Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greg Kroah-Hartman | 3991 | 84.13% | 2 | 9.09% |
Larry Finger | 405 | 8.54% | 3 | 13.64% |
Herbert Xu | 125 | 2.63% | 1 | 4.55% |
Kees Cook | 82 | 1.73% | 2 | 9.09% |
Mateusz Kulikowski | 79 | 1.67% | 6 | 27.27% |
Sean MacLennan | 29 | 0.61% | 3 | 13.64% |
Jiri Kosina | 20 | 0.42% | 1 | 4.55% |
David Howells | 6 | 0.13% | 1 | 4.55% |
Mike McCormack | 4 | 0.08% | 1 | 4.55% |
Rashika Kheria | 2 | 0.04% | 1 | 4.55% |
Thomas Meyer | 1 | 0.02% | 1 | 4.55% |
Total | 4744 | 22 |
// SPDX-License-Identifier: GPL-2.0 /* * Host AP crypt: host-based TKIP encryption implementation for Host AP driver * * Copyright (c) 2003-2004, Jouni Malinen <jkmaline@cc.hut.fi> */ #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/if_ether.h> #include <linux/if_arp.h> #include <linux/string.h> #include <linux/scatterlist.h> #include <linux/crc32.h> #include <linux/etherdevice.h> #include "rtllib.h" struct rtllib_tkip_data { #define TKIP_KEY_LEN 32 u8 key[TKIP_KEY_LEN]; int key_set; u32 tx_iv32; u16 tx_iv16; u16 tx_ttak[5]; int tx_phase1_done; u32 rx_iv32; u16 rx_iv16; bool initialized; u16 rx_ttak[5]; int rx_phase1_done; u32 rx_iv32_new; u16 rx_iv16_new; u32 dot11RSNAStatsTKIPReplays; u32 dot11RSNAStatsTKIPICVErrors; u32 dot11RSNAStatsTKIPLocalMICFailures; int key_idx; struct crypto_sync_skcipher *rx_tfm_arc4; struct crypto_shash *rx_tfm_michael; struct crypto_sync_skcipher *tx_tfm_arc4; struct crypto_shash *tx_tfm_michael; /* scratch buffers for virt_to_page() (crypto API) */ u8 rx_hdr[16]; u8 tx_hdr[16]; }; static void *rtllib_tkip_init(int key_idx) { struct rtllib_tkip_data *priv; priv = kzalloc(sizeof(*priv), GFP_ATOMIC); if (priv == NULL) goto fail; priv->key_idx = key_idx; priv->tx_tfm_arc4 = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0); if (IS_ERR(priv->tx_tfm_arc4)) { pr_debug("Could not allocate crypto API arc4\n"); priv->tx_tfm_arc4 = NULL; goto fail; } priv->tx_tfm_michael = crypto_alloc_shash("michael_mic", 0, 0); if (IS_ERR(priv->tx_tfm_michael)) { pr_debug("Could not allocate crypto API michael_mic\n"); priv->tx_tfm_michael = NULL; goto fail; } priv->rx_tfm_arc4 = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0); if (IS_ERR(priv->rx_tfm_arc4)) { pr_debug("Could not allocate crypto API arc4\n"); priv->rx_tfm_arc4 = NULL; goto fail; } priv->rx_tfm_michael = crypto_alloc_shash("michael_mic", 0, 0); if (IS_ERR(priv->rx_tfm_michael)) { pr_debug("Could not allocate crypto API michael_mic\n"); priv->rx_tfm_michael = NULL; goto fail; } return priv; fail: if (priv) { crypto_free_shash(priv->tx_tfm_michael); crypto_free_sync_skcipher(priv->tx_tfm_arc4); crypto_free_shash(priv->rx_tfm_michael); crypto_free_sync_skcipher(priv->rx_tfm_arc4); kfree(priv); } return NULL; } static void rtllib_tkip_deinit(void *priv) { struct rtllib_tkip_data *_priv = priv; if (_priv) { crypto_free_shash(_priv->tx_tfm_michael); crypto_free_sync_skcipher(_priv->tx_tfm_arc4); crypto_free_shash(_priv->rx_tfm_michael); crypto_free_sync_skcipher(_priv->rx_tfm_arc4); } kfree(priv); } static inline u16 RotR1(u16 val) { return (val >> 1) | (val << 15); } static inline u8 Lo8(u16 val) { return val & 0xff; } static inline u8 Hi8(u16 val) { return val >> 8; } static inline u16 Lo16(u32 val) { return val & 0xffff; } static inline u16 Hi16(u32 val) { return val >> 16; } static inline u16 Mk16(u8 hi, u8 lo) { return lo | (((u16) hi) << 8); } static inline u16 Mk16_le(u16 *v) { return *v; } static const u16 