Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Jerry Chuang 3465 96.60% 1 3.33%
Sam Muhammed 22 0.61% 3 10.00%
John Whitmore 22 0.61% 8 26.67%
Colin Vidal 12 0.33% 1 3.33%
Derek Robson 12 0.33% 1 3.33%
simran singhal 10 0.28% 1 3.33%
Paul Bolle 10 0.28% 1 3.33%
Paul Gortmaker 7 0.20% 1 3.33%
Teodora Baluta 7 0.20% 3 10.00%
Benoit Taine 5 0.14% 1 3.33%
Johannes Berg 3 0.08% 1 3.33%
Stephen Brennan 2 0.06% 1 3.33%
Ana Rey Botello 2 0.06% 1 3.33%
Greg Kroah-Hartman 2 0.06% 1 3.33%
Luis de Bethencourt 2 0.06% 1 3.33%
Joe Perches 1 0.03% 1 3.33%
Shraddha Barke 1 0.03% 1 3.33%
Martin Karamihov 1 0.03% 1 3.33%
Justin P. Mattock 1 0.03% 1 3.33%
Total 3587 30


// SPDX-License-Identifier: GPL-2.0
/******************************************************************************
 *
 *  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
 *
 *  Contact Information:
 *  James P. Ketrenos <ipw2100-admin@linux.intel.com>
 *  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 *
 *
 *  Few modifications for Realtek's Wi-Fi drivers by
 *  Andrea Merello <andrea.merello@gmail.com>
 *
 *  A special thanks goes to Realtek for their support !
 *
 ******************************************************************************/

#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <linux/uaccess.h>
#include <linux/if_vlan.h>

#include "ieee80211.h"


/*
 *
 *
 * 802.11 Data Frame
 *
 *
 * 802.11 frame_contorl for data frames - 2 bytes
 *      ,-----------------------------------------------------------------------------------------.
 * bits | 0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  a  |  b  |  c  |  d  |  e   |
 *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
 * val  | 0  |  0  |  0  |  1  |  x  |  0  |  0  |  0  |  1  |  0  |  x  |  x  |  x  |  x  |  x   |
 *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
 * desc | ^-ver-^  |  ^type-^  |  ^-----subtype-----^  | to  |from |more |retry| pwr |more |wep   |
 *      |          |           | x=0 data,x=1 data+ack | DS  | DS  |frag |     | mgm |data |      |
 *      '-----------------------------------------------------------------------------------------'
 *                                                    /\
 *                                                    |
 * 802.11 Data Frame                                  |
 *           ,--------- 'ctrl' expands to >-----------'
 *           |
 *        ,--'---,-------------------------------------------------------------.
 *  Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
 *        |------|------|---------|---------|---------|------|---------|------|
 *  Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
 *        |      | tion | (BSSID) |         |         | ence |  data   |      |
 *        `--------------------------------------------------|         |------'
 *  Total: 28 non-data bytes                                 `----.----'
 *                                                                |
 *         .- 'Frame data' expands to <---------------------------'
 *         |
 *         V
 *        ,---------------------------------------------------.
 *  Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
 *        |------|------|---------|----------|------|---------|
 *  Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
 *        | DSAP | SSAP |         |          |      | Packet  |
 *        | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
 *        `-----------------------------------------|         |
 *  Total: 8 non-data bytes                         `----.----'
 *                                                       |
 *         .- 'IP Packet' expands, if WEP enabled, to <--'
 *         |
 *         V
 *        ,-----------------------.
 *  Bytes |  4  |   0-2296  |  4  |
 *        |-----|-----------|-----|
 *  Desc. | IV  | Encrypted | ICV |
 *        |     | IP Packet |     |
 *        `-----------------------'
 *  Total: 8 non-data bytes
 *
 *
 *  802.3 Ethernet Data Frame
 *
 *        ,-----------------------------------------.
 *  Bytes |   6   |   6   |  2   |  Variable |   4  |
 *        |-------|-------|------|-----------|------|
 *  Desc. | Dest. | Source| Type | IP Packet |  fcs |
 *        |  MAC  |  MAC  |      |           |      |
 *        `-----------------------------------------'
 *  Total: 18 non-data bytes
 *
 *  In the event that fragmentation is required, the incoming payload is split into
 *  N parts of size ieee->fts.  The first fragment contains the SNAP header and the
 *  remaining packets are just data.
 *
 *  If encryption is enabled, each fragment payload size is reduced by enough space
 *  to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
 *  So if you have 1500 bytes of payload with ieee->fts set to 500 without
 *  encryption it will take 3 frames.  With WEP it will take 4 frames as the
 *  payload of each frame is reduced to 492 bytes.
 *
 * SKB visualization
 *
 *  ,- skb->data
 * |
 * |    ETHERNET HEADER        ,-<-- PAYLOAD
 * |                           |     14 bytes from skb->data
 * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
 * |                       | | |
 * |,-Dest.--. ,--Src.---. | | |
 * |  6 bytes| | 6 bytes | | | |
 * v         | |         | | | |
 * 0         | v       1 | v | v           2
 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 *     ^     | ^         | ^ |
 *     |     | |         | | |
 *     |     | |         | `T' <---- 2 bytes for Type
 *     |     | |         |
 *     |     | '---SNAP--' <-------- 6 bytes for SNAP
 *     |     |
 *     `-IV--' <-------------------- 4 bytes for IV (WEP)
 *
 *      SNAP HEADER
 *
 */

