Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steven Haigh | 2614 | 73.88% | 1 | 2.56% |
Pete Zaitcev | 418 | 11.81% | 1 | 2.56% |
Greg Kroah-Hartman | 242 | 6.84% | 9 | 23.08% |
Johan Hovold | 87 | 2.46% | 7 | 17.95% |
Oliver Neukum | 39 | 1.10% | 2 | 5.13% |
Harvey Harrison | 25 | 0.71% | 1 | 2.56% |
Matthias Kaehlcke | 21 | 0.59% | 1 | 2.56% |
Sebastian Andrzej Siewior | 20 | 0.57% | 1 | 2.56% |
Alan Stern | 15 | 0.42% | 1 | 2.56% |
Kirill Kapranov | 13 | 0.37% | 1 | 2.56% |
Daniel M German | 9 | 0.25% | 1 | 2.56% |
Kuninori Morimoto | 7 | 0.20% | 1 | 2.56% |
Lisa Nguyen | 5 | 0.14% | 2 | 5.13% |
Arnd Bergmann | 5 | 0.14% | 1 | 2.56% |
Jiri Slaby | 4 | 0.11% | 1 | 2.56% |
Joe Perches | 4 | 0.11% | 2 | 5.13% |
Alexey Dobriyan | 3 | 0.08% | 1 | 2.56% |
Ingo Molnar | 3 | 0.08% | 1 | 2.56% |
Wolfram Sang | 1 | 0.03% | 1 | 2.56% |
Márton Németh | 1 | 0.03% | 1 | 2.56% |
Uwe Kleine-König | 1 | 0.03% | 1 | 2.56% |
Arjan van de Ven | 1 | 0.03% | 1 | 2.56% |
Total | 3538 | 39 |
// SPDX-License-Identifier: GPL-2.0+ /* * adutux - driver for ADU devices from Ontrak Control Systems * This is an experimental driver. Use at your own risk. * This driver is not supported by Ontrak Control Systems. * * Copyright (c) 2003 John Homppi (SCO, leave this notice here) * * derived from the Lego USB Tower driver 0.56: * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net> * 2001 Juergen Stuber <stuber@loria.fr> * that was derived from USB Skeleton driver - 0.5 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com) * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/uaccess.h> #define DRIVER_AUTHOR "John Homppi" #define DRIVER_DESC "adutux (see www.ontrak.net)" /* Define these values to match your device */ #define ADU_VENDOR_ID 0x0a07 #define ADU_PRODUCT_ID 0x0064 /* table of devices that work with this driver */ static const struct usb_device_id device_table[] = { { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */ { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */ { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, device_table); #ifdef CONFIG_USB_DYNAMIC_MINORS #define ADU_MINOR_BASE 0 #else #define ADU_MINOR_BASE 67 #endif /* we can have up to this number of device plugged in at once */ #define MAX_DEVICES 16 #define COMMAND_TIMEOUT (2*HZ) /* * The locking scheme is a vanilla 3-lock: * adu_device.buflock: A spinlock, covers what IRQs touch. * adutux_mutex: A Static lock to cover open_count. It would also cover * any globals, but we don't have them in 2.6. * adu_device.mtx: A mutex to hold across sleepers like copy_from_user. * It covers all of adu_device, except the open_count * and what .buflock covers. */ /* Structure to hold all of our device specific stuff */ struct adu_device { struct mutex mtx; struct usb_device *udev; /* save off the usb device pointer */ struct usb_interface *interface; unsigned int minor; /* the starting minor number for this device */ char serial_number[8]; int open_count; /* number of times this port has been opened */ unsigned long disconnected:1; char *read_buffer_primary; int read_buffer_length; char *read_buffer_secondary; int secondary_head; int secondary_tail; spinlock_t buflock; wait_queue_head_t read_wait; wait_queue_head_t write_wait; char *interrupt_in_buffer; struct usb_endpoint_descriptor *interrupt_in_endpoint; struct urb *interrupt_in_urb; int read_urb_finished; char *interrupt_out_buffer; struct usb_endpoint_descriptor *interrupt_out_endpoint; struct urb *interrupt_out_urb; int out_urb_finished; }; static DEFINE_MUTEX(adutux_mutex); static struct usb_driver adu_driver; static inline void adu_debug_data(struct device *dev, const char *function, int size, const unsigned char *data) { dev_dbg(dev, "%s - length = %d, data = %*ph\n", function, size, size, data); } /** * adu_abort_transfers * aborts transfers and frees associated data structures */ static void adu_abort_transfers(struct adu_device *dev) { unsigned long flags; if (dev->disconnected) return; /* shutdown transfer */ /* XXX Anchor these instead */ spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); usb_kill_urb(dev->interrupt_in_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); wait_event_timeout(dev->write_wait, dev->out_urb_finished, COMMAND_TIMEOUT); usb_kill_urb(dev->interrupt_out_urb); } else spin_unlock_irqrestore(&dev->buflock, flags); } static void adu_delete(struct adu_device *dev) { /* free data structures */ usb_free_urb(dev->interrupt_in_urb); usb_free_urb(dev->interrupt_out_urb); kfree(dev->read_buffer_primary); kfree(dev->read_buffer_secondary); kfree(dev->interrupt_in_buffer); kfree(dev->interrupt_out_buffer); usb_put_dev(dev->udev); kfree(dev); } static void adu_interrupt_in_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); spin_lock_irqsave(&dev->buflock, flags); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET) && (status != -ESHUTDOWN)) { dev_dbg(&dev->udev->dev, "%s : nonzero status received: %d\n", __func__, status); } goto exit; } if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) { if (dev->read_buffer_length < (4 * usb_endpoint_maxp(dev->interrupt_in_endpoint)) - (urb->actual_length)) { memcpy (dev->read_buffer_primary + dev->read_buffer_length, dev->interrupt_in_buffer, urb->actual_length); dev->read_buffer_length += urb->actual_length; dev_dbg(&dev->udev->dev,"%s reading %d\n", __func__, urb->actual_length); } else { dev_dbg(&dev->udev->dev,"%s : read_buffer overflow\n", __func__); } } exit: dev->read_urb_finished = 1; spin_unlock_irqrestore(&dev->buflock, flags); /* always wake up so we recover from errors */ wake_up_interruptible(&dev->read_wait); } static void adu_interrupt_out_callback(struct urb *urb) { struct adu_device *dev = urb->context; int status = urb->status; unsigned long flags; adu_debug_data(&dev->udev->dev, __func__, urb->actual_length, urb->transfer_buffer); if (status != 0) { if ((status != -ENOENT) && (status != -ECONNRESET)) { dev_dbg(&dev->udev->dev, "%s :nonzero status received: %d\n", __func__, status); } return; } spin_lock_irqsave(&dev->buflock, flags); dev->out_urb_finished = 1; wake_up(&dev->write_wait); spin_unlock_irqrestore(&dev->buflock, flags); } static int adu_open(struct inode *inode, struct file *file) { struct adu_device *dev = NULL; struct usb_interface *interface; int subminor; int retval; subminor = iminor(inode); retval = mutex_lock_interruptible(&adutux_mutex); if (retval) goto exit_no_lock; interface = usb_find_interface(&adu_driver, subminor); if (!interface) { pr_err("%s - error, can't find device for minor %d\n", __func__, subminor); retval = -ENODEV; goto exit_no_device; } dev = usb_get_intfdata(interface); if (!dev) { retval = -ENODEV; goto exit_no_device; } /* check that nobody else is using the device */ if (dev->open_count) { retval = -EBUSY; goto exit_no_device; } ++dev->open_count; dev_dbg(&dev->udev->dev, "%s: open count %d\n", __func__, dev->open_count); /* save device in the file's private structure */ file->private_data = dev; /* initialize in direction */ dev->read_buffer_length = 0; /* fixup first read by having urb waiting for it */ usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); dev->read_urb_finished = 0; if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL)) dev->read_urb_finished = 1; /* we ignore failure */ /* end of fixup for first read */ /* initialize out direction */ dev->out_urb_finished = 1; retval = 0; exit_no_device: mutex_unlock(&adutux_mutex); exit_no_lock: return retval; } static void adu_release_internal(struct adu_device *dev) { /* decrement our usage count for the device */ --dev->open_count; dev_dbg(&dev->udev->dev, "%s : open count %d\n", __func__, dev->open_count); if (dev->open_count <= 0) { adu_abort_transfers(dev); dev->open_count = 0; } } static int adu_release(struct inode *inode, struct file *file) { struct adu_device *dev; int retval = 0; if (file == NULL) { retval = -ENODEV; goto exit; } dev = file->private_data; if (dev == NULL) { retval = -ENODEV; goto exit; } mutex_lock(&adutux_mutex); /* not interruptible */ if (dev->open_count <= 0) { dev_dbg(&dev->udev->dev, "%s : device not opened\n", __func__); retval = -ENODEV; goto unlock; } adu_release_internal(dev); if (dev->disconnected) { /* the device was unplugged before the file was released */ if (!dev->open_count) /* ... and we're the last user */ adu_delete(dev); } unlock: mutex_unlock(&adutux_mutex); exit: return retval; } static ssize_t adu_read(struct file *file, __user char *buffer, size_t count, loff_t *ppos) { struct adu_device *dev; size_t bytes_read = 0; size_t bytes_to_read = count; int retval = 0; int timeout = 0; int should_submit = 0; unsigned long flags; DECLARE_WAITQUEUE(wait, current); dev = file->private_data; if (mutex_lock_interruptible(&dev->mtx)) return -ERESTARTSYS; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that some data was requested */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : read request of 0 bytes\n", __func__); goto exit; } timeout = COMMAND_TIMEOUT; dev_dbg(&dev->udev->dev, "%s : about to start looping\n", __func__); while (bytes_to_read) { size_t data_in_secondary = dev->secondary_tail - dev->secondary_head; dev_dbg(&dev->udev->dev, "%s : while, data_in_secondary=%zu, status=%d\n", __func__, data_in_secondary, dev->interrupt_in_urb->status); if (data_in_secondary) { /* drain secondary buffer */ size_t amount = min(bytes_to_read, data_in_secondary); if (copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount)) { retval = -EFAULT; goto exit; } dev->secondary_head += amount; bytes_read += amount; bytes_to_read -= amount; } else { /* we check the primary buffer */ spin_lock_irqsave (&dev->buflock, flags); if (dev->read_buffer_length) { /* we secure access to the primary */ char *tmp; dev_dbg(&dev->udev->dev, "%s : swap, read_buffer_length = %d\n", __func__, dev->read_buffer_length); tmp = dev->read_buffer_secondary; dev->read_buffer_secondary = dev->read_buffer_primary; dev->read_buffer_primary = tmp; dev->secondary_head = 0; dev->secondary_tail = dev->read_buffer_length; dev->read_buffer_length = 0; spin_unlock_irqrestore(&dev->buflock, flags); /* we have a free buffer so use it */ should_submit = 1; } else { /* even the primary was empty - we may need to do IO */ if (!dev->read_urb_finished) { /* somebody is doing IO */ spin_unlock_irqrestore(&dev->buflock, flags); dev_dbg(&dev->udev->dev, "%s : submitted already\n", __func__); } else { /* we must initiate input */ dev_dbg(&dev->udev->dev, "%s : initiate input\n", __func__); dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL); if (retval) { dev->read_urb_finished = 1; if (retval == -ENOMEM) { retval = bytes_read ? bytes_read : -ENOMEM; } dev_dbg(&dev->udev->dev, "%s : submit failed\n", __func__); goto exit; } } /* we wait for I/O to complete */ set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&dev->read_wait, &wait); spin_lock_irqsave(&dev->buflock, flags); if (!dev->read_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); timeout = schedule_timeout(COMMAND_TIMEOUT); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); } remove_wait_queue(&dev->read_wait, &wait); if (timeout <= 0) { dev_dbg(&dev->udev->dev, "%s : timeout\n", __func__); retval = bytes_read ? bytes_read : -ETIMEDOUT; goto exit; } if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : signal pending\n", __func__); retval = bytes_read ? bytes_read : -EINTR; goto exit; } } } } retval = bytes_read; /* if the primary buffer is empty then use it */ spin_lock_irqsave(&dev->buflock, flags); if (should_submit && dev->read_urb_finished) { dev->read_urb_finished = 0; spin_unlock_irqrestore(&dev->buflock, flags); usb_fill_int_urb(dev->interrupt_in_urb, dev->udev, usb_rcvintpipe(dev->udev, dev->interrupt_in_endpoint->bEndpointAddress), dev->interrupt_in_buffer, usb_endpoint_maxp(dev->interrupt_in_endpoint), adu_interrupt_in_callback, dev, dev->interrupt_in_endpoint->bInterval); if (usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL) != 0) dev->read_urb_finished = 1; /* we ignore failure */ } else { spin_unlock_irqrestore(&dev->buflock, flags); } exit: /* unlock the device */ mutex_unlock(&dev->mtx); return retval; } static ssize_t adu_write(struct file *file, const __user char *buffer, size_t count, loff_t *ppos) { DECLARE_WAITQUEUE(waita, current); struct adu_device *dev; size_t bytes_written = 0; size_t bytes_to_write; size_t buffer_size; unsigned long flags; int retval; dev = file->private_data; retval = mutex_lock_interruptible(&dev->mtx); if (retval) goto exit_nolock; /* verify that the device wasn't unplugged */ if (dev->disconnected) { retval = -ENODEV; pr_err("No device or device unplugged %d\n", retval); goto exit; } /* verify that we actually have some data to write */ if (count == 0) { dev_dbg(&dev->udev->dev, "%s : write request of 0 bytes\n", __func__); goto exit; } while (count > 0) { add_wait_queue(&dev->write_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&dev->buflock, flags); if (!dev->out_urb_finished) { spin_unlock_irqrestore(&dev->buflock, flags); mutex_unlock(&dev->mtx); if (signal_pending(current)) { dev_dbg(&dev->udev->dev, "%s : interrupted\n", __func__); set_current_state(TASK_RUNNING); retval = -EINTR; goto exit_onqueue; } if (schedule_timeout(COMMAND_TIMEOUT) == 0) { dev_dbg(&dev->udev->dev, "%s - command timed out.\n", __func__); retval = -ETIMEDOUT; goto exit_onqueue; } remove_wait_queue(&dev->write_wait, &waita); retval = mutex_lock_interruptible(&dev->mtx); if (retval) { retval = bytes_written ? bytes_written : retval; goto exit_nolock; } dev_dbg(&dev->udev->dev, "%s : in progress, count = %zd\n", __func__, count); } else { spin_unlock_irqrestore(&dev->buflock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&dev->write_wait, &waita); dev_dbg(&dev->udev->dev, "%s : sending, count = %zd\n", __func__, count); /* write the data into interrupt_out_buffer from userspace */ buffer_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); bytes_to_write = count > buffer_size ? buffer_size : count; dev_dbg(&dev->udev->dev, "%s : buffer_size = %zd, count = %zd, bytes_to_write = %zd\n", __func__, buffer_size, count, bytes_to_write); if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) { retval = -EFAULT; goto exit; } /* send off the urb */ usb_fill_int_urb( dev->interrupt_out_urb, dev->udev, usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress), dev->interrupt_out_buffer, bytes_to_write, adu_interrupt_out_callback, dev, dev->interrupt_out_endpoint->bInterval); dev->interrupt_out_urb->actual_length = bytes_to_write; dev->out_urb_finished = 0; retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL); if (retval < 0) { dev->out_urb_finished = 1; dev_err(&dev->udev->dev, "Couldn't submit " "interrupt_out_urb %d\n", retval); goto exit; } buffer += bytes_to_write; count -= bytes_to_write; bytes_written += bytes_to_write; } } mutex_unlock(&dev->mtx); return bytes_written; exit: mutex_unlock(&dev->mtx); exit_nolock: return retval; exit_onqueue: remove_wait_queue(&dev->write_wait, &waita); return retval; } /* file operations needed when we register this driver */ static const struct file_operations adu_fops = { .owner = THIS_MODULE, .read = adu_read, .write = adu_write, .open = adu_open, .release = adu_release, .llseek = noop_llseek, }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with devfs and the driver core */ static struct usb_class_driver adu_class = { .name = "usb/adutux%d", .fops = &adu_fops, .minor_base = ADU_MINOR_BASE, }; /** * adu_probe * * Called by the usb core when a new device is connected that it thinks * this driver might be interested in. */ static int adu_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(interface); struct adu_device *dev = NULL; int retval = -ENOMEM; int in_end_size; int out_end_size; int res; /* allocate memory for our device state and initialize it */ dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->mtx); spin_lock_init(&dev->buflock); dev->udev = usb_get_dev(udev); init_waitqueue_head(&dev->read_wait); init_waitqueue_head(&dev->write_wait); res = usb_find_common_endpoints_reverse(interface->cur_altsetting, NULL, NULL, &dev->interrupt_in_endpoint, &dev->interrupt_out_endpoint); if (res) { dev_err(&interface->dev, "interrupt endpoints not found\n"); retval = res; goto error; } in_end_size = usb_endpoint_maxp(dev->interrupt_in_endpoint); out_end_size = usb_endpoint_maxp(dev->interrupt_out_endpoint); dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_primary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_primary, 'a', in_end_size); memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size); memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size); memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size); dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL); if (!dev->read_buffer_secondary) goto error; /* debug code prime the buffer */ memset(dev->read_buffer_secondary, 'e', in_end_size); memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size); memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size); memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size); dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; /* debug code prime the buffer */ memset(dev->interrupt_in_buffer, 'i', in_end_size); dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number, sizeof(dev->serial_number))) { dev_err(&interface->dev, "Could not retrieve serial number\n"); retval = -EIO; goto error; } dev_dbg(&interface->dev,"serial_number=%s", dev->serial_number); /* we can register the device now, as it is ready */ usb_set_intfdata(interface, dev); retval = usb_register_dev(interface, &adu_class); if (retval) { /* something prevented us from registering this driver */ dev_err(&interface->dev, "Not able to get a minor for this device.\n"); usb_set_intfdata(interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d\n", le16_to_cpu(udev->descriptor.idProduct), dev->serial_number, (dev->minor - ADU_MINOR_BASE)); return 0; error: adu_delete(dev); return retval; } /** * adu_disconnect * * Called by the usb core when the device is removed from the system. */ static void adu_disconnect(struct usb_interface *interface) { struct adu_device *dev; dev = usb_get_intfdata(interface); usb_deregister_dev(interface, &adu_class); usb_poison_urb(dev->interrupt_in_urb); usb_poison_urb(dev->interrupt_out_urb); mutex_lock(&adutux_mutex); usb_set_intfdata(interface, NULL); mutex_lock(&dev->mtx); /* not interruptible */ dev->disconnected = 1; mutex_unlock(&dev->mtx); /* if the device is not opened, then we clean up right now */ if (!dev->open_count) adu_delete(dev); mutex_unlock(&adutux_mutex); } /* usb specific object needed to register this driver with the usb subsystem */ static struct usb_driver adu_driver = { .name = "adutux", .probe = adu_probe, .disconnect = adu_disconnect, .id_table = device_table, }; module_usb_driver(adu_driver); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1