Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yogesh Gaur | 4561 | 94.31% | 3 | 33.33% |
Allen Xu | 260 | 5.38% | 3 | 33.33% |
Chuhong Yuan | 6 | 0.12% | 1 | 11.11% |
Michael Walle | 6 | 0.12% | 1 | 11.11% |
Dan Carpenter | 3 | 0.06% | 1 | 11.11% |
Total | 4836 | 9 |
// SPDX-License-Identifier: GPL-2.0+ /* * NXP FlexSPI(FSPI) controller driver. * * Copyright 2019 NXP. * * FlexSPI is a flexsible SPI host controller which supports two SPI * channels and up to 4 external devices. Each channel supports * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional * data lines). * * FlexSPI controller is driven by the LUT(Look-up Table) registers * LUT registers are a look-up-table for sequences of instructions. * A valid sequence consists of four LUT registers. * Maximum 32 LUT sequences can be programmed simultaneously. * * LUTs are being created at run-time based on the commands passed * from the spi-mem framework, thus using single LUT index. * * Software triggered Flash read/write access by IP Bus. * * Memory mapped read access by AHB Bus. * * Based on SPI MEM interface and spi-fsl-qspi.c driver. * * Author: * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> * Boris Brezillon <bbrezillon@kernel.org> * Frieder Schrempf <frieder.schrempf@kontron.de> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/sizes.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> /* * The driver only uses one single LUT entry, that is updated on * each call of exec_op(). Index 0 is preset at boot with a basic * read operation, so let's use the last entry (31). */ #define SEQID_LUT 31 /* Registers used by the driver */ #define FSPI_MCR0 0x00 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) #define FSPI_MCR0_LEARN_EN BIT(15) #define FSPI_MCR0_SCRFRUN_EN BIT(14) #define FSPI_MCR0_OCTCOMB_EN BIT(13) #define FSPI_MCR0_DOZE_EN BIT(12) #define FSPI_MCR0_HSEN BIT(11) #define FSPI_MCR0_SERCLKDIV BIT(8) #define FSPI_MCR0_ATDF_EN BIT(7) #define FSPI_MCR0_ARDF_EN BIT(6) #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) #define FSPI_MCR0_END_CFG(x) ((x) << 2) #define FSPI_MCR0_MDIS BIT(1) #define FSPI_MCR0_SWRST BIT(0) #define FSPI_MCR1 0x04 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) #define FSPI_MCR1_AHB_TIMEOUT(x) (x) #define FSPI_MCR2 0x08 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) #define FSPI_MCR2_SAMEDEVICEEN BIT(15) #define FSPI_MCR2_CLRLRPHS BIT(14) #define FSPI_MCR2_ABRDATSZ BIT(8) #define FSPI_MCR2_ABRLEARN BIT(7) #define FSPI_MCR2_ABR_READ BIT(6) #define FSPI_MCR2_ABRWRITE BIT(5) #define FSPI_MCR2_ABRDUMMY BIT(4) #define FSPI_MCR2_ABR_MODE BIT(3) #define FSPI_MCR2_ABRCADDR BIT(2) #define FSPI_MCR2_ABRRADDR BIT(1) #define FSPI_MCR2_ABR_CMD BIT(0) #define FSPI_AHBCR 0x0c #define FSPI_AHBCR_RDADDROPT BIT(6) #define FSPI_AHBCR_PREF_EN BIT(5) #define FSPI_AHBCR_BUFF_EN BIT(4) #define FSPI_AHBCR_CACH_EN BIT(3) #define FSPI_AHBCR_CLRTXBUF BIT(2) #define FSPI_AHBCR_CLRRXBUF BIT(1) #define FSPI_AHBCR_PAR_EN BIT(0) #define FSPI_INTEN 0x10 #define FSPI_INTEN_SCLKSBWR BIT(9) #define FSPI_INTEN_SCLKSBRD BIT(8) #define FSPI_INTEN_DATALRNFL BIT(7) #define FSPI_INTEN_IPTXWE BIT(6) #define FSPI_INTEN_IPRXWA BIT(5) #define FSPI_INTEN_AHBCMDERR BIT(4) #define FSPI_INTEN_IPCMDERR BIT(3) #define FSPI_INTEN_AHBCMDGE BIT(2) #define FSPI_INTEN_IPCMDGE BIT(1) #define FSPI_INTEN_IPCMDDONE BIT(0) #define FSPI_INTR 0x14 #define FSPI_INTR_SCLKSBWR BIT(9) #define FSPI_INTR_SCLKSBRD BIT(8) #define FSPI_INTR_DATALRNFL BIT(7) #define FSPI_INTR_IPTXWE BIT(6) #define FSPI_INTR_IPRXWA BIT(5) #define FSPI_INTR_AHBCMDERR BIT(4) #define FSPI_INTR_IPCMDERR BIT(3) #define FSPI_INTR_AHBCMDGE BIT(2) #define FSPI_INTR_IPCMDGE BIT(1) #define FSPI_INTR_IPCMDDONE BIT(0) #define FSPI_LUTKEY 