static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };

static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
{
	struct ieee80211_snap_hdr *snap;
	u8 *oui;

	snap = (struct ieee80211_snap_hdr *)data;
	snap->dsap = 0xaa;
	snap->ssap = 0xaa;
	snap->ctrl = 0x03;

	if (h_proto == 0x8137 || h_proto == 0x80f3)
		oui = P802_1H_OUI;
	else
		oui = RFC1042_OUI;
	snap->oui[0] = oui[0];
	snap->oui[1] = oui[1];
	snap->oui[2] = oui[2];

	*(__be16 *)(data + SNAP_SIZE) = htons(h_proto);

	return SNAP_SIZE + sizeof(u16);
}

int ieee80211_encrypt_fragment(
	struct ieee80211_device *ieee,
	struct sk_buff *frag,
	int hdr_len)
{
	struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
	int res;

	if (!(crypt && crypt->ops)) {
		printk("=========>%s(), crypt is null\n", __func__);
		return -1;
	}

	if (ieee->tkip_countermeasures &&
	    crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
		if (net_ratelimit()) {
			struct rtl_80211_hdr_3addrqos *header;

			header = (struct rtl_80211_hdr_3addrqos *)frag->data;
			netdev_dbg(ieee->dev, "TKIP countermeasures: dropped "
			       "TX packet to %pM\n", header->addr1);
		}
		return -1;
	}

	/* To encrypt, frame format is:
	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
	 */

	// PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
	/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
	 * call both MSDU and MPDU encryption functions from here.
	 */
	atomic_inc(&crypt->refcnt);
	res = 0;
	if (crypt->ops->encrypt_msdu)
		res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
	if (res == 0 && crypt->ops->encrypt_mpdu)
		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);

	atomic_dec(&crypt->refcnt);
	if (res < 0) {
		netdev_info(ieee->dev, "Encryption failed: len=%d.\n",
			    frag->len);
		ieee->ieee_stats.tx_discards++;
		return -1;
	}

	return 0;
}


void ieee80211_txb_free(struct ieee80211_txb *txb)
{
	//int i;
	if (unlikely(!txb))
		return;
	kfree(txb);
}
EXPORT_SYMBOL(ieee80211_txb_free);

static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
						 gfp_t gfp_mask)
{
	struct ieee80211_txb *txb;
	int i;
	txb = kmalloc(
		sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
		gfp_mask);
	if (!txb)
		return NULL;

	memset(txb, 0, sizeof(struct ieee80211_txb));
	txb->nr_frags = nr_frags;
	txb->frag_size = __cpu_to_le16(txb_size);

	for (i = 0; i < nr_frags; i++) {
		txb->fragments[i] = dev_alloc_skb(txb_size);
		if (unlikely(!txb->fragments[i])) {
			i--;
			break;
		}
		memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
	}
	if (unlikely(i != nr_frags)) {
		while (i >= 0)
			dev_kfree_skb_any(txb->fragments[i--]);
		kfree(txb);
		return NULL;
	}
	return txb;
}

