q->nr); if (q->u.out.use_cq) qdio_handle_aobs(q, start, count); } return count; } static int qdio_kick_outbound_q(struct qdio_q *q, unsigned int count, unsigned long aob) { int retries = 0, cc; unsigned int busy_bit; if (!need_siga_out(q)) return 0; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr); retry: qperf_inc(q, siga_write); cc = qdio_siga_output(q, count, &busy_bit, aob); switch (cc) { case 0: break; case 2: if (busy_bit) { while (++retries < QDIO_BUSY_BIT_RETRIES) { mdelay(QDIO_BUSY_BIT_RETRY_DELAY); goto retry; } DBF_ERROR("%4x cc2 BBC:%1d", SCH_NO(q), q->nr); cc = -EBUSY; } else { DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr); cc = -ENOBUFS; } break; case 1: case 3: DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc); cc = -EIO; break; } if (retries) { DBF_ERROR("%4x cc2 BB2:%1d", SCH_NO(q), q->nr); DBF_ERROR("count:%u", retries); } return cc; } static void __qdio_outbound_processing(struct qdio_q *q) { unsigned int start = q->first_to_check; int count; qperf_inc(q, tasklet_outbound); WARN_ON_ONCE(atomic_read(&q->nr_buf_used) < 0); count = qdio_outbound_q_moved(q, start); if (count) { q->first_to_check = add_buf(start, count); qdio_kick_handler(q, count); } if (queue_type(q) == QDIO_ZFCP_QFMT && !pci_out_supported(q->irq_ptr) && !qdio_outbound_q_done(q)) goto sched; if (q->u.out.pci_out_enabled) return; /* * Now we know that queue type is either qeth without pci enabled * or HiperSockets. Make sure buffer switch from PRIMED to EMPTY * is noticed and outbound_handler is called after some time. */ if (qdio_outbound_q_done(q)) del_timer_sync(&q->u.out.timer); else if (!timer_pending(&q->u.out.timer) && likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE)) mod_timer(&q->u.out.timer, jiffies + 10 * HZ); return; sched: qdio_tasklet_schedule(q); } /* outbound tasklet */ void qdio_outbound_processing(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; __qdio_outbound_processing(q); } void qdio_outbound_timer(struct timer_list *t) { struct qdio_q *q = from_timer(q, t, u.out.timer); qdio_tasklet_schedule(q); } static inline void qdio_check_outbound_pci_queues(struct qdio_irq *irq) { struct qdio_q *out; int i; if (!pci_out_supported(irq) || !irq->scan_threshold) return; for_each_output_queue(irq, out, i) if (!qdio_outbound_q_done(out)) qdio_tasklet_schedule(out); } static void __tiqdio_inbound_processing(struct qdio_q *q) { unsigned int start = q->first_to_check; int count; qperf_inc(q, tasklet_inbound); if (need_siga_sync(q) && need_siga_sync_after_ai(q)) qdio_sync_queues(q); /* The interrupt could be caused by a PCI request: */ qdio_check_outbound_pci_queues(q->irq_ptr); count = qdio_inbound_q_moved(q, start); if (count == 0) return; start = add_buf(start, count); q->first_to_check = start; qdio_kick_handler(q, count); if (!qdio_inbound_q_done(q, start)) { qperf_inc(q, tasklet_inbound_resched); if (!qdio_tasklet_schedule(q)) return; } qdio_stop_polling(q); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (!qdio_inbound_q_done(q, start)) { qperf_inc(q, tasklet_inbound_resched2); qdio_tasklet_schedule(q); } } void tiqdio_inbound_processing(unsigned long data) { struct qdio_q *q = (struct qdio_q *)data; __tiqdio_inbound_processing(q); } static inline void qdio_set_state(struct qdio_irq *irq_ptr, enum qdio_irq_states state) { DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state); irq_ptr->state = state; mb(); } static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb) { if (irb->esw.esw0.erw.cons) { DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no); DBF_ERROR_HEX(irb, 