0x18 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 #define FSPI_LCKCR 0x1C #define FSPI_LCKER_LOCK 0x1 #define FSPI_LCKER_UNLOCK 0x2 #define FSPI_BUFXCR_INVALID_MSTRID 0xE #define FSPI_AHBRX_BUF0CR0 0x20 #define FSPI_AHBRX_BUF1CR0 0x24 #define FSPI_AHBRX_BUF2CR0 0x28 #define FSPI_AHBRX_BUF3CR0 0x2C #define FSPI_AHBRX_BUF4CR0 0x30 #define FSPI_AHBRX_BUF5CR0 0x34 #define FSPI_AHBRX_BUF6CR0 0x38 #define FSPI_AHBRX_BUF7CR0 0x3C #define FSPI_AHBRXBUF0CR7_PREF BIT(31) #define FSPI_AHBRX_BUF0CR1 0x40 #define FSPI_AHBRX_BUF1CR1 0x44 #define FSPI_AHBRX_BUF2CR1 0x48 #define FSPI_AHBRX_BUF3CR1 0x4C #define FSPI_AHBRX_BUF4CR1 0x50 #define FSPI_AHBRX_BUF5CR1 0x54 #define FSPI_AHBRX_BUF6CR1 0x58 #define FSPI_AHBRX_BUF7CR1 0x5C #define FSPI_FLSHA1CR0 0x60 #define FSPI_FLSHA2CR0 0x64 #define FSPI_FLSHB1CR0 0x68 #define FSPI_FLSHB2CR0 0x6C #define FSPI_FLSHXCR0_SZ_KB 10 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) #define FSPI_FLSHA1CR1 0x70 #define FSPI_FLSHA2CR1 0x74 #define FSPI_FLSHB1CR1 0x78 #define FSPI_FLSHB2CR1 0x7C #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) #define FSPI_FLSHXCR1_WA BIT(10) #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) #define FSPI_FLSHXCR1_TCSS(x) (x) #define FSPI_FLSHA1CR2 0x80 #define FSPI_FLSHA2CR2 0x84 #define FSPI_FLSHB1CR2 0x88 #define FSPI_FLSHB2CR2 0x8C #define FSPI_FLSHXCR2_CLRINSP BIT(24) #define FSPI_FLSHXCR2_AWRWAIT BIT(16) #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 #define FSPI_IPCR0 0xA0 #define FSPI_IPCR1 0xA4 #define FSPI_IPCR1_IPAREN BIT(31) #define FSPI_IPCR1_SEQNUM_SHIFT 24 #define FSPI_IPCR1_SEQID_SHIFT 16 #define FSPI_IPCR1_IDATSZ(x) (x) #define FSPI_IPCMD 0xB0 #define FSPI_IPCMD_TRG BIT(0) #define FSPI_DLPR 0xB4 #define FSPI_IPRXFCR 0xB8 #define FSPI_IPRXFCR_CLR BIT(0) #define FSPI_IPRXFCR_DMA_EN BIT(1) #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) #define FSPI_IPTXFCR 0xBC #define FSPI_IPTXFCR_CLR BIT(0) #define FSPI_IPTXFCR_DMA_EN BIT(1) #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) #define FSPI_DLLACR 0xC0 #define FSPI_DLLACR_OVRDEN BIT(8) #define FSPI_DLLBCR 0xC4 #define FSPI_DLLBCR_OVRDEN BIT(8) #define FSPI_STS0 0xE0 #define FSPI_STS0_DLPHB(x) ((x) << 8) #define FSPI_STS0_DLPHA(x) ((x) << 4) #define FSPI_STS0_CMD_SRC(x) ((x) << 2) #define FSPI_STS0_ARB_IDLE BIT(1) #define FSPI_STS0_SEQ_IDLE BIT(0) #define FSPI_STS1 0xE4 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) #define FSPI_STS1_IP_ERRID(x) ((x) << 16) #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) #define FSPI_STS1_AHB_ERRID(x) (x) #define FSPI_AHBSPNST 0xEC #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) #define FSPI_AHBSPNST_ACTIVE BIT(0) #define FSPI_IPRXFSTS 0xF0 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) #define FSPI_IPRXFSTS_FILL(x) (x) #define FSPI_IPTXFSTS 0xF4 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) #define FSPI_IPTXFSTS_FILL(x) (x) #define FSPI_RFDR 0x100 #define FSPI_TFDR 0x180 #define FSPI_LUT_BASE 0x200 #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) #define FSPI_LUT_REG(idx) \ (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) /* register map end */ /* Instruction set for the LUT register. */ #define LUT_STOP 0x00 #define LUT_CMD 0x01 #define LUT_ADDR 0x02 #define LUT_CADDR_SDR 0x03 #define LUT_MODE 0x04 #define LUT_MODE2 0x05 #define LUT_MODE4 0x06 #define LUT_MODE8 0x07 #define LUT_NXP_WRITE 0x08 #define LUT_NXP_READ 0x09 #define LUT_LEARN_SDR 0x0A #define LUT_DATSZ_SDR 0x0B #define LUT_DUMMY 0x0C #define LUT_DUMMY_RWDS_SDR 0x0D #define LUT_JMP_ON_CS 0x1F #define LUT_CMD_DDR 0x21 #define LUT_ADDR_DDR 0x22 #define LUT_CADDR_DDR 0x23 #define LUT_MODE_DDR 0x24 #define LUT_MODE2_DDR 0x25 #define LUT_MODE4_DDR 0x26 #define