Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
addy ke | 2426 | 63.61% | 9 | 15.25% |
Emil Renner Berthing | 889 | 23.31% | 18 | 30.51% |
Jeffy Chen | 170 | 4.46% | 6 | 10.17% |
Shawn Lin | 96 | 2.52% | 6 | 10.17% |
Brian Norris | 65 | 1.70% | 2 | 3.39% |
Huibin Hong | 33 | 0.87% | 3 | 5.08% |
Julius Werner | 27 | 0.71% | 1 | 1.69% |
Johan Jonker | 22 | 0.58% | 1 | 1.69% |
Caesar Wang | 21 | 0.55% | 1 | 1.69% |
Doug Anderson | 11 | 0.29% | 2 | 3.39% |
Arnd Bergmann | 10 | 0.26% | 1 | 1.69% |
Andy Shevchenko | 8 | 0.21% | 1 | 1.69% |
Dan Carpenter | 7 | 0.18% | 1 | 1.69% |
Jianqun Xu | 7 | 0.18% | 1 | 1.69% |
Andy Yan | 6 | 0.16% | 1 | 1.69% |
Wei Yongjun | 5 | 0.13% | 1 | 1.69% |
Alexander Kochetkov | 4 | 0.10% | 1 | 1.69% |
Suren Baghdasaryan | 3 | 0.08% | 1 | 1.69% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.69% |
Rafael J. Wysocki | 2 | 0.05% | 1 | 1.69% |
Total | 3814 | 59 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd * Author: Addy Ke <addy.ke@rock-chips.com> */ #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/pm_runtime.h> #include <linux/scatterlist.h> #define DRIVER_NAME "rockchip-spi" #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \ writel_relaxed(readl_relaxed(reg) & ~(bits), reg) #define ROCKCHIP_SPI_SET_BITS(reg, bits) \ writel_relaxed(readl_relaxed(reg) | (bits), reg) /* SPI register offsets */ #define ROCKCHIP_SPI_CTRLR0 0x0000 #define ROCKCHIP_SPI_CTRLR1 0x0004 #define ROCKCHIP_SPI_SSIENR 0x0008 #define ROCKCHIP_SPI_SER 0x000c #define ROCKCHIP_SPI_BAUDR 0x0010 #define ROCKCHIP_SPI_TXFTLR 0x0014 #define ROCKCHIP_SPI_RXFTLR 0x0018 #define ROCKCHIP_SPI_TXFLR 0x001c #define ROCKCHIP_SPI_RXFLR 0x0020 #define ROCKCHIP_SPI_SR 0x0024 #define ROCKCHIP_SPI_IPR 0x0028 #define ROCKCHIP_SPI_IMR 0x002c #define ROCKCHIP_SPI_ISR 0x0030 #define ROCKCHIP_SPI_RISR 0x0034 #define ROCKCHIP_SPI_ICR 0x0038 #define ROCKCHIP_SPI_DMACR 0x003c #define ROCKCHIP_SPI_DMATDLR 0x0040 #define ROCKCHIP_SPI_DMARDLR 0x0044 #define ROCKCHIP_SPI_TXDR 0x0400 #define ROCKCHIP_SPI_RXDR 0x0800 /* Bit fields in CTRLR0 */ #define CR0_DFS_OFFSET 0 #define CR0_DFS_4BIT 0x0 #define CR0_DFS_8BIT 0x1 #define CR0_DFS_16BIT 0x2 #define CR0_CFS_OFFSET 2 #define CR0_SCPH_OFFSET 6 #define CR0_SCPOL_OFFSET 7 #define CR0_CSM_OFFSET 8 #define CR0_CSM_KEEP 0x0 /* ss_n be high for half sclk_out cycles */ #define CR0_CSM_HALF 0X1 /* ss_n be high for one sclk_out cycle */ #define CR0_CSM_ONE 0x2 /* ss_n to sclk_out delay */ #define CR0_SSD_OFFSET 10 /* * The period between ss_n active and * sclk_out active is half sclk_out cycles */ #define CR0_SSD_HALF 0x0 /* * The period between ss_n active and * sclk_out active is one sclk_out cycle */ #define CR0_SSD_ONE 0x1 #define CR0_EM_OFFSET 11 #define CR0_EM_LITTLE 0x0 #define CR0_EM_BIG 0x1 #define CR0_FBM_OFFSET 12 #define CR0_FBM_MSB 0x0 #define CR0_FBM_LSB 0x1 #define CR0_BHT_OFFSET 13 #define CR0_BHT_16BIT 0x0 #define CR0_BHT_8BIT 0x1 #define CR0_RSD_OFFSET 14 #define CR0_RSD_MAX 0x3 #define CR0_FRF_OFFSET 16 #define CR0_FRF_SPI 0x0 #define CR0_FRF_SSP 0x1 #define CR0_FRF_MICROWIRE 0x2 #define CR0_XFM_OFFSET 18 #define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET) #define CR0_XFM_TR 0x0 #define CR0_XFM_TO 0x1 #define CR0_XFM_RO 0x2 #define CR0_OPM_OFFSET 20 #define CR0_OPM_MASTER 0x0 #define CR0_OPM_SLAVE 0x1 #define CR0_MTM_OFFSET 0x21 /* Bit fields in SER, 2bit */ #define SER_MASK 0x3 /* Bit fields in BAUDR */ #define BAUDR_SCKDV_MIN 2 #define BAUDR_SCKDV_MAX 65534 /* Bit fields in SR, 5bit */ #define SR_MASK 0x1f #define SR_BUSY (1 << 