64); DBF_ERROR_HEX(irb->ecw, 64); } } /* PCI interrupt handler */ static void qdio_int_handler_pci(struct qdio_irq *irq_ptr) { int i; struct qdio_q *q; if (unlikely(irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; if (irq_ptr->irq_poll) { if (!test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) irq_ptr->irq_poll(irq_ptr->cdev, irq_ptr->int_parm); else QDIO_PERF_STAT_INC(irq_ptr, int_discarded); } else { for_each_input_queue(irq_ptr, q, i) tasklet_schedule(&q->tasklet); } if (!pci_out_supported(irq_ptr) || !irq_ptr->scan_threshold) return; for_each_output_queue(irq_ptr, q, i) { if (qdio_outbound_q_done(q)) continue; if (need_siga_sync(q) && need_siga_sync_out_after_pci(q)) qdio_siga_sync_q(q); qdio_tasklet_schedule(q); } } static void qdio_handle_activate_check(struct ccw_device *cdev, unsigned long intparm, int cstat, int dstat) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct qdio_q *q; int count; DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no); DBF_ERROR("intp :%lx", intparm); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); if (irq_ptr->nr_input_qs) { q = irq_ptr->input_qs[0]; } else if (irq_ptr->nr_output_qs) { q = irq_ptr->output_qs[0]; } else { dump_stack(); goto no_handler; } count = sub_buf(q->first_to_check, q->first_to_kick); q->handler(q->irq_ptr->cdev, QDIO_ERROR_ACTIVATE, q->nr, q->first_to_kick, count, irq_ptr->int_parm); no_handler: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); /* * In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen. * Therefore we call the LGR detection function here. */ lgr_info_log(); } static void qdio_establish_handle_irq(struct ccw_device *cdev, int cstat, int dstat) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq"); if (cstat) goto error; if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END)) goto error; if (!(dstat & DEV_STAT_DEV_END)) goto error; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED); return; error: DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); } /* qdio interrupt handler */ void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int cstat, dstat; if (!intparm || !irq_ptr) { ccw_device_get_schid(cdev, &schid); DBF_ERROR("qint:%4x", schid.sch_no); return; } if (irq_ptr->perf_stat_enabled) irq_ptr->perf_stat.qdio_int++; if (IS_ERR(irb)) { DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); wake_up(&cdev->private->wait_q); return; } qdio_irq_check_sense(irq_ptr, irb); cstat = irb->scsw.cmd.cstat; dstat = irb->scsw.cmd.dstat; switch (irq_ptr->state) { case QDIO_IRQ_STATE_INACTIVE: qdio_establish_handle_irq(cdev, cstat, dstat); break; case QDIO_IRQ_STATE_CLEANUP: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); break; case QDIO_IRQ_STATE_ESTABLISHED: case QDIO_IRQ_STATE_ACTIVE: if (cstat & SCHN_STAT_PCI) { qdio_int_handler_pci(irq_ptr); return; } if (cstat || dstat) qdio_handle_activate_check(cdev, intparm, cstat, dstat); break; case QDIO_IRQ_STATE_STOPPED: break; default: WARN_ON_ONCE(1); } wake_up(&cdev->private->wait_q); } /** * qdio_get_ssqd_desc - get qdio subchannel description * @cdev: ccw device to get description for * @data: where to store the ssqd * * Returns 0 or an error code. The results of the chsc are stored in the * specified structure. */ int qdio_get_ssqd_desc(struct ccw_device *cdev, struct qdio_ssqd_desc *data) { struct subchannel_id schid; if (!cdev || !cdev->private) return -EINVAL; ccw_device_get_schid(cdev, &schid); DBF_EVENT("get ssqd:%4x", schid.sch_no); return qdio_setup_get_ssqd(NULL, &schid, data); } EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc); static