LUT_MODE8_DDR 0x27 #define LUT_WRITE_DDR 0x28 #define LUT_READ_DDR 0x29 #define LUT_LEARN_DDR 0x2A #define LUT_DATSZ_DDR 0x2B #define LUT_DUMMY_DDR 0x2C #define LUT_DUMMY_RWDS_DDR 0x2D /* * Calculate number of required PAD bits for LUT register. * * The pad stands for the number of IO lines [0:7]. * For example, the octal read needs eight IO lines, * so you should use LUT_PAD(8). This macro * returns 3 i.e. use eight (2^3) IP lines for read. */ #define LUT_PAD(x) (fls(x) - 1) /* * Macro for constructing the LUT entries with the following * register layout: * * --------------------------------------------------- * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | * --------------------------------------------------- */ #define PAD_SHIFT 8 #define INSTR_SHIFT 10 #define OPRND_SHIFT 16 /* Macros for constructing the LUT register. */ #define LUT_DEF(idx, ins, pad, opr) \ ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ (opr)) << (((idx) % 2) * OPRND_SHIFT)) #define POLL_TOUT 5000 #define NXP_FSPI_MAX_CHIPSELECT 4 #define NXP_FSPI_MIN_IOMAP SZ_4M struct nxp_fspi_devtype_data { unsigned int rxfifo; unsigned int txfifo; unsigned int ahb_buf_size; unsigned int quirks; bool little_endian; }; static const struct nxp_fspi_devtype_data lx2160a_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static const struct nxp_fspi_devtype_data imx8mm_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; static const struct nxp_fspi_devtype_data imx8qxp_data = { .rxfifo = SZ_512, /* (64 * 64 bits) */ .txfifo = SZ_1K, /* (128 * 64 bits) */ .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ .quirks = 0, .little_endian = true, /* little-endian */ }; struct nxp_fspi { void __iomem *iobase; void __iomem *ahb_addr; u32 memmap_phy; u32 memmap_phy_size; u32 memmap_start; u32 memmap_len; struct clk *clk, *clk_en; struct device *dev; struct completion c; const struct nxp_fspi_devtype_data *devtype_data; struct mutex lock; struct pm_qos_request pm_qos_req; int selected; }; /* * R/W functions for big- or little-endian registers: * The FSPI controller's endianness is independent of * the CPU core's endianness. So far, although the CPU * core is little-endian the FSPI controller can use * big-endian or little-endian. */ static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) { if (f->devtype_data->little_endian) iowrite32(val, addr); else iowrite32be(val, addr); } static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) { if (f->devtype_data->little_endian) return ioread32(addr); else return ioread32be(addr); } static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) { struct nxp_fspi *f = dev_id; u32 reg; /* clear interrupt */ reg = fspi_readl(f, f->iobase + FSPI_INTR); fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); if (reg & FSPI_INTR_IPCMDDONE) complete(&f->c); return IRQ_HANDLED; } static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) { switch (width) { case 1: case 2: case 4: case 8: return 0; } return -ENOTSUPP; } static bool nxp_fspi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); int ret; ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); if (op->addr.nbytes) ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); if (op->dummy.nbytes) ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); if (op->data.nbytes) ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); if (ret) return false; /* * The number of address bytes should be equal to or less than 4 bytes. */ if (op->addr.nbytes > 4) return false; /* * If requested address value is greater than controller assigned * memory mapped space, return error as it didn't fit in the range * of assigned address space. */ if (op->addr.val >= f->memmap_phy_size) return false; /* Max 64 dummy