// Classify the to-be send data packet
// Need to acquire the sent queue index.
static int
ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
{
	struct ethhdr *eth;
	struct iphdr *ip;
	eth = (struct ethhdr *)skb->data;
	if (eth->h_proto != htons(ETH_P_IP))
		return 0;

	ip = ip_hdr(skb);
	switch (ip->tos & 0xfc) {
	case 0x20:
		return 2;
	case 0x40:
		return 1;
	case 0x60:
		return 3;
	case 0x80:
		return 4;
	case 0xa0:
		return 5;
	case 0xc0:
		return 6;
	case 0xe0:
		return 7;
	default:
		return 0;
	}
}

static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
				       struct sk_buff *skb, struct cb_desc *tcb_desc)
{
	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
	struct tx_ts_record        *pTxTs = NULL;
	struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;

	if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
		return;
	if (!IsQoSDataFrame(skb->data))
		return;

	if (is_multicast_ether_addr(hdr->addr1))
		return;
	//check packet and mode later
	if (!ieee->GetNmodeSupportBySecCfg(ieee->dev)) {
		return;
	}
	if (pHTInfo->bCurrentAMPDUEnable) {
		if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true)) {
			printk("===>can't get TS\n");
			return;
		}
		if (!pTxTs->tx_admitted_ba_record.valid) {
			TsStartAddBaProcess(ieee, pTxTs);
			goto FORCED_AGG_SETTING;
		} else if (!pTxTs->using_ba) {
			if (SN_LESS(pTxTs->tx_admitted_ba_record.start_seq_ctrl.field.seq_num, (pTxTs->tx_cur_seq + 1) % 4096))
				pTxTs->using_ba = true;
			else
				goto FORCED_AGG_SETTING;
		}

		if (ieee->iw_mode == IW_MODE_INFRA) {
			tcb_desc->bAMPDUEnable = true;
			tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
			tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
		}
	}
FORCED_AGG_SETTING:
	switch (pHTInfo->ForcedAMPDUMode) {
		case HT_AGG_AUTO:
			break;

		case HT_AGG_FORCE_ENABLE:
			tcb_desc->bAMPDUEnable = true;
			tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
			tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
			break;

		case HT_AGG_FORCE_DISABLE:
			tcb_desc->bAMPDUEnable = false;
			tcb_desc->ampdu_density = 0;
			tcb_desc->ampdu_factor = 0;
			break;

	}
		return;
}

static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
					      struct cb_desc *tcb_desc)
{
	tcb_desc->bUseShortPreamble = false;
	if (tcb_desc->data_rate == 2) {//// 1M can only use Long Preamble. 11B spec
		return;
	} else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) {
		tcb_desc->bUseShortPreamble = true;
	}
	return;
}
static void
ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
{
	PRT_HIGH_THROUGHPUT		pHTInfo = ieee->pHTInfo;

	tcb_desc->bUseShortGI		= false;

	if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
		return;

	if (pHTInfo->bForcedShortGI) {
		tcb_desc->bUseShortGI = true;
		return;
	}

	if ((pHTInfo->bCurBW40MHz == true) && pHTInfo->bCurShortGI40MHz)
		tcb_desc->bUseShortGI = true;
	else if ((pHTInfo->bCurBW40MHz == false) && pHTInfo->bCurShortGI20MHz)
		tcb_desc->bUseShortGI = true;
}

static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
					  struct cb_desc *tcb_desc)
{
	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;

	tcb_desc->bPacketBW = false;

	if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT)
		return;

	if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
		return;

	if ((tcb_desc->data_rate & 0x80) == 0) // If using legacy rate, it shall use 20MHz channel.
		return;
	//BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
	if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
		tcb_desc->bPacketBW = true;
	return;
}

static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
					   struct cb_desc *tcb_desc,
					   struct sk_buff *skb)
{
	// Common Settings
	tcb_desc->bRTSSTBC			= false;
	tcb_desc->bRTSUseShortGI		= false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
	tcb_desc->bCTSEnable			= false; // Most of protection using RTS/CTS
	tcb_desc->RTSSC				= 0;		// 20MHz: Don't care;  40MHz: Duplicate.
	tcb_desc->bRTSBW			= false; // RTS frame bandwidth is always 20MHz

	if (tcb_desc->bBroadcast || tcb_desc->bMulticast) //only unicast frame will use rts/cts
		return;

	if (is_broadcast_ether_addr(skb->data + 16))  //check addr3 as infrastructure add3 is DA.
		return;