Sbox[256] = { 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, }; static inline u16 _S_(u16 v) { u16 t = Sbox[Hi8(v)]; return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8)); } #define PHASE1_LOOP_COUNT 8 static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32) { int i, j; /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */ TTAK[0] = Lo16(IV32); TTAK[1] = Hi16(IV32); TTAK[2] = Mk16(TA[1], TA[0]); TTAK[3] = Mk16(TA[3], TA[2]); TTAK[4] = Mk16(TA[5], TA[4]); for (i = 0; i < PHASE1_LOOP_COUNT; i++) { j = 2 * (i & 1); TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j])); TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j])); TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j])); TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j])); TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i; } } static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK, u16 IV16) { /* Make temporary area overlap WEP seed so that the final copy can be * avoided on little endian hosts. */ u16 *PPK = (u16 *) &WEPSeed[4]; /* Step 1 - make copy of TTAK and bring in TSC */ PPK[0] = TTAK[0]; PPK[1] = TTAK[1]; PPK[2] = TTAK[2]; PPK[3] = TTAK[3]; PPK[4] = TTAK[4]; PPK[5] = TTAK[4] + IV16; /* Step 2 - 96-bit bijective mixing using S-box */ PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) &TK[0])); PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) &TK[2])); PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) &TK[4])); PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) &TK[6])); PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) &TK[8])); PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) &TK[10])); PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) &TK[12])); PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) &TK[14])); PPK[2] += RotR1(PPK[1]); PPK[3] += RotR1(PPK[2]); PPK[4] += RotR1(PPK[3]); PPK[5] += RotR1(PPK[4]); /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value * WEPSeed[0..2] is transmitted as WEP IV */ WEPSeed[0] = Hi8(IV16); WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F; WEPSeed[2] = Lo8(IV16); WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) &TK[0])) >> 1); #ifdef __BIG_ENDIAN { int i; for (i = 0; i < 6; i++) PPK[i] = (PPK[i] << 8) | (PPK[i] >> 8); } #endif } static int rtllib_tkip_encrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct rtllib_tkip_data *tkey = priv; int len; u8 *pos; struct rtllib_hdr_4addr *hdr; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); int ret = 0; u8 rc4key[16], *icv; u32 crc; struct scatterlist sg; if (skb_headroom(skb) < 8 || skb_tailroom(skb) < 4 || skb->len < hdr_len) return -1; hdr = (struct rtllib_hdr_4addr *) skb->data; if (!tcb_desc->bHwSec) { if (!tkey->tx_phase1_done) { tkip_mixing_phase1(tkey->tx_ttak, tkey->key, hdr->addr2, tkey->tx_iv32); tkey->tx_phase1_done = 1; } tkip_mixing_phase2(rc4key, tkey->key, tkey->tx_ttak, tkey->tx_iv16); } else tkey->tx_phase1_done = 1; len = skb->len - hdr_len; pos = skb_push(skb, 8); memmove(pos, pos + 8, hdr_len); pos += hdr_len; if (tcb_desc->bHwSec) { *pos++ = Hi8(tkey->tx_iv16); *pos++ = (Hi8(tkey->tx_iv16) | 0x20) & 0x7F; *pos++ = Lo8(tkey->tx_iv16); } else { *pos++ = rc4key[0]; *pos++ = rc4key[1]; *pos++ = rc4key[2]; } *pos++ = (tkey->key_idx << 6) | (1 << 5) /* Ext IV included */; *pos++ = tkey->tx_iv32 & 0xff; *pos++ = (tkey->tx_iv32 >> 8) & 0xff; *pos++ = (tkey->tx_iv32 >> 16) & 0xff; *pos++ = (tkey->tx_iv32 >> 24) & 0xff; if (!tcb_desc->bHwSec) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, tkey->tx_tfm_arc4); icv = skb_put(skb, 4); crc = ~crc32_le(~0, pos, len); icv[0] = crc; icv[1] = crc >> 8; icv[2] = crc >> 16; icv[3] = crc >> 24; sg_init_one(&sg, pos, len+4); crypto_sync_skcipher_setkey(tkey->tx_tfm_arc4, rc4key, 16); skcipher_request_set_sync_tfm(req, tkey->tx_tfm_arc4); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, len + 4, NULL); ret = crypto_skcipher_encrypt(req); skcipher_request_zero(req); } tkey->tx_iv16++; if (tkey->tx_iv16 == 0) { tkey->tx_phase1_done = 0; tkey->tx_iv32++; } if (!tcb_desc->bHwSec) return ret; return 0; } static int rtllib_tkip_decrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct rtllib_tkip_data *tkey = priv; u8 keyidx, *pos; u32 iv32; u16 iv16; struct rtllib_hdr_4addr *hdr; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); u8 rc4key[16]; u8 icv[4]; u32 crc; struct scatterlist sg; int plen; int err; if (skb->len < hdr_len + 8 + 4) return -1; hdr = (struct rtllib_hdr_4addr *) skb->data; pos = skb->data + hdr_len; keyidx = pos[3]; if (!(keyidx & (1 << 5))) { if (net_ratelimit()) { netdev_dbg(skb->dev, "Received packet without ExtIV flag from %pM\n", hdr->addr2); } return -2; } keyidx >>= 6; if (tkey->key_idx != keyidx) { netdev_dbg(skb->dev, "RX tkey->key_idx=%d frame keyidx=%d priv=%p\n", tkey->key_idx, keyidx, priv); return -6; } if (!tkey->key_set) { if (net_ratelimit()) { netdev_dbg(skb->dev, "Received packet from %pM with keyid=%d that does not have a configured key\n", hdr->addr2, keyidx); } return -3; } iv16 = (pos[0] << 8) | pos[2]; iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24); pos += 8; if (!tcb_desc->bHwSec || (skb->cb[0] == 1)) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, tkey->rx_tfm_arc4); if ((iv32 < tkey->rx_iv32 || (iv32 == tkey->rx_iv32 && iv16 <= tkey->rx_iv16)) && tkey->initialized) { if (net_ratelimit()) { netdev_dbg(skb->dev, "Replay detected: STA= %pM previous TSC %08x%04x received TSC %08x%04x\n", hdr->addr2, tkey->rx_iv32, tkey->rx_iv16, iv32, iv16); } tkey->dot11RSNAStatsTKIPReplays++; return -4; } tkey->initialized = true; if (iv32 != tkey->rx_iv32 || !tkey->rx_phase1_done) { tkip_mixing_phase1(tkey->rx_ttak, tkey->key, hdr->addr2, iv32); tkey->rx_phase1_done = 1; } tkip_mixing_phase2(rc4key, tkey->key, tkey->rx_ttak, iv16); plen = skb->len - hdr_len - 12; sg_init_one(&sg, pos, plen+4); crypto_sync_skcipher_setkey(tkey->rx_tfm_arc4, rc4key, 16); skcipher_request_set_sync_tfm(req, tkey->rx_tfm_arc4); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, plen + 4, NULL); err = crypto_skcipher_decrypt(req); skcipher_request_zero(req); if (err) { if (net_ratelimit()) { netdev_dbg(skb->dev, "Failed to decrypt received packet from %pM\n", hdr->addr2); } return -7; } crc = ~crc32_le(~0, pos, plen); icv[0] = crc; icv[1] = crc >> 8; icv[2] = crc >> 16; icv[3] = crc >> 24; if (memcmp(icv, pos + plen, 4) != 0) { if (iv32 != tkey->rx_iv32) { /* Previously cached Phase1 result was already * lost, so it needs to be recalculated for the * next packet. */ tkey->rx_phase1_done = 0; } if (net_ratelimit()) { netdev_dbg(skb->dev, "ICV error detected: STA= %pM\n", hdr->addr2); } tkey->dot11RSNAStatsTKIPICVErrors++; return -5; } } /* Update real counters only after Michael MIC verification has * completed */ tkey->rx_iv32_new = iv32; tkey->rx_iv16_new = iv16; /* Remove IV and ICV */ memmove(skb->data + 8, skb->data, hdr_len); skb_pull(skb, 8); skb_trim(skb, skb->len - 4); return keyidx; } static int michael_mic(struct crypto_shash *tfm_michael, u8 *key, u8 *hdr, u8 *data, size_t data_len, u8 *mic) { SHASH_DESC_ON_STACK(desc, tfm_michael); int err; desc->tfm = tfm_michael; if (crypto_shash_setkey(tfm_michael, key, 8)) return -1; err = crypto_shash_init(desc); if (err) goto out; err = crypto_shash_update(desc, hdr, 16); if (err) goto out; err = crypto_shash_update(desc, data, data_len); if (err) goto out; err = crypto_shash_final(desc, mic); out: shash_desc_zero(desc); return err; } static void michael_mic_hdr(struct sk_buff *skb, u8 *hdr) { struct rtllib_hdr_4addr *hdr11; hdr11 = (struct rtllib_hdr_4addr *) skb->data; switch (le16_to_cpu(hdr11->frame_ctl) & (RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS)) { case RTLLIB_FCTL_TODS: ether_addr_copy(hdr, hdr11->addr3); /* DA */ ether_addr_copy(hdr + ETH_ALEN, hdr11->addr2); /* SA */ break; case RTLLIB_FCTL_FROMDS: ether_addr_copy(hdr, hdr11->addr1); /* DA */ ether_addr_copy(hdr + ETH_ALEN, hdr11->addr3); /* SA */ break; case RTLLIB_FCTL_FROMDS | RTLLIB_FCTL_TODS: ether_addr_copy(hdr, hdr11->addr3); /* DA */ ether_addr_copy(hdr + ETH_ALEN, hdr11->addr4); /* SA */ break; case 0: ether_addr_copy(hdr, hdr11->addr1); /* DA */ ether_addr_copy(hdr + ETH_ALEN, hdr11->addr2); /* SA */ break; } hdr[12] = 0; /* priority */ hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */ } static int rtllib_michael_mic_add(struct sk_buff *skb, int hdr_len, void *priv) { struct rtllib_tkip_data *tkey = priv; u8 *pos; struct rtllib_hdr_4addr *hdr; hdr = (struct rtllib_hdr_4addr *) skb->data; if (skb_tailroom(skb) < 8 || skb->len < hdr_len) { netdev_dbg(skb->dev, "Invalid packet for Michael MIC add (tailroom=%d hdr_len=%d skb->len=%d)\n", skb_tailroom(skb), hdr_len, skb->len); return -1; } michael_mic_hdr(skb, tkey->tx_hdr); if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl))) tkey->tx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07; pos = skb_put(skb, 8); if (michael_mic(tkey->tx_tfm_michael, &tkey->key[16], tkey->tx_hdr, skb->data + hdr_len, skb->len - 8 - hdr_len, pos)) return -1; return 0; } static void rtllib_michael_mic_failure(struct net_device *dev, struct rtllib_hdr_4addr *hdr, int keyidx) { union iwreq_data wrqu; struct iw_michaelmicfailure ev; /* TODO: needed parameters: count, keyid, key type, TSC */ memset(&ev, 0, sizeof(ev)); ev.flags = keyidx & IW_MICFAILURE_KEY_ID; if (hdr->addr1[0] & 0x01) ev.flags |= IW_MICFAILURE_GROUP; else ev.flags |= IW_MICFAILURE_PAIRWISE; ev.src_addr.sa_family = ARPHRD_ETHER; ether_addr_copy(ev.src_addr.sa_data, hdr->addr2); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = sizeof(ev); wireless_send_event(dev, IWEVMICHAELMICFAILURE, &wrqu, (char *) &ev); } static int rtllib_michael_mic_verify(struct sk_buff *skb, int keyidx, int hdr_len, void *priv) { struct rtllib_tkip_data *tkey = priv; u8 mic[8]; struct rtllib_hdr_4addr *hdr; hdr = (struct rtllib_hdr_4addr *) skb->data; if (!tkey->key_set) return -1; michael_mic_hdr(skb, tkey->rx_hdr); if (RTLLIB_QOS_HAS_SEQ(le16_to_cpu(hdr->frame_ctl))) tkey->rx_hdr[12] = *(skb->data + hdr_len - 2) & 0x07; if (michael_mic(tkey->rx_tfm_michael, &tkey->key[24], tkey->rx_hdr, skb->data + hdr_len, skb->len - 8 - hdr_len, mic)) return -1; if (memcmp(mic, skb->data + skb->len - 8, 8) != 0) { struct rtllib_hdr_4addr *hdr; hdr = (struct rtllib_hdr_4addr *) skb->data; netdev_dbg(skb->dev, "Michael MIC verification failed for MSDU from %pM