Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Luke Nelson | 3824 | 54.30% | 7 | 46.67% |
Björn Töpel | 3182 | 45.19% | 7 | 46.67% |
Jiong Wang | 36 | 0.51% | 1 | 6.67% |
Total | 7042 | 15 |
// SPDX-License-Identifier: GPL-2.0 /* BPF JIT compiler for RV64G * * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com> * */ #include <linux/bpf.h> #include <linux/filter.h> #include "bpf_jit.h" #define RV_REG_TCC RV_REG_A6 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */ static const int regmap[] = { [BPF_REG_0] = RV_REG_A5, [BPF_REG_1] = RV_REG_A0, [BPF_REG_2] = RV_REG_A1, [BPF_REG_3] = RV_REG_A2, [BPF_REG_4] = RV_REG_A3, [BPF_REG_5] = RV_REG_A4, [BPF_REG_6] = RV_REG_S1, [BPF_REG_7] = RV_REG_S2, [BPF_REG_8] = RV_REG_S3, [BPF_REG_9] = RV_REG_S4, [BPF_REG_FP] = RV_REG_S5, [BPF_REG_AX] = RV_REG_T0, }; enum { RV_CTX_F_SEEN_TAIL_CALL = 0, RV_CTX_F_SEEN_CALL = RV_REG_RA, RV_CTX_F_SEEN_S1 = RV_REG_S1, RV_CTX_F_SEEN_S2 = RV_REG_S2, RV_CTX_F_SEEN_S3 = RV_REG_S3, RV_CTX_F_SEEN_S4 = RV_REG_S4, RV_CTX_F_SEEN_S5 = RV_REG_S5, RV_CTX_F_SEEN_S6 = RV_REG_S6, }; static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx) { u8 reg = regmap[bpf_reg]; switch (reg) { case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: __set_bit(reg, &ctx->flags); } return reg; }; static bool seen_reg(int reg, struct rv_jit_context *ctx) { switch (reg) { case RV_CTX_F_SEEN_CALL: case RV_CTX_F_SEEN_S1: case RV_CTX_F_SEEN_S2: case RV_CTX_F_SEEN_S3: case RV_CTX_F_SEEN_S4: case RV_CTX_F_SEEN_S5: case RV_CTX_F_SEEN_S6: return test_bit(reg, &ctx->flags); } return false; } static void mark_fp(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags); } static void mark_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static bool seen_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags); } static void mark_tail_call(struct rv_jit_context *ctx) { __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static bool seen_tail_call(struct rv_jit_context *ctx) { return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags); } static u8 rv_tail_call_reg(struct rv_jit_context *ctx) { mark_tail_call(ctx); if (seen_call(ctx)) { __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags); return RV_REG_S6; } return RV_REG_A6; } static bool is_32b_int(s64 val) { return -(1L << 31) <= val && val < (1L << 31); } static bool in_auipc_jalr_range(s64 val) { /* * auipc+jalr can reach any signed PC-relative offset in the range * [-2^31 - 2^11, 2^31 - 2^11). */ return (-(1L << 31) - (1L << 11)) <= val && val < ((1L << 31) - (1L << 11)); } static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx) { /* Note that the immediate from the add is sign-extended, * which means that we need to compensate this by adding 2^12, * when the 12th bit is set. A simpler way of doing this, and * getting rid of the check, is to just add 2**11 before the * shift. The "Loading a 32-Bit constant" example from the * "Computer Organization and Design, RISC-V edition" book by * Patterson/Hennessy highlights this fact. * * This also means that we need to process LSB to MSB. */ s64 upper = (val + (1 << 11)) >> 12, lower = val & 0xfff; int shift; if (is_32b_int(val)) { if (upper) emit(rv_lui(rd, upper), ctx); if (!upper) { emit(rv_addi(rd, RV_REG_ZERO, lower), ctx); return; } emit(rv_addiw(rd, rd, lower), ctx); return; } shift = __ffs(upper); upper >>= shift; shift += 12; emit_imm(rd, upper, ctx); emit(rv_slli(rd, rd, shift), ctx); if (lower) emit(rv_addi(rd, rd, lower), ctx); } static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx) { int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8; if (seen_reg(RV_REG_RA, ctx)) { emit(rv_ld(RV_REG_RA, store_offset, RV_REG_SP), ctx); store_offset -= 8; } emit(rv_ld(RV_REG_FP, store_offset, RV_REG_SP), ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit(rv_ld(RV_REG_S1, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit(rv_ld(RV_REG_S2, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit(rv_ld(RV_REG_S3, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit(rv_ld(RV_REG_S4, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit(rv_ld(RV_REG_S5, store_offset, RV_REG_SP), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit(rv_ld(RV_REG_S6, store_offset, RV_REG_SP), ctx); store_offset -= 8; } emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx); /* Set return value. */ if (!is_tail_call) emit(rv_addi(RV_REG_A0, RV_REG_A5, 0), ctx); emit(rv_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA, is_tail_call ? 