	if (ieee->mode < IEEE_N_24G) /* b, g mode */ {
			// (1) RTS_Threshold is compared to the MPDU, not MSDU.
			// (2) If there are more than one frag in  this MSDU, only the first frag uses protection frame.
			//		Other fragments are protected by previous fragment.
			//		So we only need to check the length of first fragment.
		if (skb->len > ieee->rts) {
			tcb_desc->bRTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		} else if (ieee->current_network.buseprotection) {
			// Use CTS-to-SELF in protection mode.
			tcb_desc->bRTSEnable = true;
			tcb_desc->bCTSEnable = true;
			tcb_desc->rts_rate = MGN_24M;
		}
		//otherwise return;
		return;
	} else { // 11n High throughput case.
		PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
		while (true) {
			//check ERP protection
			if (ieee->current_network.buseprotection) {// CTS-to-SELF
				tcb_desc->bRTSEnable = true;
				tcb_desc->bCTSEnable = true;
				tcb_desc->rts_rate = MGN_24M;
				break;
			}
			//check HT op mode
			if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) {
				u8 HTOpMode = pHTInfo->CurrentOpMode;
				if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
							(!pHTInfo->bCurBW40MHz && HTOpMode == 3)) {
					tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
					tcb_desc->bRTSEnable = true;
					break;
				}
			}
			//check rts
			if (skb->len > ieee->rts) {
				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
				tcb_desc->bRTSEnable = true;
				break;
			}
			//to do list: check MIMO power save condition.
			//check AMPDU aggregation for TXOP
			if (tcb_desc->bAMPDUEnable) {
				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
				// According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
				// throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
				tcb_desc->bRTSEnable = false;
				break;
			}
			//check IOT action
			if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) {
				tcb_desc->bCTSEnable	= true;
				tcb_desc->rts_rate  =	MGN_24M;
				tcb_desc->bRTSEnable = true;
				break;
			}
			// Totally no protection case!!
			goto NO_PROTECTION;
		}
		}
	// For test , CTS replace with RTS
	if (0) {
		tcb_desc->bCTSEnable	= true;
		tcb_desc->rts_rate = MGN_24M;
		tcb_desc->bRTSEnable	= true;
	}
	if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
		tcb_desc->bUseShortPreamble = true;
	if (ieee->mode == IW_MODE_MASTER)
		goto NO_PROTECTION;
	return;
NO_PROTECTION:
	tcb_desc->bRTSEnable	= false;
	tcb_desc->bCTSEnable	= false;
	tcb_desc->rts_rate		= 0;
	tcb_desc->RTSSC		= 0;
	tcb_desc->bRTSBW		= false;
}


static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
					struct cb_desc *tcb_desc)
{
	if (ieee->bTxDisableRateFallBack)
		tcb_desc->bTxDisableRateFallBack = true;

	if (ieee->bTxUseDriverAssingedRate)
		tcb_desc->bTxUseDriverAssingedRate = true;
	if (!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate) {
		if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
			tcb_desc->RATRIndex = 0;
	}
}

static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
				   struct sk_buff *skb, u8 *dst)
{
	if (is_multicast_ether_addr(dst))
		return;
	if (IsQoSDataFrame(skb->data)) /* we deal qos data only */ {
		struct tx_ts_record *pTS = NULL;
		if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, skb->priority, TX_DIR, true)) {
			return;
		}
		pTS->tx_cur_seq = (pTS->tx_cur_seq + 1) % 4096;
	}
}

int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct ieee80211_device *ieee = netdev_priv(dev);
	struct ieee80211_txb *txb = NULL;
	struct rtl_80211_hdr_3addrqos *frag_hdr;
	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
	unsigned long flags;
	struct net_device_stats *stats = &ieee->stats;
	int ether_type = 0, encrypt;
	int bytes, fc, qos_ctl = 0, hdr_len;
	struct sk_buff *skb_frag;
	struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
		.duration_id = 0,
		.seq_ctl = 0,
		.qos_ctl = 0
	};
	u8 dest[ETH_ALEN], src[ETH_ALEN];
	int qos_actived = ieee->current_network.qos_data.active;

	struct ieee80211_crypt_data *crypt;

	struct cb_desc *tcb_desc;

	spin_lock_irqsave(&ieee->lock, flags);