0) #define SR_TF_FULL (1 << 1) #define SR_TF_EMPTY (1 << 2) #define SR_RF_EMPTY (1 << 3) #define SR_RF_FULL (1 << 4) /* Bit fields in ISR, IMR, ISR, RISR, 5bit */ #define INT_MASK 0x1f #define INT_TF_EMPTY (1 << 0) #define INT_TF_OVERFLOW (1 << 1) #define INT_RF_UNDERFLOW (1 << 2) #define INT_RF_OVERFLOW (1 << 3) #define INT_RF_FULL (1 << 4) /* Bit fields in ICR, 4bit */ #define ICR_MASK 0x0f #define ICR_ALL (1 << 0) #define ICR_RF_UNDERFLOW (1 << 1) #define ICR_RF_OVERFLOW (1 << 2) #define ICR_TF_OVERFLOW (1 << 3) /* Bit fields in DMACR */ #define RF_DMA_EN (1 << 0) #define TF_DMA_EN (1 << 1) /* Driver state flags */ #define RXDMA (1 << 0) #define TXDMA (1 << 1) /* sclk_out: spi master internal logic in rk3x can support 50Mhz */ #define MAX_SCLK_OUT 50000000U /* * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However, * the controller seems to hang when given 0x10000, so stick with this for now. */ #define ROCKCHIP_SPI_MAX_TRANLEN 0xffff #define ROCKCHIP_SPI_MAX_CS_NUM 2 struct rockchip_spi { struct device *dev; struct clk *spiclk; struct clk *apb_pclk; void __iomem *regs; dma_addr_t dma_addr_rx; dma_addr_t dma_addr_tx; const void *tx; void *rx; unsigned int tx_left; unsigned int rx_left; atomic_t state; /*depth of the FIFO buffer */ u32 fifo_len; /* frequency of spiclk */ u32 freq; u8 n_bytes; u8 rsd; bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM]; }; static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable) { writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR); } static inline void wait_for_idle(struct rockchip_spi *rs) { unsigned long timeout = jiffies + msecs_to_jiffies(5); do { if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)) return; } while (!time_after(jiffies, timeout)); dev_warn(rs->dev, "spi controller is in busy state!\n"); } static u32 get_fifo_len(struct rockchip_spi *rs) { u32 fifo; for (fifo = 2; fifo < 32; fifo++) { writel_relaxed(fifo, rs->regs + ROCKCHIP_SPI_TXFTLR); if (fifo != readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFTLR)) break; } writel_relaxed(0, rs->regs + ROCKCHIP_SPI_TXFTLR); return (fifo == 31) ? 0 : fifo; } static void rockchip_spi_set_cs(struct spi_device *spi, bool enable) { struct spi_master *master = spi->master; struct rockchip_spi *rs = spi_master_get_devdata(master); bool cs_asserted = !enable; /* Return immediately for no-op */ if (cs_asserted == rs->cs_asserted[spi->chip_select]) return; if (cs_asserted) { /* Keep things powered as long as CS is asserted */ pm_runtime_get_sync(rs->dev); ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select)); } else { ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select)); /* Drop reference from when we first asserted CS */ pm_runtime_put(rs->dev); } rs->cs_asserted[spi->chip_select] = cs_asserted; } static void rockchip_spi_handle_err(struct spi_master *master, struct spi_message *msg) { struct rockchip_spi *rs = spi_master_get_devdata(master); /* stop running spi transfer * this also flushes both rx and tx fifos */ spi_enable_chip(rs, false); /* make sure all interrupts are masked */ writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); if (atomic_read(&rs->state) & TXDMA) dmaengine_terminate_async(master->dma_tx); if (atomic_read(&rs->state) & RXDMA) dmaengine_terminate_async(master->dma_rx); } static void rockchip_spi_pio_writer(struct rockchip_spi *rs) { u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR); u32 words = min(rs->tx_left, tx_free); rs->tx_left -= words; for (; words; words--) { u32 txw; if (rs->n_bytes == 1) txw = *(u8 *)rs->tx; else txw = *(u16 *)rs->tx; writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR); rs->tx += rs->n_bytes; } } static void rockchip_spi_pio_reader(struct rockchip_spi *rs) { u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); u32 rx_left = rs->rx_left - words; /* the hardware doesn't allow us to change fifo threshold * level while spi is enabled, so instead make sure to leave * enough words in the rx fifo to get the last interrupt * exactly when all words have been received */ if (rx_left) { u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1; if (rx_left < ftl) { rx_left = ftl; words = rs->rx_left - rx_left; } } rs->rx_left = rx_left; for (; words; words--) { u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); if (!rs->rx) continue; if (rs->n_bytes == 1) *(u8 *)rs->rx = (u8)rxw; else *(u16 *)rs->rx = (u16)rxw; rs->rx += rs->n_bytes; } } static irqreturn_t rockchip_spi_isr(int irq, void *dev_id) { struct spi_master *master = dev_id; struct rockchip_spi *rs = spi_master_get_devdata(master); if (rs->tx_left) rockchip_spi_pio_writer(rs); rockchip_spi_pio_reader(rs); if (!rs->rx_left) { spi_enable_chip(rs, false); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); spi_finalize_current_transfer(master); } return IRQ_HANDLED; } static int rockchip_spi_prepare_irq(struct rockchip_spi *rs, struct spi_transfer *xfer) { rs->tx = xfer->tx_buf; rs->rx = xfer->rx_buf; rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0; rs->rx_left = xfer->len / rs->n_bytes; writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR); spi_enable_chip(rs, true); if (rs->tx_left) rockchip_spi_pio_writer(rs); /* 1 means the transfer is in progress */ return 1; } static void rockchip_spi_dma_rxcb(void *data) { struct spi_master *master = data; struct rockchip_spi *rs = spi_master_get_devdata(master); int state = atomic_fetch_andnot(RXDMA, &rs->state); if (state & TXDMA) return; spi_enable_chip(rs, false); spi_finalize_current_transfer(master); } static void rockchip_spi_dma_txcb(void *data) { struct spi_master *master = data; struct rockchip_spi *rs = spi_master_get_devdata(master); int state = atomic_fetch_andnot(TXDMA, &rs->state); if (state & RXDMA) return; /* Wait until the FIFO data completely. */ wait_for_idle(rs); spi_enable_chip(rs, false); spi_finalize_current_transfer(master); } static int rockchip_spi_prepare_dma(struct rockchip_spi *rs, struct spi_master *master, struct spi_transfer *xfer) { struct dma_async_tx_descriptor *rxdesc, *txdesc; atomic_set(&rs->state, 0); rxdesc = NULL; if (xfer->rx_buf) { struct dma_slave_config rxconf = { .direction = DMA_DEV_TO_MEM, .src_addr = rs->dma_addr_rx, .src_addr_width = rs->n_bytes, .src_maxburst = 1, }; dmaengine_slave_config(master->dma_rx, &rxconf); rxdesc = dmaengine_prep_slave_sg( master->dma_rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!rxdesc) return -EINVAL; rxdesc->callback = rockchip_spi_dma_rxcb; rxdesc->callback_param = master; } txdesc = NULL; if (xfer->tx_buf) { struct dma_slave_config txconf = { .direction = DMA_MEM_TO_DEV, .dst_addr = rs->dma_addr_tx, .dst_addr_width = rs->n_bytes, .dst_maxburst = rs->fifo_len / 4, }; dmaengine_slave_config(master->dma_tx, &txconf); txdesc = dmaengine_prep_slave_sg( master->dma_tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!txdesc) { if (rxdesc) dmaengine_terminate_sync(master->dma_rx); return -EINVAL; } txdesc->callback = rockchip_spi_dma_txcb; txdesc->callback_param = master; } /* rx must be started before tx due to spi instinct */ if (rxdesc) { atomic_or(RXDMA, &rs->state); dmaengine_submit(rxdesc); dma_async_issue_pending(master->dma_rx); } spi_enable_chip(rs, true); if (txdesc) { atomic_or(TXDMA, &rs->state); dmaengine_submit(txdesc); dma_async_issue_pending(master->dma_tx); } /* 1 means the transfer is in progress */ return 1; } static void rockchip_spi_config(struct rockchip_spi *rs, struct spi_device *spi, struct spi_transfer *xfer, bool use_dma) { u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET | CR0_BHT_8BIT << CR0_BHT_OFFSET | CR0_SSD_ONE << CR0_SSD_OFFSET | CR0_EM_BIG << CR0_EM_OFFSET; u32 cr1; u32 dmacr = 0; cr0 |= rs->rsd << CR0_RSD_OFFSET; cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET; if (spi->mode & SPI_LSB_FIRST) cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET; if (xfer->rx_buf && xfer->tx_buf) cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET; else if (xfer->rx_buf) cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET; else if (use_dma) cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET; switch (xfer->bits_per_word) { case 4: cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET; cr1 = xfer->len - 1; break; case 8: cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET; cr1 = xfer->len - 1; break; case 16: cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET; cr1 = xfer->len / 2 - 1; break; default: /* we only whitelist 4, 8 and 16 bit words in * master->bits_per_word_mask, so this shouldn't * happen */ unreachable(); } if (use_dma) { if (xfer->tx_buf) dmacr |= TF_DMA_EN; if (xfer->rx_buf) dmacr |= RF_DMA_EN; } writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0); writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1); /* unfortunately setting the fifo threshold level to generate an * interrupt exactly when the fifo is full doesn't seem to work, * so we need the strict inequality here */ if (xfer->len < rs->fifo_len) writel_relaxed(xfer->len - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); else writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); writel_relaxed(rs->fifo_len / 2, rs->regs + ROCKCHIP_SPI_DMATDLR); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_DMARDLR); writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR); /* the hardware only supports an even clock divisor, so * round divisor = spiclk / speed up to nearest even number * so that the resulting speed is <= the requested speed */ writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz), rs->regs + ROCKCHIP_SPI_BAUDR); } static size_t rockchip_spi_max_transfer_size(struct spi_device *spi) { return ROCKCHIP_SPI_MAX_TRANLEN; } static int rockchip_spi_transfer_one( struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct rockchip_spi *rs = spi_master_get_devdata(master); bool use_dma; WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) && (readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)); if (!xfer->tx_buf && !xfer->rx_buf) { dev_err(rs->dev, "No buffer for transfer\n"); return -EINVAL; } if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) { dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len); return -EINVAL; } rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2; use_dma = master->can_dma ? master->can_dma(master, spi, xfer) : false; rockchip_spi_config(rs, spi, xfer, use_dma); if (use_dma) return rockchip_spi_prepare_dma(rs, master, xfer); return rockchip_spi_prepare_irq(rs, xfer); } static bool rockchip_spi_can_dma(struct spi_master *master, struct spi_device *spi, struct spi_transfer *xfer) { struct rockchip_spi *rs = spi_master_get_devdata(master); unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2; /* if the numbor of spi words to transfer is less than the fifo * length we can just fill the fifo and wait for a single irq, * so don't bother setting up dma */ return xfer->len / bytes_per_word >= rs->fifo_len; } static int rockchip_spi_probe(struct platform_device *pdev) { int ret; struct rockchip_spi *rs; struct spi_master *master; struct resource *mem; u32 rsd_nsecs; master = spi_alloc_master(&pdev->dev, sizeof(struct rockchip_spi)); if (!master) return -ENOMEM; platform_set_drvdata(pdev, master); rs = spi_master_get_devdata(master); /* Get basic io resource and map it */ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); rs->regs = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(rs->regs)) { ret = PTR_ERR(rs->regs); goto err_put_master; } rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk"); if (IS_ERR(rs->apb_pclk)) { dev_err(&pdev->dev, "Failed to get apb_pclk\n"); ret = PTR_ERR(rs->apb_pclk); goto err_put_master; } rs->spiclk = devm_clk_get(&pdev->dev, "spiclk"); if (IS_ERR(rs->spiclk)) { dev_err(&pdev->dev, "Failed to get spi_pclk\n"); ret = PTR_ERR(rs->spiclk); goto err_put_master; } ret = clk_prepare_enable(rs->apb_pclk); if (ret < 0) { dev_err(&pdev->dev, "Failed to enable apb_pclk\n"); goto err_put_master; } ret = clk_prepare_enable(rs->spiclk); if (ret < 0) { dev_err(&pdev->dev, "Failed to enable spi_clk\n"); goto err_disable_apbclk; } spi_enable_chip(rs, false); ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_disable_spiclk; ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL, IRQF_ONESHOT, dev_name(&pdev->dev), master); if (ret) goto err_disable_spiclk; rs->dev = &pdev->dev; rs->freq = clk_get_rate(rs->spiclk); if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns", &rsd_nsecs)) { /* rx sample delay is expressed in parent clock cycles (max 3) */ u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8), 1000000000 >> 8); if (!rsd) { dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n", rs->freq, rsd_nsecs); } else if (rsd > CR0_RSD_MAX) { rsd = CR0_RSD_MAX; dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n", rs->freq, rsd_nsecs, CR0_RSD_MAX * 1000000000U / rs->freq); } rs->rsd = rsd; } rs->fifo_len = get_fifo_len(rs); if (!rs->fifo_len) { dev_err(&pdev->dev, "Failed to get fifo length\n"); ret = -EINVAL; goto err_disable_spiclk; } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); master->auto_runtime_pm = true; master->bus_num = pdev->id; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST; master->num_chipselect = ROCKCHIP_SPI_MAX_CS_NUM; master->dev.of_node = pdev->dev.of_node; master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4); master->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX; master->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT); master->set_cs = rockchip_spi_set_cs; master->transfer_one = rockchip_spi_transfer_one; master->max_transfer_size = rockchip_spi_max_transfer_size; master->handle_err = rockchip_spi_handle_err; master->flags = SPI_MASTER_GPIO_SS; master->dma_tx = dma_request_chan(rs->dev, "tx"); if (IS_ERR(master->dma_tx)) { /* Check tx to see if we need defer probing driver */ if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_disable_pm_runtime; } dev_warn(rs->dev, "Failed to request TX DMA channel\n"); master->dma_tx = NULL; } master->dma_rx = dma_request_chan(rs->dev, "rx"); if (IS_ERR(master->dma_rx)) { if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_free_dma_tx; } dev_warn(rs->dev, "Failed to request RX DMA