Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Jones | 3844 | 72.65% | 47 | 39.83% |
Langsdorf, Mark | 263 | 4.97% | 8 | 6.78% |
Stratos Karafotis | 249 | 4.71% | 1 | 0.85% |
Rusty Russell | 231 | 4.37% | 6 | 5.08% |
Matthew Garrett | 156 | 2.95% | 1 | 0.85% |
Borislav Petkov | 121 | 2.29% | 4 | 3.39% |
Viresh Kumar | 61 | 1.15% | 10 | 8.47% |
Tejun Heo | 52 | 0.98% | 2 | 1.69% |
Dominik Brodowski | 46 | 0.87% | 1 | 0.85% |
Linus Torvalds | 44 | 0.83% | 2 | 1.69% |
Andi Kleen | 37 | 0.70% | 2 | 1.69% |
Thomas Renninger | 26 | 0.49% | 4 | 3.39% |
Mike Travis | 23 | 0.43% | 4 | 3.39% |
Jacob Shin | 19 | 0.36% | 2 | 1.69% |
Andreas Herrmann | 19 | 0.36% | 3 | 2.54% |
Srivatsa S. Bhat | 18 | 0.34% | 1 | 0.85% |
Andre Przywara | 13 | 0.25% | 1 | 0.85% |
Ingo Molnar | 11 | 0.21% | 1 | 0.85% |
Thomas Gleixner | 9 | 0.17% | 2 | 1.69% |
Neil Brown | 9 | 0.17% | 1 | 0.85% |
Chumbalkar Nagananda | 7 | 0.13% | 1 | 0.85% |
Andrew Morton | 7 | 0.13% | 3 | 2.54% |
Kees Cook | 6 | 0.11% | 1 | 0.85% |
Kurt Roeckx | 5 | 0.09% | 1 | 0.85% |
Bartosz Golaszewski | 3 | 0.06% | 1 | 0.85% |
Chris Wright | 2 | 0.04% | 1 | 0.85% |
Marti Raudsepp | 2 | 0.04% | 1 | 0.85% |
Lin Ming | 2 | 0.04% | 1 | 0.85% |
Konrad Rzeszutek Wilk | 2 | 0.04% | 1 | 0.85% |
Simon Arlott | 1 | 0.02% | 1 | 0.85% |
Yinghai Lu | 1 | 0.02% | 1 | 0.85% |
Lucas De Marchi | 1 | 0.02% | 1 | 0.85% |
Adrian Bunk | 1 | 0.02% | 1 | 0.85% |
Total | 5291 | 118 |
// SPDX-License-Identifier: GPL-2.0-only /* * (c) 2003-2012 Advanced Micro Devices, Inc. * * Maintainer: * Andreas Herrmann <herrmann.der.user@googlemail.com> * * Based on the powernow-k7.c module written by Dave Jones. * (C) 2003 Dave Jones on behalf of SuSE Labs * (C) 2004 Dominik Brodowski <linux@brodo.de> * (C) 2004 Pavel Machek <pavel@ucw.cz> * Based upon datasheets & sample CPUs kindly provided by AMD. * * Valuable input gratefully received from Dave Jones, Pavel Machek, * Dominik Brodowski, Jacob Shin, and others. * Originally developed by Paul Devriendt. * * Processor information obtained from Chapter 9 (Power and Thermal * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x * Power Management" in BKDGs for newer AMD CPU families. * * Tables for specific CPUs can be inferred from AMD's processor * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/smp.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/cpumask.h> #include <linux/io.h> #include <linux/delay.h> #include <asm/msr.h> #include <asm/cpu_device_id.h> #include <linux/acpi.h> #include <linux/mutex.h> #include <acpi/processor.h> #define VERSION "version 2.20.00" #include "powernow-k8.h" /* serialize freq changes */ static DEFINE_MUTEX(fidvid_mutex); static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); static struct cpufreq_driver cpufreq_amd64_driver; /* Return a frequency in MHz, given an input fid */ static u32 find_freq_from_fid(u32 fid) { return 800 + (fid * 100); } /* Return a frequency in KHz, given an input fid */ static u32 find_khz_freq_from_fid(u32 fid) { return 1000 * find_freq_from_fid(fid); } /* Return the vco fid for an input fid * * Each "low" fid has corresponding "high" fid, and you can get to "low" fids * only from corresponding high fids. This returns "high" fid corresponding to * "low" one. */ static u32 convert_fid_to_vco_fid(u32 fid) { if (fid < HI_FID_TABLE_BOTTOM) return 8 + (2 * fid); else return fid; } /* * Return 1 if the pending bit is set. Unless we just instructed the processor * to transition to a new state, seeing this bit set is really bad news. */ static int pending_bit_stuck(void) { u32 lo, hi; rdmsr(MSR_FIDVID_STATUS, lo, hi); return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; } /* * Update the global current fid / vid values from the status msr. * Returns 1 on error. */ static int query_current_values_with_pending_wait(struct powernow_k8_data *data) { u32 lo, hi; u32 i = 0; do { if (i++ > 10000) { pr_debug("detected change pending stuck\n"); return 1; } rdmsr(MSR_FIDVID_STATUS, lo, hi); } while (lo & MSR_S_LO_CHANGE_PENDING); data->currvid = hi & MSR_S_HI_CURRENT_VID; data->currfid = lo & MSR_S_LO_CURRENT_FID; return 0; } /* the isochronous relief time */ static void count_off_irt(struct powernow_k8_data *data) { udelay((1 << data->irt) * 10); } /* the voltage stabilization time */ static void count_off_vst(struct powernow_k8_data *data) { udelay(data->vstable * VST_UNITS_20US); } /* need to init the control msr to a safe value (for each cpu) */ static void fidvid_msr_init(void) { u32 lo, hi; u8 fid, vid; rdmsr(MSR_FIDVID_STATUS, lo, hi); vid = hi & MSR_S_HI_CURRENT_VID; fid = lo & MSR_S_LO_CURRENT_FID; lo = fid | (vid << MSR_C_LO_VID_SHIFT); hi = MSR_C_HI_STP_GNT_BENIGN; pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); wrmsr(MSR_FIDVID_CTL, lo, hi); } /* write the new fid value along with the other control fields to the msr */ static int