	/* If there is no driver handler to take the TXB, dont' bother
	 * creating it...
	 */
	if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)) ||
	   ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
		netdev_warn(ieee->dev, "No xmit handler.\n");
		goto success;
	}


	if (likely(ieee->raw_tx == 0)) {
		if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
			netdev_warn(ieee->dev, "skb too small (%d).\n",
				    skb->len);
			goto success;
		}

		memset(skb->cb, 0, sizeof(skb->cb));
		ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);

		crypt = ieee->crypt[ieee->tx_keyidx];

		encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
			ieee->host_encrypt && crypt && crypt->ops;

		if (!encrypt && ieee->ieee802_1x &&
		ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
			stats->tx_dropped++;
			goto success;
		}
	#ifdef CONFIG_IEEE80211_DEBUG
		if (crypt && !encrypt && ether_type == ETH_P_PAE) {
			struct eapol *eap = (struct eapol *)(skb->data +
				sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
			IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
				eap_get_type(eap->type));
		}
	#endif

		/* Save source and destination addresses */
		memcpy(&dest, skb->data, ETH_ALEN);
		memcpy(&src, skb->data + ETH_ALEN, ETH_ALEN);

		/* Advance the SKB to the start of the payload */
		skb_pull(skb, sizeof(struct ethhdr));

		/* Determine total amount of storage required for TXB packets */
		bytes = skb->len + SNAP_SIZE + sizeof(u16);

		if (encrypt)
			fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
		else

			fc = IEEE80211_FTYPE_DATA;

		//if(ieee->current_network.QoS_Enable)
		if (qos_actived)
			fc |= IEEE80211_STYPE_QOS_DATA;
		else
			fc |= IEEE80211_STYPE_DATA;

		if (ieee->iw_mode == IW_MODE_INFRA) {
			fc |= IEEE80211_FCTL_TODS;
			/* To DS: Addr1 = BSSID, Addr2 = SA,
			 * Addr3 = DA
			 */
			memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
			memcpy(&header.addr2, &src, ETH_ALEN);
			memcpy(&header.addr3, &dest, ETH_ALEN);
		} else if (ieee->iw_mode == IW_MODE_ADHOC) {
			/* not From/To DS: Addr1 = DA, Addr2 = SA,
			 * Addr3 = BSSID
			 */
			memcpy(&header.addr1, dest, ETH_ALEN);
			memcpy(&header.addr2, src, ETH_ALEN);
			memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
		}

		header.frame_ctl = cpu_to_le16(fc);

		/* Determine fragmentation size based on destination (multicast
		 * and broadcast are not fragmented)
		 */
		if (is_multicast_ether_addr(header.addr1)) {
			frag_size = MAX_FRAG_THRESHOLD;
			qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
		} else {
			frag_size = ieee->fts;//default:392
			qos_ctl = 0;
		}

		//if (ieee->current_network.QoS_Enable)
		if (qos_actived) {
			hdr_len = IEEE80211_3ADDR_LEN + 2;

			skb->priority = ieee80211_classify(skb, &ieee->current_network);
			qos_ctl |= skb->priority; //set in the ieee80211_classify
			header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
		} else {
			hdr_len = IEEE80211_3ADDR_LEN;
		}
		/* Determine amount of payload per fragment.  Regardless of if
		 * this stack is providing the full 802.11 header, one will
		 * eventually be affixed to this fragment -- so we must account for
		 * it when determining the amount of payload space.
		 */
		bytes_per_frag = frag_size - hdr_len;
		if (ieee->config &
		(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
			bytes_per_frag -= IEEE80211_FCS_LEN;

		/* Each fragment may need to have room for encryption pre/postfix */
		if (encrypt)
			bytes_per_frag -= crypt->ops->extra_prefix_len +
				crypt->ops->extra_postfix_len;

		/* Number of fragments is the total bytes_per_frag /
		 * payload_per_fragment
		 */
		nr_frags = bytes / bytes_per_frag;
		bytes_last_frag = bytes % bytes_per_frag;
		if (bytes_last_frag)
			nr_frags++;
		else
			bytes_last_frag = bytes_per_frag;

		/* When we allocate the TXB we allocate enough space for the reserve
		 * and full fragment bytes (bytes_per_frag doesn't include prefix,
		 * postfix, header, FCS, etc.)
		 */
		txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
		if (unlikely(!txb)) {
			netdev_warn(ieee->dev, "Could not allocate TXB\n");
			goto failed;
		}
		txb->encrypted = encrypt;
		txb->payload_size = __cpu_to_le16(bytes);

