Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greg Kroah-Hartman | 1145 | 82.79% | 2 | 11.76% |
Herbert Xu | 102 | 7.38% | 1 | 5.88% |
Larry Finger | 83 | 6.00% | 3 | 17.65% |
Sean MacLennan | 21 | 1.52% | 3 | 17.65% |
Kees Cook | 16 | 1.16% | 1 | 5.88% |
David Howells | 6 | 0.43% | 1 | 5.88% |
Mateusz Kulikowski | 5 | 0.36% | 3 | 17.65% |
Rashika Kheria | 2 | 0.14% | 1 | 5.88% |
Mahati Chamarthy | 2 | 0.14% | 1 | 5.88% |
Thomas Meyer | 1 | 0.07% | 1 | 5.88% |
Total | 1383 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * Host AP crypt: host-based WEP encryption implementation for Host AP driver * * Copyright (c) 2002-2004, Jouni Malinen <jkmaline@cc.hut.fi> */ #include <crypto/skcipher.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/random.h> #include <linux/skbuff.h> #include <linux/string.h> #include "rtllib.h" #include <linux/scatterlist.h> #include <linux/crc32.h> struct prism2_wep_data { u32 iv; #define WEP_KEY_LEN 13 u8 key[WEP_KEY_LEN + 1]; u8 key_len; u8 key_idx; struct crypto_sync_skcipher *tx_tfm; struct crypto_sync_skcipher *rx_tfm; }; static void *prism2_wep_init(int keyidx) { struct prism2_wep_data *priv; priv = kzalloc(sizeof(*priv), GFP_ATOMIC); if (priv == NULL) goto fail; priv->key_idx = keyidx; priv->tx_tfm = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0); if (IS_ERR(priv->tx_tfm)) { pr_debug("rtllib_crypt_wep: could not allocate crypto API arc4\n"); priv->tx_tfm = NULL; goto fail; } priv->rx_tfm = crypto_alloc_sync_skcipher("ecb(arc4)", 0, 0); if (IS_ERR(priv->rx_tfm)) { pr_debug("rtllib_crypt_wep: could not allocate crypto API arc4\n"); priv->rx_tfm = NULL; goto fail; } /* start WEP IV from a random value */ get_random_bytes(&priv->iv, 4); return priv; fail: if (priv) { crypto_free_sync_skcipher(priv->tx_tfm); crypto_free_sync_skcipher(priv->rx_tfm); kfree(priv); } return NULL; } static void prism2_wep_deinit(void *priv) { struct prism2_wep_data *_priv = priv; if (_priv) { crypto_free_sync_skcipher(_priv->tx_tfm); crypto_free_sync_skcipher(_priv->rx_tfm); } kfree(priv); } /* Perform WEP encryption on given skb that has at least 4 bytes of headroom * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted, * so the payload length increases with 8 bytes. * * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) */ static int prism2_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct prism2_wep_data *wep = priv; u32 klen, len; u8 key[WEP_KEY_LEN + 3]; u8 *pos; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); u32 crc; u8 *icv; struct scatterlist sg; int err; if (skb_headroom(skb) < 4 || skb_tailroom(skb) < 4 || skb->len < hdr_len){ pr_err("Error!!! headroom=%d tailroom=%d skblen=%d hdr_len=%d\n", skb_headroom(skb), skb_tailroom(skb), skb->len, hdr_len); return -1; } len = skb->len - hdr_len; pos = skb_push(skb, 4); memmove(pos, pos + 4, hdr_len); pos += hdr_len; klen = 3 + wep->key_len; wep->iv++; /* Fluhrer, Mantin, and Shamir have reported weaknesses in the key * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N) * can be used to speedup attacks, so avoid using them. */ if ((wep->iv & 0xff00) == 0xff00) { u8 B = (wep->iv >> 16) & 0xff; if (B >= 3 && B < klen) wep->iv += 0x0100; } /* Prepend 24-bit IV to RC4 key and TX frame */ *pos++ = key[0] = (wep->iv >> 16) & 0xff; *pos++ = key[1] = (wep->iv >> 8) & 0xff; *pos++ = key[2] = wep->iv & 0xff; *pos++ = wep->key_idx << 6; /* Copy rest of the WEP key (the secret part) */ memcpy(key + 3, wep->key, wep->key_len); if (!tcb_desc->bHwSec) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, wep->tx_tfm); /* Append