void qdio_shutdown_queues(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) tasklet_kill(&q->tasklet); for_each_output_queue(irq_ptr, q, i) { del_timer_sync(&q->u.out.timer); tasklet_kill(&q->tasklet); } } /** * qdio_shutdown - shut down a qdio subchannel * @cdev: associated ccw device * @how: use halt or clear to shutdown */ int qdio_shutdown(struct ccw_device *cdev, int how) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int rc; if (!irq_ptr) return -ENODEV; WARN_ON_ONCE(irqs_disabled()); ccw_device_get_schid(cdev, &schid); DBF_EVENT("qshutdown:%4x", schid.sch_no); mutex_lock(&irq_ptr->setup_mutex); /* * Subchannel was already shot down. We cannot prevent being called * twice since cio may trigger a shutdown asynchronously. */ if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { mutex_unlock(&irq_ptr->setup_mutex); return 0; } /* * Indicate that the device is going down. Scheduling the queue * tasklets is forbidden from here on. */ qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); tiqdio_remove_device(irq_ptr); qdio_shutdown_queues(irq_ptr); qdio_shutdown_debug_entries(irq_ptr); /* cleanup subchannel */ spin_lock_irq(get_ccwdev_lock(cdev)); if (how & QDIO_FLAG_CLEANUP_USING_CLEAR) rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP); else /* default behaviour is halt */ rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP); if (rc) { DBF_ERROR("%4x SHUTD ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4d", rc); goto no_cleanup; } qdio_set_state(irq_ptr, QDIO_IRQ_STATE_CLEANUP); spin_unlock_irq(get_ccwdev_lock(cdev)); wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_INACTIVE || irq_ptr->state == QDIO_IRQ_STATE_ERR, 10 * HZ); spin_lock_irq(get_ccwdev_lock(cdev)); no_cleanup: qdio_shutdown_thinint(irq_ptr); /* restore interrupt handler */ if ((void *)cdev->handler == (void *)qdio_int_handler) { cdev->handler = irq_ptr->orig_handler; cdev->private->intparm = 0; } spin_unlock_irq(get_ccwdev_lock(cdev)); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); if (rc) return rc; return 0; } EXPORT_SYMBOL_GPL(qdio_shutdown); /** * qdio_free - free data structures for a qdio subchannel * @cdev: associated ccw device */ int qdio_free(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; if (!irq_ptr) return -ENODEV; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qfree:%4x", schid.sch_no); DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf abandoned"); mutex_lock(&irq_ptr->setup_mutex); irq_ptr->debug_area = NULL; cdev->private->qdio_data = NULL; mutex_unlock(&irq_ptr->setup_mutex); qdio_release_memory(irq_ptr); return 0; } EXPORT_SYMBOL_GPL(qdio_free); /** * qdio_allocate - allocate qdio queues and associated data * @cdev: associated ccw device * @no_input_qs: allocate this number of Input Queues * @no_output_qs: allocate this number of Output Queues */ int qdio_allocate(struct ccw_device *cdev, unsigned int no_input_qs, unsigned int no_output_qs) { struct subchannel_id schid; struct qdio_irq *irq_ptr; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qallocate:%4x", schid.sch_no); if (no_input_qs > QDIO_MAX_QUEUES_PER_IRQ || no_output_qs > QDIO_MAX_QUEUES_PER_IRQ) return -EINVAL; /* irq_ptr must be in GFP_DMA since it contains ccw1.cda */ irq_ptr = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr) goto out_err; irq_ptr->cdev = cdev; mutex_init(&irq_ptr->setup_mutex); if (qdio_allocate_dbf(irq_ptr)) goto out_rel; DBF_DEV_EVENT(DBF_ERR, irq_ptr, "alloc niq:%1u noq:%1u", no_input_qs, no_output_qs); /* * Allocate a page for the chsc calls in qdio_establish. * Must be pre-allocated