write_new_fid(struct powernow_k8_data *data, u32 fid) { u32 lo; u32 savevid = data->currvid; u32 i = 0; if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { pr_err("internal error - overflow on fid write\n"); return 1; } lo = fid; lo |= (data->currvid << MSR_C_LO_VID_SHIFT); lo |= MSR_C_LO_INIT_FID_VID; pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", fid, lo, data->plllock * PLL_LOCK_CONVERSION); do { wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); if (i++ > 100) { pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n"); return 1; } } while (query_current_values_with_pending_wait(data)); count_off_irt(data); if (savevid != data->currvid) { pr_err("vid change on fid trans, old 0x%x, new 0x%x\n", savevid, data->currvid); return 1; } if (fid != data->currfid) { pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid, data->currfid); return 1; } return 0; } /* Write a new vid to the hardware */ static int write_new_vid(struct powernow_k8_data *data, u32 vid) { u32 lo; u32 savefid = data->currfid; int i = 0; if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { pr_err("internal error - overflow on vid write\n"); return 1; } lo = data->currfid; lo |= (vid << MSR_C_LO_VID_SHIFT); lo |= MSR_C_LO_INIT_FID_VID; pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", vid, lo, STOP_GRANT_5NS); do { wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); if (i++ > 100) { pr_err("internal error - pending bit very stuck - no further pstate changes possible\n"); return 1; } } while (query_current_values_with_pending_wait(data)); if (savefid != data->currfid) { pr_err("fid changed on vid trans, old 0x%x new 0x%x\n", savefid, data->currfid); return 1; } if (vid != data->currvid) { pr_err("vid trans failed, vid 0x%x, curr 0x%x\n", vid, data->currvid); return 1; } return 0; } /* * Reduce the vid by the max of step or reqvid. * Decreasing vid codes represent increasing voltages: * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. */ static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step) { if ((data->currvid - reqvid) > step) reqvid = data->currvid - step; if (write_new_vid(data, reqvid)) return 1; count_off_vst(data); return 0; } /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid) { if (core_voltage_pre_transition(data, reqvid, reqfid)) return 1; if (core_frequency_transition(data, reqfid)) return 1; if (core_voltage_post_transition(data, reqvid)) return 1; if (query_current_values_with_pending_wait(data)) return 1; if ((reqfid != data->currfid) || (reqvid != data->currvid)) { pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n", smp_processor_id(), reqfid, reqvid, data->currfid, data->currvid); return 1; } pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", smp_processor_id(), data->currfid, data->currvid); return 0; } /* Phase 1 - core voltage transition ... setup voltage */ static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid, u32 reqfid) { u32 rvosteps = data->rvo; u32 savefid = data->currfid; u32 maxvid, lo, rvomult = 1; pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n", smp_processor_id(), data->currfid, data->currvid, reqvid, data->rvo); if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) rvomult = 2; rvosteps *= rvomult; rdmsr(MSR_FIDVID_STATUS, lo, maxvid); maxvid = 0x1f & (maxvid >> 16); pr_debug("ph1 maxvid=0x%x\n", maxvid); if (reqvid < maxvid) /* lower numbers are higher voltages */ reqvid = maxvid; while (data->currvid > reqvid) { pr_debug("ph1: curr 0x%x, req vid 0x%x\n", data->currvid, reqvid); if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) return 1; } while ((rvosteps > 0) && ((rvomult * data->rvo + data->currvid) > reqvid)) { if (data->currvid == maxvid) { rvosteps = 0; } else { pr_debug("ph1: changing vid for rvo, req 0x%x\n", data->currvid - 1); if (decrease_vid_code_by_step(data, data->currvid-1, 1)) return 1; rvosteps--; } } if (query_current_values_with_pending_wait(data)) return 1; if (savefid != data->currfid) { pr_err("ph1 err, currfid changed 0x%x\n", data->currfid); return 1; } pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } /* Phase 2 - core frequency transition */ static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) { u32 vcoreqfid, vcocurrfid, vcofiddiff; u32 fid_interval, savevid = data->currvid; if (data->currfid == reqfid) { pr_err("ph2 null fid transition 0x%x\n", data->currfid); return 0; } pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", smp_processor_id(), data->currfid, data->currvid, reqfid); vcoreqfid = convert_fid_to_vco_fid(reqfid); vcocurrfid = convert_fid_to_vco_fid(data->currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) vcofiddiff = 0; while (vcofiddiff > 2) { (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); if (reqfid > data->currfid) { if (data->currfid > LO_FID_TABLE_TOP) { if (write_new_fid(data, data->currfid + fid_interval)) return 