channel\n"); master->dma_rx = NULL; } if (master->dma_tx && master->dma_rx) { rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR; rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR; master->can_dma = rockchip_spi_can_dma; } ret = devm_spi_register_master(&pdev->dev, master); if (ret < 0) { dev_err(&pdev->dev, "Failed to register master\n"); goto err_free_dma_rx; } return 0; err_free_dma_rx: if (master->dma_rx) dma_release_channel(master->dma_rx); err_free_dma_tx: if (master->dma_tx) dma_release_channel(master->dma_tx); err_disable_pm_runtime: pm_runtime_disable(&pdev->dev); err_disable_spiclk: clk_disable_unprepare(rs->spiclk); err_disable_apbclk: clk_disable_unprepare(rs->apb_pclk); err_put_master: spi_master_put(master); return ret; } static int rockchip_spi_remove(struct platform_device *pdev) { struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct rockchip_spi *rs = spi_master_get_devdata(master); pm_runtime_get_sync(&pdev->dev); clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); if (master->dma_tx) dma_release_channel(master->dma_tx); if (master->dma_rx) dma_release_channel(master->dma_rx); spi_master_put(master); return 0; } #ifdef CONFIG_PM_SLEEP static int rockchip_spi_suspend(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); ret = spi_master_suspend(master); if (ret < 0) return ret; ret = pm_runtime_force_suspend(dev); if (ret < 0) return ret; pinctrl_pm_select_sleep_state(dev); return 0; } static int rockchip_spi_resume(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_master_get_devdata(master); pinctrl_pm_select_default_state(dev); ret = pm_runtime_force_resume(dev); if (ret < 0) return ret; ret = spi_master_resume(master); if (ret < 0) { clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); } return 0; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int rockchip_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_master_get_devdata(master); clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); return 0; } static int rockchip_spi_runtime_resume(struct device *dev) { int ret; struct spi_master *master = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_master_get_devdata(master); ret = clk_prepare_enable(rs->apb_pclk); if (ret < 0) return ret; ret = clk_prepare_enable(rs->spiclk); if (ret < 0) clk_disable_unprepare(rs->apb_pclk); return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops rockchip_spi_pm = { SET_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume) SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend, rockchip_spi_runtime_resume, NULL) }; static const struct of_device_id rockchip_spi_dt_match[] = { { .compatible = "rockchip,px30-spi", }, { .compatible = "rockchip,rk3036-spi", }, { .compatible = "rockchip,rk3066-spi", }, { .compatible = "rockchip,rk3188-spi", }, { .compatible = "rockchip,rk3228-spi", }, { .compatible = "rockchip,rk3288-spi", }, { .compatible = "rockchip,rk3308-spi", }, { .compatible = "rockchip,rk3328-spi", }, { .compatible = "rockchip,rk3368-spi", }, { .compatible = "rockchip,rk3399-spi", }, { .compatible = "rockchip,rv1108-spi", }, { }, }; MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match); static struct platform_driver rockchip_spi_driver = { .driver = { .name = DRIVER_NAME, .pm = &rockchip_spi_pm, .of_match_table = of_match_ptr(rockchip_spi_dt_match), }, .probe = rockchip_spi_probe, .remove = rockchip_spi_remove, }; module_platform_driver(rockchip_spi_driver); MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>"); MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1