Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greentime Hu | 1167 | 89.70% | 1 | 9.09% |
Mike Rapoport | 66 | 5.07% | 1 | 9.09% |
Nickhu | 40 | 3.07% | 1 | 9.09% |
Eric W. Biedermann | 13 | 1.00% | 1 | 9.09% |
Michel Lespinasse | 8 | 0.61% | 3 | 27.27% |
Peter Xu | 5 | 0.38% | 2 | 18.18% |
Souptick Joarder | 1 | 0.08% | 1 | 9.09% |
Anshuman Khandual | 1 | 0.08% | 1 | 9.09% |
Total | 1301 | 11 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2005-2017 Andes Technology Corporation #include <linux/extable.h> #include <linux/module.h> #include <linux/signal.h> #include <linux/ptrace.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/hardirq.h> #include <linux/uaccess.h> #include <linux/perf_event.h> #include <asm/tlbflush.h> extern void die(const char *str, struct pt_regs *regs, long err); /* * This is useful to dump out the page tables associated with * 'addr' in mm 'mm'. */ void show_pte(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; if (!mm) mm = &init_mm; pr_alert("pgd = %p\n", mm->pgd); pgd = pgd_offset(mm, addr); pr_alert("[%08lx] *pgd=%08lx", addr, pgd_val(*pgd)); do { p4d_t *p4d; pud_t *pud; pmd_t *pmd; if (pgd_none(*pgd)) break; if (pgd_bad(*pgd)) { pr_alert("(bad)"); break; } p4d = p4d_offset(pgd, addr); pud = pud_offset(p4d, addr); pmd = pmd_offset(pud, addr); #if PTRS_PER_PMD != 1 pr_alert(", *pmd=%08lx", pmd_val(*pmd)); #endif if (pmd_none(*pmd)) break; if (pmd_bad(*pmd)) { pr_alert("(bad)"); break; } if (IS_ENABLED(CONFIG_HIGHMEM)) { pte_t *pte; /* We must not map this if we have highmem enabled */ pte = pte_offset_map(pmd, addr); pr_alert(", *pte=%08lx", pte_val(*pte)); pte_unmap(pte); } } while (0); pr_alert("\n"); } void do_page_fault(unsigned long entry, unsigned long addr, unsigned int error_code, struct pt_regs *regs) { struct task_struct *tsk; struct mm_struct *mm; struct vm_area_struct *vma; int si_code; vm_fault_t fault; unsigned int mask = VM_ACCESS_FLAGS; unsigned int flags = FAULT_FLAG_DEFAULT; error_code = error_code & (ITYPE_mskINST | ITYPE_mskETYPE); tsk = current; mm = tsk->mm; si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (addr >= TASK_SIZE) { if (user_mode(regs)) goto bad_area_nosemaphore; if (addr >= TASK_SIZE && addr < VMALLOC_END && (entry == ENTRY_PTE_NOT_PRESENT)) goto vmalloc_fault; else goto no_context; } /* Send a signal to the task for handling the unalignment access. */ if (entry == ENTRY_GENERAL_EXCPETION && error_code == ETYPE_ALIGNMENT_CHECK) { if (user_mode(regs)) goto bad_area_nosemaphore; else goto no_context; } /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (unlikely(faulthandler_disabled() || !mm)) goto no_context; /* * As per x86, we may deadlock here. However, since the kernel only * validly references user space from well defined areas of the code, * we can bug out early if this is from code which shouldn't. */ if (unlikely(!mmap_read_trylock(mm))) { if (!user_mode(regs) && !search_exception_tables(instruction_pointer(regs))) goto no_context; retry: mmap_read_lock(mm); } else { /* * The above down_read_trylock() might have succeeded in which * case, we'll have missed the might_sleep() from down_read(). */ might_sleep(); if (IS_ENABLED(CONFIG_DEBUG_VM)) { if (!user_mode(regs) && !search_exception_tables(instruction_pointer(regs))) goto no_context; } } vma = find_vma(mm, addr); if (unlikely(!vma)) goto bad_area; if (vma->vm_start <= addr) goto good_area; if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) goto bad_area; if (unlikely(expand_stack(vma, addr))) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: si_code = SEGV_ACCERR; /* first do some preliminary protection checks */ if (entry == ENTRY_PTE_NOT_PRESENT) { if (error_code & ITYPE_mskINST) mask = VM_EXEC; else { mask = VM_READ | VM_WRITE; } } else if (entry == ENTRY_TLB_MISC) { switch (error_code & ITYPE_mskETYPE) { case RD_PROT: mask = VM_READ; break; case WRT_PROT: mask = VM_WRITE; flags |= FAULT_FLAG_WRITE; break; case NOEXEC: mask = VM_EXEC; break; case PAGE_MODIFY: mask = VM_WRITE; flags |= FAULT_FLAG_WRITE; break; case ACC_BIT: BUG(); default: break; } } if (!