clock cycles supported */ if (op->dummy.buswidth && (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) return false; /* Max data length, check controller limits and alignment */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes > f->devtype_data->ahb_buf_size || (op->data.nbytes > f->devtype_data->rxfifo - 4 && !IS_ALIGNED(op->data.nbytes, 8)))) return false; if (op->data.dir == SPI_MEM_DATA_OUT && op->data.nbytes > f->devtype_data->txfifo) return false; return spi_mem_default_supports_op(mem, op); } /* Instead of busy looping invoke readl_poll_timeout functionality. */ static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, u32 mask, u32 delay_us, u32 timeout_us, bool c) { u32 reg; if (!f->devtype_data->little_endian) mask = (u32)cpu_to_be32(mask); if (c) return readl_poll_timeout(base, reg, (reg & mask), delay_us, timeout_us); else return readl_poll_timeout(base, reg, !(reg & mask), delay_us, timeout_us); } /* * If the slave device content being changed by Write/Erase, need to * invalidate the AHB buffer. This can be achieved by doing the reset * of controller after setting MCR0[SWRESET] bit. */ static inline void nxp_fspi_invalid(struct nxp_fspi *f) { u32 reg; int ret; reg = fspi_readl(f, f->iobase + FSPI_MCR0); fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); } static void nxp_fspi_prepare_lut(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; u32 lutval[4] = {}; int lutidx = 1, i; /* cmd */ lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), op->cmd.opcode); /* addr bytes */ if (op->addr.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, LUT_PAD(op->addr.buswidth), op->addr.nbytes * 8); lutidx++; } /* dummy bytes, if needed */ if (op->dummy.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, /* * Due to FlexSPI controller limitation number of PAD for dummy * buswidth needs to be programmed as equal to data buswidth. */ LUT_PAD(op->data.buswidth), op->dummy.nbytes * 8 / op->dummy.buswidth); lutidx++; } /* read/write data bytes */ if (op->data.nbytes) { lutval[lutidx / 2] |= LUT_DEF(lutidx, op->data.dir == SPI_MEM_DATA_IN ? LUT_NXP_READ : LUT_NXP_WRITE, LUT_PAD(op->data.buswidth), 0); lutidx++; } /* stop condition. */ lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); /* unlock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); /* fill LUT */ for (i = 0; i < ARRAY_SIZE(lutval); i++) fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); /* lock LUT */ fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); } static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) { int ret; ret = clk_prepare_enable(f->clk_en); if (ret) return ret; ret = clk_prepare_enable(f->clk); if (ret) { clk_disable_unprepare(f->clk_en); return ret; } return 0; } static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) { clk_disable_unprepare(f->clk); clk_disable_unprepare(f->clk_en); } /* * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 * register and start base address of the slave device. * * (Higher address) * -------- <-- FLSHB2CR0 * | B2 | * | | * B2 start address --> -------- <-- FLSHB1CR0 * | B1 | * | | * B1 start address --> -------- <-- FLSHA2CR0 * | A2 | * | | * A2 start address --> -------- <-- FLSHA1CR0 * | A1 | * | | * A1 start address --> -------- (Lower address) * * * Start base address defines the starting address range for given CS and * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. * * But, different targets are having different combinations of number of CS, * some targets only have single CS or two CS covering controller's full * memory mapped space area. * Thus, implementation is being done as independent of the size and number * of the connected slave device. * Assign controller memory mapped