since a zfcp recovery will call * qdio_establish. In case of low memory and swap on a zfcp disk * we may not be able to allocate memory otherwise. */ irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL); if (!irq_ptr->chsc_page) goto out_rel; /* qdr is used in ccw1.cda which is u32 */ irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr->qdr) goto out_rel; if (qdio_allocate_qs(irq_ptr, no_input_qs, no_output_qs)) goto out_rel; INIT_LIST_HEAD(&irq_ptr->entry); cdev->private->qdio_data = irq_ptr; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); return 0; out_rel: qdio_release_memory(irq_ptr); out_err: return -ENOMEM; } EXPORT_SYMBOL_GPL(qdio_allocate); static void qdio_detect_hsicq(struct qdio_irq *irq_ptr) { struct qdio_q *q = irq_ptr->input_qs[0]; int i, use_cq = 0; if (irq_ptr->nr_input_qs > 1 && queue_type(q) == QDIO_IQDIO_QFMT) use_cq = 1; for_each_output_queue(irq_ptr, q, i) { if (use_cq) { if (multicast_outbound(q)) continue; if (qdio_enable_async_operation(&q->u.out) < 0) { use_cq = 0; continue; } } else qdio_disable_async_operation(&q->u.out); } DBF_EVENT("use_cq:%d", use_cq); } static void qdio_trace_init_data(struct qdio_irq *irq, struct qdio_initialize *data) { DBF_DEV_EVENT(DBF_ERR, irq, "qfmt:%1u", data->q_format); DBF_DEV_HEX(irq, data->adapter_name, 8, DBF_ERR); DBF_DEV_EVENT(DBF_ERR, irq, "qpff%4x", data->qib_param_field_format); DBF_DEV_HEX(irq, &data->qib_param_field, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->input_slib_elements, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_slib_elements, sizeof(void *), DBF_ERR); DBF_DEV_EVENT(DBF_ERR, irq, "niq:%1u noq:%1u", data->no_input_qs, data->no_output_qs); DBF_DEV_HEX(irq, &data->input_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->int_parm, sizeof(long), DBF_ERR); DBF_DEV_HEX(irq, &data->input_sbal_addr_array, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_sbal_addr_array, sizeof(void *), DBF_ERR); } /** * qdio_establish - establish queues on a qdio subchannel * @cdev: associated ccw device * @init_data: initialization data */ int qdio_establish(struct ccw_device *cdev, struct qdio_initialize *init_data) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qestablish:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; if ((init_data->no_input_qs && !init_data->input_handler) || (init_data->no_output_qs && !init_data->output_handler)) return -EINVAL; if (!init_data->input_sbal_addr_array || !init_data->output_sbal_addr_array) return -EINVAL; mutex_lock(&irq_ptr->setup_mutex); qdio_trace_init_data(irq_ptr, init_data); qdio_setup_irq(irq_ptr, init_data); rc = qdio_establish_thinint(irq_ptr); if (rc) { mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return rc; } /* establish q */ irq_ptr->ccw.cmd_code = irq_ptr->equeue.cmd; irq_ptr->ccw.flags = CCW_FLAG_SLI; irq_ptr->ccw.count = irq_ptr->equeue.count; irq_ptr->ccw.cda = (u32)((addr_t)irq_ptr->qdr); spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options_mask(cdev, 0); rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return rc; } wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED || irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ); if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) { mutex_unlock(&irq_ptr->setup_mutex); qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); return -EIO; } qdio_setup_ssqd_info(irq_ptr); qdio_detect_hsicq(irq_ptr); /* qebsm is now setup if available, initialize buffer states */ qdio_init_buf_states(irq_ptr); mutex_unlock(&irq_ptr->setup_mutex); qdio_print_subchannel_info(irq_ptr); qdio_setup_debug_entries(irq_ptr); return 