		//if (ieee->current_network.QoS_Enable)
		if (qos_actived)
			txb->queue_index = UP2AC(skb->priority);
		else
			txb->queue_index = WME_AC_BK;



		for (i = 0; i < nr_frags; i++) {
			skb_frag = txb->fragments[i];
			tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
			if (qos_actived) {
				skb_frag->priority = skb->priority;//UP2AC(skb->priority);
				tcb_desc->queue_index =  UP2AC(skb->priority);
			} else {
				skb_frag->priority = WME_AC_BK;
				tcb_desc->queue_index = WME_AC_BK;
			}
			skb_reserve(skb_frag, ieee->tx_headroom);

			if (encrypt) {
				if (ieee->hwsec_active)
					tcb_desc->bHwSec = 1;
				else
					tcb_desc->bHwSec = 0;
				skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
			} else {
				tcb_desc->bHwSec = 0;
			}
			frag_hdr = skb_put_data(skb_frag, &header, hdr_len);

			/* If this is not the last fragment, then add the MOREFRAGS
			 * bit to the frame control
			 */
			if (i != nr_frags - 1) {
				frag_hdr->frame_ctl = cpu_to_le16(
					fc | IEEE80211_FCTL_MOREFRAGS);
				bytes = bytes_per_frag;

			} else {
				/* The last fragment takes the remaining length */
				bytes = bytes_last_frag;
			}
			//if(ieee->current_network.QoS_Enable)
			if (qos_actived) {
				// add 1 only indicate to corresponding seq number control 2006/7/12
				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority) + 1] << 4 | i);
			} else {
				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
			}

			/* Put a SNAP header on the first fragment */
			if (i == 0) {
				ieee80211_put_snap(
					skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
					ether_type);
				bytes -= SNAP_SIZE + sizeof(u16);
			}

			skb_put_data(skb_frag, skb->data, bytes);

			/* Advance the SKB... */
			skb_pull(skb, bytes);

			/* Encryption routine will move the header forward in order
			 * to insert the IV between the header and the payload
			 */
			if (encrypt)
				ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
			if (ieee->config &
			(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
				skb_put(skb_frag, 4);
		}

		if (qos_actived) {
			if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
				ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
			else
				ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
		} else {
			if (ieee->seq_ctrl[0] == 0xFFF)
				ieee->seq_ctrl[0] = 0;
			else
				ieee->seq_ctrl[0]++;
		}
	} else {
		if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
			netdev_warn(ieee->dev, "skb too small (%d).\n",
				    skb->len);
			goto success;
		}

		txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
		if (!txb) {
			netdev_warn(ieee->dev, "Could not allocate TXB\n");
			goto failed;
		}

		txb->encrypted = 0;
		txb->payload_size = __cpu_to_le16(skb->len);
		skb_put_data(txb->fragments[0], skb->data, skb->len);
	}

 success:
//WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
	if (txb) {
		struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
		tcb_desc->bTxEnableFwCalcDur = 1;
		if (is_multicast_ether_addr(header.addr1))
			tcb_desc->bMulticast = 1;
		if (is_broadcast_ether_addr(header.addr1))
			tcb_desc->bBroadcast = 1;
		ieee80211_txrate_selectmode(ieee, tcb_desc);
		if (tcb_desc->bMulticast ||  tcb_desc->bBroadcast)
			tcb_desc->data_rate = ieee->basic_rate;
		else
			tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
		ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
		ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
		ieee80211_query_HTCapShortGI(ieee, tcb_desc);
		ieee80211_query_BandwidthMode(ieee, tcb_desc);
		ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
		ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
	}
	spin_unlock_irqrestore(&ieee->lock, flags);
	dev_kfree_skb_any(skb);
	if (txb) {
		if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
			ieee80211_softmac_xmit(txb, ieee);
		} else {
			if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
				stats->tx_packets++;
				stats->tx_bytes += __le16_to_cpu(txb->payload_size);
				return 0;
			}
			ieee80211_txb_free(txb);
		}
	}

	return 0;

 failed:
	spin_unlock_irqrestore(&ieee->lock, flags);
	netif_stop_queue(dev);
	stats->tx_errors++;
	return 1;

}