space size as the size to the connected * slave device. * Mark FLSHxxCR0 as zero initially and then assign value only to the selected * chip-select Flash configuration register. * * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the * memory mapped size of the controller. * Value for rest of the CS FLSHxxCR0 register would be zero. * */ static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) { unsigned long rate = spi->max_speed_hz; int ret; uint64_t size_kb; /* * Return, if previously selected slave device is same as current * requested slave device. */ if (f->selected == spi->chip_select) return; /* Reset FLSHxxCR0 registers */ fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); /* Assign controller memory mapped space as size, KBytes, of flash. */ size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 4 * spi->chip_select); dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); nxp_fspi_clk_disable_unprep(f); ret = clk_set_rate(f->clk, rate); if (ret) return; ret = nxp_fspi_clk_prep_enable(f); if (ret) return; f->selected = spi->chip_select; } static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) { u32 start = op->addr.val; u32 len = op->data.nbytes; /* if necessary, ioremap before AHB read */ if ((!f->ahb_addr) || start < f->memmap_start || start + len > f->memmap_start + f->memmap_len) { if (f->ahb_addr) iounmap(f->ahb_addr); f->memmap_start = start; f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? len : NXP_FSPI_MIN_IOMAP; f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start, f->memmap_len); if (!f->ahb_addr) { dev_err(f->dev, "failed to alloc memory\n"); return -ENOMEM; } } /* Read out the data directly from the AHB buffer. */ memcpy_fromio(op->data.buf.in, f->ahb_addr + start - f->memmap_start, len); return 0; } static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; u8 *buf = (u8 *) op->data.buf.out; /* clear the TX FIFO. */ fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); /* * Default value of water mark level is 8 bytes, hence in single * write request controller can write max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } if (i < op->data.nbytes) { u32 data = 0; int j; /* Wait for TXFIFO empty */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPTXWE, 0, POLL_TOUT, true); WARN_ON(ret); for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { memcpy(&data, buf + i + j, 4); fspi_writel(f, data, base + FSPI_TFDR + j); } fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); } } static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int i, ret; int len = op->data.nbytes; u8 *buf = (u8 *) op->data.buf.in; /* * Default value of water mark level is 8 bytes, hence in single * read request controller can read max 8 bytes of data. */ for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } if (i < len) { u32 tmp; int size, j; buf = op->data.buf.in + i; /* Wait for RXFIFO available */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, FSPI_INTR_IPRXWA, 0, POLL_TOUT, true); WARN_ON(ret); len = op->data.nbytes - i; for (j = 0; j < op->data.nbytes - i; j += 4) { tmp = fspi_readl(f, base + FSPI_RFDR + j); size = min(len, 4); memcpy(buf + j, &tmp, size); len -= size; } } /* invalid the RXFIFO */ fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); /* move the FIFO pointer */ fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); } static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) { void __iomem *base = f->iobase; int seqnum = 0; int err = 0; u32 reg; reg = fspi_readl(f, base + FSPI_IPRXFCR); /* invalid RXFIFO first */ reg &= ~FSPI_IPRXFCR_DMA_EN; reg = reg | FSPI_IPRXFCR_CLR; fspi_writel(f, reg, base + FSPI_IPRXFCR); init_completion(&f->c); fspi_writel(f, op->addr.val, base + FSPI_IPCR0); /* * Always start the sequence at the same index since we update * the LUT at each exec_op() call. And also specify the DATA * length, since it's has not been specified in the LUT. */ fspi_writel(f, op->data.nbytes | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), base + FSPI_IPCR1); /* Trigger the LUT now. */ fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); /* Wait for the interrupt. */ if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) err = -ETIMEDOUT; /* Invoke IP data read, if request is of data read. */ if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) nxp_fspi_read_rxfifo(f, op); return err; } static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); int err = 0; mutex_lock(&f->lock); /* Wait for controller being ready. */ err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); WARN_ON(err); nxp_fspi_select_mem(f, mem->spi); nxp_fspi_prepare_lut(f, op); /* * If we have large chunks of data, we read them through the AHB bus * by accessing the mapped memory. In all other cases we use * IP commands to access the flash. */ if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && op->data.dir == SPI_MEM_DATA_IN) { err = nxp_fspi_read_ahb(f, op); } else { if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) nxp_fspi_fill_txfifo(f, op); err = nxp_fspi_do_op(f, op); } /* Invalidate the data in the AHB buffer. */ nxp_fspi_invalid(f); mutex_unlock(&f->lock); return err; } static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); if (op->data.dir == SPI_MEM_DATA_OUT) { if (op->data.nbytes > f->devtype_data->txfifo) op->data.nbytes = f->devtype_data->txfifo; } else { if (op->data.nbytes > f->devtype_data->ahb_buf_size) op->data.nbytes = f->devtype_data->ahb_buf_size; else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); } return 0; } static int nxp_fspi_default_setup(struct nxp_fspi *f) { void __iomem *base = f->iobase; int ret, i; u32 reg; /* disable and unprepare clock to avoid glitch pass to controller */ nxp_fspi_clk_disable_unprep(f); /* the default frequency, we will change it later if necessary. */ ret = clk_set_rate(f->clk, 20000000); if (ret) return ret; ret = nxp_fspi_clk_prep_enable(f); if (ret) return ret; /* Reset the module */ /* w1c register, wait unit clear */ ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, FSPI_MCR0_SWRST, 0, POLL_TOUT, false); WARN_ON(ret); /* Disable the module */ fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); /* Reset the DLL register to default value */ fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); /* enable module */ fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, base + FSPI_MCR0); /* * Disable same device enable bit and configure all slave devices * independently. */ reg = fspi_readl(f, f->iobase + FSPI_MCR2); reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); fspi_writel(f, reg, base + FSPI_MCR2); /* AHB configuration for access buffer 0~7. */ for (i = 0; i < 7; i++) fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); /* * Set ADATSZ with the maximum AHB buffer size to improve the read * performance. */ fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); /* prefetch and no start address alignment limitation */ fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, base + FSPI_AHBCR); /* AHB Read - Set lut sequence ID for all CS. */ fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); f->selected = -1; /* enable the interrupt */ fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); return 0; } static const char *nxp_fspi_get_name(struct spi_mem *mem) { struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); struct device *dev = &mem->spi->dev; const char *name; // Set custom name derived from the