(vma->vm_flags & mask)) goto bad_area; /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, addr, flags); /* * If we need to retry but a fatal signal is pending, handle the * signal first. We do not need to release the mmap_lock because it * would already be released in __lock_page_or_retry in mm/filemap.c. */ if (fault_signal_pending(fault, regs)) { if (!user_mode(regs)) goto no_context; return; } if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto do_sigbus; else goto bad_area; } /* * Major/minor page fault accounting is only done on the initial * attempt. If we go through a retry, it is extremely likely that the * page will be found in page cache at that point. */ perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); if (flags & FAULT_FLAG_ALLOW_RETRY) { if (fault & VM_FAULT_MAJOR) { tsk->maj_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, addr); } else { tsk->min_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, addr); } if (fault & VM_FAULT_RETRY) { flags |= FAULT_FLAG_TRIED; /* No need to mmap_read_unlock(mm) as we would * have already released it in __lock_page_or_retry * in mm/filemap.c. */ goto retry; } } mmap_read_unlock(mm); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: mmap_read_unlock(mm); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = entry; force_sig_fault(SIGSEGV, si_code, (void __user *)addr); return; } no_context: /* Are we prepared to handle this kernel fault? * * (The kernel has valid exception-points in the source * when it acesses user-memory. When it fails in one * of those points, we find it in a table and do a jump * to some fixup code that loads an appropriate error * code) */ { const struct exception_table_entry *entry; if ((entry = search_exception_tables(instruction_pointer(regs))) != NULL) { /* Adjust the instruction pointer in the stackframe */ instruction_pointer(regs) = entry->fixup; return; } } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); pr_alert("Unable to handle kernel %s at virtual address %08lx\n", (addr < PAGE_SIZE) ? "NULL pointer dereference" : "paging request", addr); show_pte(mm, addr); die("Oops", regs, error_code); bust_spinlocks(0); do_exit(SIGKILL); return; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: mmap_read_unlock(mm); if (!user_mode(regs)) goto no_context; pagefault_out_of_memory(); return; do_sigbus: mmap_read_unlock(mm); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; /* * Send a sigbus */ tsk->thread.address = addr; tsk->thread.error_code = error_code; tsk->thread.trap_no = entry; force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Use current_pgd instead of tsk->active_mm->pgd * since the latter might be unavailable if this * code is executed in a misfortunately run irq * (like inside schedule() between switch_mm and * switch_to...). */ unsigned int index = pgd_index(addr); pgd_t *pgd, *pgd_k; p4d_t *p4d, *p4d_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *) __va(__nds32__mfsr(NDS32_SR_L1_PPTB)) + index; pgd_k = init_mm.pgd + index; if (!pgd_present(*pgd_k)) goto no_context; p4d = p4d_offset(pgd, addr); p4d_k = p4d_offset(pgd_k, addr); if (!p4d_present(*p4d_k)) goto no_context; pud = pud_offset(p4d, addr); pud_k = pud_offset(p4d_k, addr); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, addr); pmd_k = pmd_offset(pud_k, addr); if (!pmd_present(*pmd_k)) goto no_context; if (!pmd_present(*pmd)) set_pmd(pmd, *pmd_k); else BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); /* * Since the vmalloc area is global, we don't * need to copy individual PTE's, it is enough to * copy the pgd pointer into the pte page of the * root task. If that is there, we'll find our pte if * it exists. */ /* Make sure the actual PTE exists as well to * catch kernel vmalloc-area accesses to non-mapped * addres. If we don't do this, this will just * silently loop forever. */ pte_k = pte_offset_kernel(pmd_k, addr); if (!pte_present(*pte_k)) goto no_context; return; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1