little-endian CRC32 and encrypt it to produce ICV */ crc = ~crc32_le(~0, pos, len); icv = skb_put(skb, 4); icv[0] = crc; icv[1] = crc >> 8; icv[2] = crc >> 16; icv[3] = crc >> 24; sg_init_one(&sg, pos, len+4); crypto_sync_skcipher_setkey(wep->tx_tfm, key, klen); skcipher_request_set_sync_tfm(req, wep->tx_tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, len + 4, NULL); err = crypto_skcipher_encrypt(req); skcipher_request_zero(req); return err; } return 0; } /* Perform WEP decryption on given struct buffer. Buffer includes whole WEP * part of the frame: IV (4 bytes), encrypted payload (including SNAP header), * ICV (4 bytes). len includes both IV and ICV. * * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on * failure. If frame is OK, IV and ICV will be removed. */ static int prism2_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct prism2_wep_data *wep = priv; u32 klen, plen; u8 key[WEP_KEY_LEN + 3]; u8 keyidx, *pos; struct cb_desc *tcb_desc = (struct cb_desc *)(skb->cb + MAX_DEV_ADDR_SIZE); u32 crc; u8 icv[4]; struct scatterlist sg; int err; if (skb->len < hdr_len + 8) return -1; pos = skb->data + hdr_len; key[0] = *pos++; key[1] = *pos++; key[2] = *pos++; keyidx = *pos++ >> 6; if (keyidx != wep->key_idx) return -1; klen = 3 + wep->key_len; /* Copy rest of the WEP key (the secret part) */ memcpy(key + 3, wep->key, wep->key_len); /* Apply RC4 to data and compute CRC32 over decrypted data */ plen = skb->len - hdr_len - 8; if (!tcb_desc->bHwSec) { SYNC_SKCIPHER_REQUEST_ON_STACK(req, wep->rx_tfm); sg_init_one(&sg, pos, plen+4); crypto_sync_skcipher_setkey(wep->rx_tfm, key, klen); skcipher_request_set_sync_tfm(req, wep->rx_tfm); skcipher_request_set_callback(req, 0, NULL, NULL); skcipher_request_set_crypt(req, &sg, &sg, plen + 4, NULL); err = crypto_skcipher_decrypt(req); skcipher_request_zero(req); if (err) return -7; crc = ~crc32_le(~0, pos, plen); icv[0] = crc; icv[1] = crc >> 8; icv[2] = crc >> 16; icv[3] = crc >> 24; if (memcmp(icv, pos + plen, 4) != 0) { /* ICV mismatch - drop frame */ return -2; } } /* Remove IV and ICV */ memmove(skb->data + 4, skb->data, hdr_len); skb_pull(skb, 4); skb_trim(skb, skb->len - 4); return 0; } static int prism2_wep_set_key(void *key, int len, u8 *seq, void *priv) { struct prism2_wep_data *wep = priv; if (len < 0 || len > WEP_KEY_LEN) return -1; memcpy(wep->key, key, len); wep->key_len = len; return 0; } static int prism2_wep_get_key(void *key, int len, u8 *seq, void *priv) { struct prism2_wep_data *wep = priv; if (len < wep->key_len) return -1; memcpy(key, wep->key, wep->key_len); return wep->key_len; } static void prism2_wep_print_stats(struct seq_file *m, void *priv) { struct prism2_wep_data *wep = priv; seq_printf(m, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len); } static struct lib80211_crypto_ops rtllib_crypt_wep = { .name = "R-WEP", .init = prism2_wep_init, .deinit = prism2_wep_deinit, .encrypt_mpdu = prism2_wep_encrypt, .decrypt_mpdu = prism2_wep_decrypt, .encrypt_msdu = NULL, .decrypt_msdu = NULL, .set_key = prism2_wep_set_key, .get_key = prism2_wep_get_key, .print_stats = prism2_wep_print_stats, .extra_mpdu_prefix_len = 4, /* IV */ .extra_mpdu_postfix_len = 4, /* ICV */ .owner = THIS_MODULE, }; static int __init rtllib_crypto_wep_init(void) { return lib80211_register_crypto_ops(&rtllib_crypt_wep); } static void __exit rtllib_crypto_wep_exit(void) { lib80211_unregister_crypto_ops(&rtllib_crypt_wep); } module_init(rtllib_crypto_wep_init); module_exit(rtllib_crypto_wep_exit); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1