platform_device of the controller. if (of_get_available_child_count(f->dev->of_node) == 1) return dev_name(f->dev); name = devm_kasprintf(dev, GFP_KERNEL, "%s-%d", dev_name(f->dev), mem->spi->chip_select); if (!name) { dev_err(dev, "failed to get memory for custom flash name\n"); return ERR_PTR(-ENOMEM); } return name; } static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { .adjust_op_size = nxp_fspi_adjust_op_size, .supports_op = nxp_fspi_supports_op, .exec_op = nxp_fspi_exec_op, .get_name = nxp_fspi_get_name, }; static int nxp_fspi_probe(struct platform_device *pdev) { struct spi_controller *ctlr; struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct resource *res; struct nxp_fspi *f; int ret; ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); if (!ctlr) return -ENOMEM; ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; f = spi_controller_get_devdata(ctlr); f->dev = dev; f->devtype_data = of_device_get_match_data(dev); if (!f->devtype_data) { ret = -ENODEV; goto err_put_ctrl; } platform_set_drvdata(pdev, f); /* find the resources - configuration register address space */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base"); f->iobase = devm_ioremap_resource(dev, res); if (IS_ERR(f->iobase)) { ret = PTR_ERR(f->iobase); goto err_put_ctrl; } /* find the resources - controller memory mapped space */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap"); if (!res) { ret = -ENODEV; goto err_put_ctrl; } /* assign memory mapped starting address and mapped size. */ f->memmap_phy = res->start; f->memmap_phy_size = resource_size(res); /* find the clocks */ f->clk_en = devm_clk_get(dev, "fspi_en"); if (IS_ERR(f->clk_en)) { ret = PTR_ERR(f->clk_en); goto err_put_ctrl; } f->clk = devm_clk_get(dev, "fspi"); if (IS_ERR(f->clk)) { ret = PTR_ERR(f->clk); goto err_put_ctrl; } ret = nxp_fspi_clk_prep_enable(f); if (ret) { dev_err(dev, "can not enable the clock\n"); goto err_put_ctrl; } /* find the irq */ ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_disable_clk; ret = devm_request_irq(dev, ret, nxp_fspi_irq_handler, 0, pdev->name, f); if (ret) { dev_err(dev, "failed to request irq: %d\n", ret); goto err_disable_clk; } mutex_init(&f->lock); ctlr->bus_num = -1; ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; ctlr->mem_ops = &nxp_fspi_mem_ops; nxp_fspi_default_setup(f); ctlr->dev.of_node = np; ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret) goto err_destroy_mutex; return 0; err_destroy_mutex: mutex_destroy(&f->lock); err_disable_clk: nxp_fspi_clk_disable_unprep(f); err_put_ctrl: spi_controller_put(ctlr); dev_err(dev, "NXP FSPI probe failed\n"); return ret; } static int nxp_fspi_remove(struct platform_device *pdev) { struct nxp_fspi *f = platform_get_drvdata(pdev); /* disable the hardware */ fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); nxp_fspi_clk_disable_unprep(f); mutex_destroy(&f->lock); if (f->ahb_addr) iounmap(f->ahb_addr); return 0; } static int nxp_fspi_suspend(struct device *dev) { return 0; } static int nxp_fspi_resume(struct device *dev) { struct nxp_fspi *f = dev_get_drvdata(dev); nxp_fspi_default_setup(f); return 0; } static const struct of_device_id nxp_fspi_dt_ids[] = { { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); static const struct dev_pm_ops nxp_fspi_pm_ops = { .suspend = nxp_fspi_suspend, .resume = nxp_fspi_resume, }; static struct platform_driver nxp_fspi_driver = { .driver = { .name = "nxp-fspi", .of_match_table = nxp_fspi_dt_ids, .pm = &nxp_fspi_pm_ops, }, .probe = nxp_fspi_probe, .remove = nxp_fspi_remove, }; module_platform_driver(nxp_fspi_driver); MODULE_DESCRIPTION("NXP FSPI Controller Driver"); MODULE_AUTHOR("NXP Semiconductor"); MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1