0; } EXPORT_SYMBOL_GPL(qdio_establish); /** * qdio_activate - activate queues on a qdio subchannel * @cdev: associated cdev */ int qdio_activate(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qactivate:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; mutex_lock(&irq_ptr->setup_mutex); if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { rc = -EBUSY; goto out; } irq_ptr->ccw.cmd_code = irq_ptr->aqueue.cmd; irq_ptr->ccw.flags = CCW_FLAG_SLI; irq_ptr->ccw.count = irq_ptr->aqueue.count; irq_ptr->ccw.cda = 0; spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options(cdev, CCWDEV_REPORT_ALL); rc = ccw_device_start(cdev, &irq_ptr->ccw, QDIO_DOING_ACTIVATE, 0, DOIO_DENY_PREFETCH); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); goto out; } if (is_thinint_irq(irq_ptr)) tiqdio_add_device(irq_ptr); /* wait for subchannel to become active */ msleep(5); switch (irq_ptr->state) { case QDIO_IRQ_STATE_STOPPED: case QDIO_IRQ_STATE_ERR: rc = -EIO; break; default: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE); rc = 0; } out: mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_activate); static inline int buf_in_between(int bufnr, int start, int count) { int end = add_buf(start, count); if (end > start) { if (bufnr >= start && bufnr < end) return 1; else return 0; } /* wrap-around case */ if ((bufnr >= start && bufnr <= QDIO_MAX_BUFFERS_PER_Q) || (bufnr < end)) return 1; else return 0; } /** * handle_inbound - reset processed input buffers * @q: queue containing the buffers * @callflags: flags * @bufnr: first buffer to process * @count: how many buffers are emptied */ static int handle_inbound(struct qdio_q *q, unsigned int callflags, int bufnr, int count) { int diff; qperf_inc(q, inbound_call); if (!q->u.in.ack_count) goto set; /* protect against stop polling setting an ACK for an emptied slsb */ if (count == QDIO_MAX_BUFFERS_PER_Q) { /* overwriting everything, just delete polling status */ q->u.in.ack_count = 0; goto set; } else if (buf_in_between(q->u.in.ack_start, bufnr, count)) { if (is_qebsm(q)) { /* partial overwrite, just update ack_start */ diff = add_buf(bufnr, count); diff = sub_buf(diff, q->u.in.ack_start); q->u.in.ack_count -= diff; if (q->u.in.ack_count <= 0) { q->u.in.ack_count = 0; goto set; } q->u.in.ack_start = add_buf(q->u.in.ack_start, diff); } else { /* the only ACK will be deleted */ q->u.in.ack_count = 0; } } set: count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count); atomic_add(count, &q->nr_buf_used); if (need_siga_in(q)) return qdio_siga_input(q); return 0; } /** * handle_outbound - process filled outbound buffers * @q: queue containing the buffers * @callflags: flags * @bufnr: first buffer to process * @count: how many buffers are filled */ static int handle_outbound(struct qdio_q *q, unsigned int callflags, unsigned int bufnr, unsigned int count) { const unsigned int scan_threshold = q->irq_ptr->scan_threshold; unsigned char state = 0; int used, rc = 0; qperf_inc(q, outbound_call); count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count); used = atomic_add_return(count, &q->nr_buf_used); if (used == QDIO_MAX_BUFFERS_PER_Q) qperf_inc(q, outbound_queue_full); if (callflags & QDIO_FLAG_PCI_OUT) { q->u.out.pci_out_enabled = 1; qperf_inc(q, pci_request_int); } else q->u.out.pci_out_enabled = 0; if (queue_type(q) == QDIO_IQDIO_QFMT) { unsigned long phys_aob = 0; if (q->u.out.use_cq && count == 1) phys_aob = qdio_aob_for_buffer(&q->u.out, bufnr); rc = qdio_kick_outbound_q(q, count, phys_aob); } else if (need_siga_sync(q)) { rc = qdio_siga_sync_q(q); } else if (count < QDIO_MAX_BUFFERS_PER_Q && get_buf_state(q, prev_buf(bufnr), &state, 0) > 0 && state == SLSB_CU_OUTPUT_PRIMED) { /* The previous buffer is not processed yet, tack on. */ qperf_inc(q, fast_requeue); } else { rc = qdio_kick_outbound_q(q, count, 0); } /* Let drivers implement their own completion scanning: */ if (!scan_threshold) return rc; /* in case of SIGA errors we must process the error immediately */ if (used >= scan_threshold || rc) qdio_tasklet_schedule(q); else /* free the SBALs in case of no further traffic */ if (!timer_pending(&q->u.out.timer) && likely(q->irq_ptr->state == QDIO_IRQ_STATE_ACTIVE)) mod_timer(&q->u.out.timer, jiffies + HZ); return rc; } /** * do_QDIO - process input or output buffers * @cdev: associated ccw_device for the qdio subchannel * @callflags: input or output and special flags from the program * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process */ int do_QDIO(struct ccw_device *cdev, unsigned int callflags, int q_nr, unsigned int bufnr, unsigned int count) { struct qdio_irq *irq_ptr; if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q) return -EINVAL; irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "do%02x b:%02x c:%02x", callflags, bufnr, count); if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EIO; if (!count) return 0; if (callflags & QDIO_FLAG_SYNC_INPUT) return handle_inbound(irq_ptr->input_qs[q_nr], callflags, bufnr, count); else if (callflags & QDIO_FLAG_SYNC_OUTPUT) return handle_outbound(irq_ptr->output_qs[q_nr], callflags, bufnr, count); return -EINVAL; } EXPORT_SYMBOL_GPL(do_QDIO); /** * qdio_start_irq - process input buffers * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - success * 1 - irqs not started since new data is available */ int qdio_start_irq(struct ccw_device *cdev) { struct qdio_q *q; struct qdio_irq *irq_ptr = cdev->private->qdio_data; unsigned int i; if (!irq_ptr) return -ENODEV; for_each_input_queue(irq_ptr, q, i) qdio_stop_polling(q); clear_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (test_nonshared_ind(irq_ptr)) goto rescan; for_each_input_queue(irq_ptr, q, i) { if (!qdio_inbound_q_done(q, q->first_to_check)) goto rescan; } return 0; rescan: if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_start_irq); static int __qdio_inspect_queue(struct qdio_q *q, unsigned int *bufnr, unsigned int *error) { unsigned int start = q->first_to_check; int count; count = q->is_input_q ? qdio_inbound_q_moved(q, start) : qdio_outbound_q_moved(q, start); if (count == 0) return 0; *bufnr = start; *error = q->qdio_error; /* for the next time */ q->first_to_check = add_buf(start, count); q->qdio_error = 0; return count; } int qdio_inspect_queue(struct ccw_device *cdev, unsigned int nr, bool is_input, unsigned int *bufnr, unsigned int *error) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct qdio_q *q; if (!irq_ptr) return -ENODEV; q = is_input ? irq_ptr->input_qs[nr] : irq_ptr->output_qs[nr]; if (need_siga_sync(q)) qdio_siga_sync_q(q); return __qdio_inspect_queue(q, bufnr, error); } EXPORT_SYMBOL_GPL(qdio_inspect_queue); /** * qdio_get_next_buffers - process input buffers * @cdev: associated ccw_device for the qdio subchannel * @nr: input queue number * @bufnr: first filled buffer number * @error: buffers are in error state * * Return codes * < 0 - error * = 0 - no new buffers found * > 0 - number of processed buffers */ int qdio_get_next_buffers(struct ccw_device *cdev, int nr, int *bufnr, int *error) { struct qdio_q *q; struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; q = irq_ptr->input_qs[nr]; /* * Cannot