4 : 0), /* skip TCC init */ ctx); } static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { switch (cond) { case BPF_JEQ: emit(rv_beq(rd, rs, rvoff >> 1), ctx); return; case BPF_JGT: emit(rv_bltu(rs, rd, rvoff >> 1), ctx); return; case BPF_JLT: emit(rv_bltu(rd, rs, rvoff >> 1), ctx); return; case BPF_JGE: emit(rv_bgeu(rd, rs, rvoff >> 1), ctx); return; case BPF_JLE: emit(rv_bgeu(rs, rd, rvoff >> 1), ctx); return; case BPF_JNE: emit(rv_bne(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGT: emit(rv_blt(rs, rd, rvoff >> 1), ctx); return; case BPF_JSLT: emit(rv_blt(rd, rs, rvoff >> 1), ctx); return; case BPF_JSGE: emit(rv_bge(rd, rs, rvoff >> 1), ctx); return; case BPF_JSLE: emit(rv_bge(rs, rd, rvoff >> 1), ctx); } } static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { s64 upper, lower; if (is_13b_int(rvoff)) { emit_bcc(cond, rd, rs, rvoff, ctx); return; } /* Adjust for jal */ rvoff -= 4; /* Transform, e.g.: * bne rd,rs,foo * to * beq rd,rs,<.L1> * (auipc foo) * jal(r) foo * .L1 */ cond = invert_bpf_cond(cond); if (is_21b_int(rvoff)) { emit_bcc(cond, rd, rs, 8, ctx); emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx); return; } /* 32b No need for an additional rvoff adjustment, since we * get that from the auipc at PC', where PC = PC' + 4. */ upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit_bcc(cond, rd, rs, 12, ctx); emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx); } static void emit_zext_32(u8 reg, struct rv_jit_context *ctx) { emit(rv_slli(reg, reg, 32), ctx); emit(rv_srli(reg, reg, 32), ctx); } static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx) { int tc_ninsn, off, start_insn = ctx->ninsns; u8 tcc = rv_tail_call_reg(ctx); /* a0: &ctx * a1: &array * a2: index * * if (index >= array->map.max_entries) * goto out; */ tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] : ctx->offset[0]; emit_zext_32(RV_REG_A2, ctx); off = offsetof(struct bpf_array, map.max_entries); if (is_12b_check(off, insn)) return -1; emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx); /* if (TCC-- < 0) * goto out; */ emit(rv_addi(RV_REG_T1, tcc, -1), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx); /* prog = array->ptrs[index]; * if (!prog) * goto out; */ emit(rv_slli(RV_REG_T2, RV_REG_A2, 3), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_A1), ctx); off = offsetof(struct bpf_array, ptrs); if (is_12b_check(off, insn)) return -1; emit(rv_ld(RV_REG_T2, off, RV_REG_T2), ctx); off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2; emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx); /* goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); if (is_12b_check(off, insn)) return -1; emit(rv_ld(RV_REG_T3, off, RV_REG_T2), ctx); emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx); __build_epilogue(true, ctx); return 0; } static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn, struct rv_jit_context *ctx) { u8 code = insn->code; switch (code) { case BPF_JMP | BPF_JA: case BPF_JMP | BPF_CALL: case BPF_JMP | BPF_EXIT: case BPF_JMP | BPF_TAIL_CALL: break; default: *rd = bpf_to_rv_reg(insn->dst_reg, ctx); } if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) || code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) || code & BPF_LDX || code & BPF_STX) *rs = bpf_to_rv_reg(insn->src_reg, ctx); } static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit(rv_addi(RV_REG_T2, *rd, 0), ctx); emit_zext_32(RV_REG_T2, ctx); emit(rv_addi(RV_REG_T1, *rs, 0), ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx) { emit(rv_addiw(RV_REG_T2, *rd, 0), ctx); emit(rv_addiw(RV_REG_T1, *rs, 0), ctx); *rd = RV_REG_T2; *rs = RV_REG_T1; } static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx) { emit(rv_addi(RV_REG_T2, *rd, 0), ctx); emit_zext_32(RV_REG_T2, ctx); emit_zext_32(RV_REG_T1, ctx); *rd = RV_REG_T2; } static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx) { emit(rv_addiw(RV_REG_T2, *rd, 0), ctx); *rd = RV_REG_T2; } static int emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr, struct rv_jit_context *ctx) { s64 upper, lower; if (rvoff && is_21b_int(rvoff) && !force_jalr) { emit(rv_jal(rd, rvoff >> 1), ctx); return 0; } else if (in_auipc_jalr_range(rvoff)) { upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(rd, RV_REG_T1, lower), ctx); return 0; } pr_err("bpf-jit: target offset 0x%llx is out of range\n", rvoff); return -ERANGE; } static bool is_signed_bpf_cond(u8 cond) { return cond == BPF_JSGT || cond == BPF_JSLT || cond == BPF_JSGE || cond == BPF_JSLE; } static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx) { s64 off = 0; u64 ip; u8 rd; int ret; if (addr && ctx->insns) { ip = (u64)(long)(ctx->insns + ctx->ninsns); off = addr - ip; } ret = emit_jump_and_link(RV_REG_RA, off, !fixed, ctx); if (ret) return ret; rd = bpf_to_rv_reg(BPF_REG_0, ctx); emit(rv_addi(rd, RV_REG_A0, 0), ctx); return 0; } int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, rvoff, ret, i = insn - ctx->prog->insnsi; struct bpf_prog_aux *aux = ctx->prog->aux; u8 rd = -1, rs = -1, code = insn->code; s16 off = insn->off; s32 imm = insn->imm; init_regs(&rd, &rs, insn, ctx); switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_zext_32(rd, ctx); break; } emit(is64 ? rv_addi(rd, rs, 0) : rv_addiw(rd, rs, 0), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit(is64 ? rv_add(rd, rd, rs) : rv_addw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit(is64 ? rv_sub(rd, rd, rs) : rv_subw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit(rv_and(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit(rv_or(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit(rv_xor(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit(is64 ? rv_sub(rd, RV_REG_ZERO, rd) : rv_subw(rd, RV_REG_ZERO, rd), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm) { case 16: emit(rv_slli(rd, rd, 48), ctx); emit(rv_srli(rd, rd, 48), ctx); break; case 32: if (!aux->verifier_zext) emit_zext_32(rd, ctx); break; case 64: /* Do nothing */ break; } break; case BPF_ALU | BPF_END | BPF_FROM_BE: emit(rv_addi(RV_REG_T2, RV_REG_ZERO, 0), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); if (imm == 16) goto out_be; emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); if (imm == 32) goto out_be; emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); out_be: emit(rv_andi(RV_REG_T1, rd, 0xff), ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx); emit(rv_addi(rd, RV_REG_T2, 0), ctx); break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_imm(rd, imm, ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: if (is_12b_int(imm)) { emit(is64 ? rv_addi(rd, rd, imm) : rv_addiw(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_add(rd, rd, RV_REG_T1) : rv_addw(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: if (is_12b_int(-imm)) { emit(is64 ? rv_addi(rd, rd, -imm) : rv_addiw(rd, rd, -imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_sub(rd, rd, RV_REG_T1) : rv_subw(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: if (is_12b_int(imm)) { emit(rv_andi(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_and(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: if (is_12b_int(imm)) { emit(rv_ori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_or(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: if (is_12b_int(imm)) { emit(rv_xori(rd, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_xor(rd, rd, RV_REG_T1), ctx); } if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_mul(rd, rd, RV_REG_T1) : rv_mulw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_divu(rd, rd, RV_REG_T1) : rv_divuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: emit_imm(RV_REG_T1, imm, ctx); emit(is64 ? rv_remu(rd, rd, RV_REG_T1) : rv_remuw(rd, rd, RV_REG_T1), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: emit(is64 ? rv_slli(rd, rd, imm) : rv_slliw(rd, rd, imm), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: emit(is64 ? rv_srli(rd, rd, imm) : rv_srliw(rd, rd, imm), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit(is64 ? rv_srai(rd, rd, imm) : rv_sraiw(rd, rd, imm), ctx); if (!is64 && !aux->verifier_zext) emit_zext_32(rd, ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: rvoff = rv_offset(i, off, ctx); ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); if (ret) return ret; break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: rvoff = rv_offset(i, off, ctx); if (!is64) { s = ctx->ninsns; if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd_rs(&rd, &rs, ctx); else emit_zext_32_rd_rs(&rd, &rs, ctx); e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= (e - s) << 2; } if (BPF_OP(code) == BPF_JSET) { /* Adjust for and */ rvoff -= 4; emit(rv_and(RV_REG_T1, rd, rs), ctx); emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); } else { emit_branch(BPF_OP(code), rd, rs, rvoff, ctx); } break; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: rvoff = rv_offset(i, off, ctx); s = ctx->ninsns; if (imm) { emit_imm(RV_REG_T1, imm, ctx); rs = RV_REG_T1; } else { /* If imm is 0, simply use zero register. */ rs = RV_REG_ZERO; } if (!is64) { if (is_signed_bpf_cond(BPF_OP(code))) emit_sext_32_rd(&rd, ctx); else emit_zext_32_rd_t1(&rd, ctx); } e = ctx->ninsns; /* Adjust for extra insns */ rvoff -= (e - s) << 2; emit_branch(BPF_OP(code), rd, rs, rvoff, ctx); break; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: rvoff = rv_offset(i, off, ctx); s = ctx->ninsns; if (is_12b_int(imm)) { emit(rv_andi(RV_REG_T1, rd, imm), ctx); } else { emit_imm(RV_REG_T1, imm, ctx); emit(rv_and(RV_REG_T1, rd, RV_REG_T1), ctx); } /* For jset32, we should clear the upper 32 bits of t1, but * sign-extension is sufficient here and saves one instruction, * as t1 is used only in comparison against zero. */ if (!is64 && imm < 0) emit(rv_addiw(RV_REG_T1, RV_REG_T1, 0), ctx); e = ctx->ninsns; rvoff -= (e - s) << 2; emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff, ctx); break; /* function call */ case BPF_JMP | BPF_CALL: { bool fixed; u64 addr; mark_call(ctx); ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed); if (ret < 0) return ret; ret = emit_call(fixed, addr, ctx); if (ret) return ret; break; } /* tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_bpf_tail_call(i, ctx)) return -1; break; /* function return */ case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; rvoff = epilogue_offset(ctx); ret = emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); if (ret) return ret; break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; u64 imm64; imm64 = (u64)insn1.imm << 32 | (u32)imm; emit_imm(rd, imm64, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_B: if (is_12b_int(off)) { emit(rv_lbu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lbu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_H: if (is_12b_int(off)) { emit(rv_lhu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lhu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_W: if (is_12b_int(off)) { emit(rv_lwu(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_lwu(rd, 0, RV_REG_T1), ctx); if (insn_is_zext(&insn[1])) return 1; break; case BPF_LDX | BPF_MEM | BPF_DW: if (is_12b_int(off)) { emit(rv_ld(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx); emit(rv_ld(rd, 0, RV_REG_T1), ctx); break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_B: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sb(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_H: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sh(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_W: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sw(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sw(RV_REG_T2, 0, RV_REG_T1), ctx); break; case BPF_ST | BPF_MEM | BPF_DW: emit_imm(RV_REG_T1, imm, ctx); if (is_12b_int(off)) { emit(rv_sd(rd, off, RV_REG_T1), ctx); break; } emit_imm(RV_REG_T2, off, ctx); emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx); emit(rv_sd(RV_REG_T2, 0, RV_REG_T1), ctx); break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_B: if (is_12b_int(off)) { emit(rv_sb(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sb(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_H: if (is_12b_int(off)) { emit(rv_sh(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sh(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_W: if (is_12b_int(off)) { emit(rv_sw(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sw(RV_REG_T1, 0, rs), ctx); break; case BPF_STX | BPF_MEM | BPF_DW: if (is_12b_int(off)) { emit(rv_sd(rd, off, rs), ctx); break; } emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); emit(rv_sd(RV_REG_T1, 0, rs), ctx); break; /* STX XADD: lock *(u32 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_W: /* STX XADD: lock *(u64 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_DW: if (off) { if (is_12b_int(off)) { emit(rv_addi(RV_REG_T1, rd, off), ctx); } else { emit_imm(RV_REG_T1, off, ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx); } rd = RV_REG_T1; } emit(BPF_SIZE(code) == BPF_W ? rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) : rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx); break; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } void bpf_jit_build_prologue(struct rv_jit_context *ctx) { int stack_adjust = 0, store_offset, bpf_stack_adjust; bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16); if (bpf_stack_adjust) mark_fp(ctx); if (seen_reg(RV_REG_RA, ctx)) stack_adjust += 8; stack_adjust += 8; /* RV_REG_FP */ if (seen_reg(RV_REG_S1, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S2, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S3, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S4, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S5, ctx)) stack_adjust += 8; if (seen_reg(RV_REG_S6, ctx)) stack_adjust += 8; stack_adjust = round_up(stack_adjust, 16); stack_adjust += bpf_stack_adjust; store_offset = stack_adjust - 8; /* First instruction is always setting the tail-call-counter * (TCC) register. This instruction is skipped for tail calls. */ emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx); emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx); if (seen_reg(RV_REG_RA, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_RA), ctx); store_offset -= 8; } emit(rv_sd(RV_REG_SP, store_offset, RV_REG_FP), ctx); store_offset -= 8; if (seen_reg(RV_REG_S1, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S1), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S2, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S2), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S3, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S3), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S4, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S4), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S5, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S5), ctx); store_offset -= 8; } if (seen_reg(RV_REG_S6, ctx)) { emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S6), ctx); store_offset -= 8; } emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx); if (bpf_stack_adjust) emit(rv_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust), ctx); /* Program contains calls and tail calls, so RV_REG_TCC need * to be saved across calls. */ if (seen_tail_call(ctx) && seen_call(ctx)) emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx); ctx->stack_size = stack_adjust; } void bpf_jit_build_epilogue(struct rv_jit_context *ctx) { __build_epilogue(false, ctx); } void *bpf_jit_alloc_exec(unsigned long size) { return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START, BPF_JIT_REGION_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE, __builtin_return_address(0)); } void bpf_jit_free_exec(void *addr) { return vfree(addr); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1