keyidx=%d\n", hdr->addr2, keyidx); netdev_dbg(skb->dev, "%d\n", memcmp(mic, skb->data + skb->len - 8, 8) != 0); if (skb->dev) { pr_info("skb->dev != NULL\n"); rtllib_michael_mic_failure(skb->dev, hdr, keyidx); } tkey->dot11RSNAStatsTKIPLocalMICFailures++; return -1; } /* Update TSC counters for RX now that the packet verification has * completed. */ tkey->rx_iv32 = tkey->rx_iv32_new; tkey->rx_iv16 = tkey->rx_iv16_new; skb_trim(skb, skb->len - 8); return 0; } static int rtllib_tkip_set_key(void *key, int len, u8 *seq, void *priv) { struct rtllib_tkip_data *tkey = priv; int keyidx; struct crypto_shash *tfm = tkey->tx_tfm_michael; struct crypto_sync_skcipher *tfm2 = tkey->tx_tfm_arc4; struct crypto_shash *tfm3 = tkey->rx_tfm_michael; struct crypto_sync_skcipher *tfm4 = tkey->rx_tfm_arc4; keyidx = tkey->key_idx; memset(tkey, 0, sizeof(*tkey)); tkey->key_idx = keyidx; tkey->tx_tfm_michael = tfm; tkey->tx_tfm_arc4 = tfm2; tkey->rx_tfm_michael = tfm3; tkey->rx_tfm_arc4 = tfm4; if (len == TKIP_KEY_LEN) { memcpy(tkey->key, key, TKIP_KEY_LEN); tkey->key_set = 1; tkey->tx_iv16 = 1; /* TSC is initialized to 1 */ if (seq) { tkey->rx_iv32 = (seq[5] << 24) | (seq[4] << 16) | (seq[3] << 8) | seq[2]; tkey->rx_iv16 = (seq[1] << 8) | seq[0]; } } else if (len == 0) tkey->key_set = 0; else return -1; return 0; } static int rtllib_tkip_get_key(void *key, int len, u8 *seq, void *priv) { struct rtllib_tkip_data *tkey = priv; if (len < TKIP_KEY_LEN) return -1; if (!tkey->key_set) return 0; memcpy(key, tkey->key, TKIP_KEY_LEN); if (seq) { /* Return the sequence number of the last transmitted frame. */ u16 iv16 = tkey->tx_iv16; u32 iv32 = tkey->tx_iv32; if (iv16 == 0) iv32--; iv16--; seq[0] = tkey->tx_iv16; seq[1] = tkey->tx_iv16 >> 8; seq[2] = tkey->tx_iv32; seq[3] = tkey->tx_iv32 >> 8; seq[4] = tkey->tx_iv32 >> 16; seq[5] = tkey->tx_iv32 >> 24; } return TKIP_KEY_LEN; } static void rtllib_tkip_print_stats(struct seq_file *m, void *priv) { struct rtllib_tkip_data *tkip = priv; seq_printf(m, "key[%d] alg=TKIP key_set=%d tx_pn=%02x%02x%02x%02x%02x%02x rx_pn=%02x%02x%02x%02x%02x%02x replays=%d icv_errors=%d local_mic_failures=%d\n", tkip->key_idx, tkip->key_set, (tkip->tx_iv32 >> 24) & 0xff, (tkip->tx_iv32 >> 16) & 0xff, (tkip->tx_iv32 >> 8) & 0xff, tkip->tx_iv32 & 0xff, (tkip->tx_iv16 >> 8) & 0xff, tkip->tx_iv16 & 0xff, (tkip->rx_iv32 >> 24) & 0xff, (tkip->rx_iv32 >> 16) & 0xff, (tkip->rx_iv32 >> 8) & 0xff, tkip->rx_iv32 & 0xff, (tkip->rx_iv16 >> 8) & 0xff, tkip->rx_iv16 & 0xff, tkip->dot11RSNAStatsTKIPReplays, tkip->dot11RSNAStatsTKIPICVErrors, tkip->dot11RSNAStatsTKIPLocalMICFailures); } static struct lib80211_crypto_ops rtllib_crypt_tkip = { .name = "R-TKIP", .init = rtllib_tkip_init, .deinit = rtllib_tkip_deinit, .encrypt_mpdu = rtllib_tkip_encrypt, .decrypt_mpdu = rtllib_tkip_decrypt, .encrypt_msdu = rtllib_michael_mic_add, .decrypt_msdu = rtllib_michael_mic_verify, .set_key = rtllib_tkip_set_key, .get_key = rtllib_tkip_get_key, .print_stats = rtllib_tkip_print_stats, .extra_mpdu_prefix_len = 4 + 4, /* IV + ExtIV */ .extra_mpdu_postfix_len = 4, /* ICV */ .extra_msdu_postfix_len = 8, /* MIC */ .owner = THIS_MODULE, }; static int __init rtllib_crypto_tkip_init(void) { return lib80211_register_crypto_ops(&rtllib_crypt_tkip); } static void __exit rtllib_crypto_tkip_exit(void) { lib80211_unregister_crypto_ops(&rtllib_crypt_tkip); } module_init(rtllib_crypto_tkip_init); module_exit(rtllib_crypto_tkip_exit); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1