rely on automatic sync after interrupt since queues may * also be examined without interrupt. */ if (need_siga_sync(q)) qdio_sync_queues(q); qdio_check_outbound_pci_queues(irq_ptr); /* Note: upper-layer MUST stop processing immediately here ... */ if (unlikely(q->irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return -EIO; return __qdio_inspect_queue(q, bufnr, error); } EXPORT_SYMBOL(qdio_get_next_buffers); /** * qdio_stop_irq - disable interrupt processing for the device * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - interrupts were already disabled * 1 - interrupts successfully disabled */ int qdio_stop_irq(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_stop_irq); /** * qdio_pnso_brinfo() - perform network subchannel op #0 - bridge info. * @schid: Subchannel ID. * @cnc: Boolean Change-Notification Control * @response: Response code will be stored at this address * @cb: Callback function will be executed for each element * of the address list * @priv: Pointer to pass to the callback function. * * Performs "Store-network-bridging-information list" operation and calls * the callback function for every entry in the list. If "change- * notification-control" is set, further changes in the address list * will be reported via the IPA command. */ int qdio_pnso_brinfo(struct subchannel_id schid, int cnc, u16 *response, void (*cb)(void *priv, enum qdio_brinfo_entry_type type, void *entry), void *priv) { struct chsc_pnso_area *rr; int rc; u32 prev_instance = 0; int isfirstblock = 1; int i, size, elems; rr = (struct chsc_pnso_area *)get_zeroed_page(GFP_KERNEL); if (rr == NULL) return -ENOMEM; do { /* on the first iteration, naihdr.resume_token will be zero */ rc = chsc_pnso_brinfo(schid, rr, rr->naihdr.resume_token, cnc); if (rc != 0 && rc != -EBUSY) goto out; if (rr->response.code != 1) { rc = -EIO; continue; } else rc = 0; if (cb == NULL) continue; size = rr->naihdr.naids; elems = (rr->response.length - sizeof(struct chsc_header) - sizeof(struct chsc_brinfo_naihdr)) / size; if (!isfirstblock && (rr->naihdr.instance != prev_instance)) { /* Inform the caller that they need to scrap */ /* the data that was already reported via cb */ rc = -EAGAIN; break; } isfirstblock = 0; prev_instance = rr->naihdr.instance; for (i = 0; i < elems; i++) switch (size) { case sizeof(struct qdio_brinfo_entry_l3_ipv6): (*cb)(priv, l3_ipv6_addr, &rr->entries.l3_ipv6[i]); break; case sizeof(struct qdio_brinfo_entry_l3_ipv4): (*cb)(priv, l3_ipv4_addr, &rr->entries.l3_ipv4[i]); break; case sizeof(struct qdio_brinfo_entry_l2): (*cb)(priv, l2_addr_lnid, &rr->entries.l2[i]); break; default: WARN_ON_ONCE(1); rc = -EIO; goto out; } } while (rr->response.code == 0x0107 || /* channel busy */ (rr->response.code == 1 && /* list stored */ /* resume token is non-zero => list incomplete */ (rr->naihdr.resume_token.t1 || rr->naihdr.resume_token.t2))); (*response) = rr->response.code; out: free_page((unsigned long)rr); return rc; } EXPORT_SYMBOL_GPL(qdio_pnso_brinfo); static int __init init_QDIO(void) { int rc; rc = qdio_debug_init(); if (rc) return rc; rc = qdio_setup_init(); if (rc) goto out_debug; rc = tiqdio_allocate_memory(); if (rc) goto out_cache; rc = tiqdio_register_thinints(); if (rc) goto out_ti; return 0; out_ti: tiqdio_free_memory(); out_cache: qdio_setup_exit(); out_debug: qdio_debug_exit(); return rc; } static void __exit exit_QDIO(void) { tiqdio_unregister_thinints(); tiqdio_free_memory(); qdio_setup_exit(); qdio_debug_exit(); } module_init(init_QDIO); module_exit(exit_QDIO);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1