1; } else { if (write_new_fid (data, 2 + convert_fid_to_vco_fid(data->currfid))) return 1; } } else { if (write_new_fid(data, data->currfid - fid_interval)) return 1; } vcocurrfid = convert_fid_to_vco_fid(data->currfid); vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid : vcoreqfid - vcocurrfid; } if (write_new_fid(data, reqfid)) return 1; if (query_current_values_with_pending_wait(data)) return 1; if (data->currfid != reqfid) { pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n", data->currfid, reqfid); return 1; } if (savevid != data->currvid) { pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n", savevid, data->currvid); return 1; } pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } /* Phase 3 - core voltage transition flow ... jump to the final vid. */ static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid) { u32 savefid = data->currfid; u32 savereqvid = reqvid; pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", smp_processor_id(), data->currfid, data->currvid); if (reqvid != data->currvid) { if (write_new_vid(data, reqvid)) return 1; if (savefid != data->currfid) { pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n", savefid, data->currfid); return 1; } if (data->currvid != reqvid) { pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x", reqvid, data->currvid); return 1; } } if (query_current_values_with_pending_wait(data)) return 1; if (savereqvid != data->currvid) { pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); return 1; } if (savefid != data->currfid) { pr_debug("ph3 failed, currfid changed 0x%x\n", data->currfid); return 1; } pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", data->currfid, data->currvid); return 0; } static const struct x86_cpu_id powernow_k8_ids[] = { /* IO based frequency switching */ X86_MATCH_VENDOR_FAM(AMD, 0xf, NULL), {} }; MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); static void check_supported_cpu(void *_rc) { u32 eax, ebx, ecx, edx; int *rc = _rc; *rc = -ENODEV; eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { pr_info("Processor cpuid %x not supported\n", eax); return; } eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { pr_info("No frequency change capabilities detected\n"); return; } cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) { pr_info("Power state transitions not supported\n"); return; } *rc = 0; } } static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) { unsigned int j; u8 lastfid = 0xff; for (j = 0; j < data->numps; j++) { if (pst[j].vid > LEAST_VID) { pr_err(FW_BUG "vid %d invalid : 0x%x\n", j, pst[j].vid); return -EINVAL; } if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */ pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j); return -ENODEV; } if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */ pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j); return -ENODEV; } if (pst[j].fid > MAX_FID) { pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j); return -ENODEV; } if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { /* Only first fid is allowed to be in "low" range */ pr_err(FW_BUG "two low fids - %d : 0x%x\n", j, pst[j].fid); return -EINVAL; } if (pst[j].fid < lastfid) lastfid = pst[j].fid; } if (lastfid & 1) { pr_err(FW_BUG "lastfid invalid\n"); return -EINVAL; } if (lastfid > LO_FID_TABLE_TOP) pr_info(FW_BUG "first fid not from lo freq table\n"); return 0; } static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, unsigned int entry) { powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; } static void print_basics(struct powernow_k8_data *data) { int j; for (j = 0; j < data->numps; j++) { if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) { pr_info("fid 0x%x (%d MHz), vid 0x%x\n", data->powernow_table[j].driver_data & 0xff, data->powernow_table[j].frequency/1000, data->powernow_table[j].driver_data >> 8); } } if (data->batps) pr_info("Only %d pstates on battery\n", data->batps); } static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid) { struct cpufreq_frequency_table *powernow_table; unsigned int j; if (data->batps) { /* use ACPI support to get full speed on mains power */ pr_warn("Only %d pstates usable (use ACPI driver for full range\n", data->batps); data->numps = data->batps; } for (j = 1; j < data->numps; j++) { if (pst[j-1].fid >= pst[j].fid) { pr_err("PST out of sequence\n"); return -EINVAL; } } if (data->numps < 2) { pr_err("no p states to transition\n"); return -ENODEV; } if (check_pst_table(data, pst, maxvid)) return -EINVAL; powernow_table = kzalloc((sizeof(*powernow_table) * (data->numps + 1)), GFP_KERNEL); if (!powernow_table) return -ENOMEM; for (j = 0; j < data->numps; j++) { int freq; powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */ powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */ freq = find_khz_freq_from_fid(pst[j].fid); powernow_table[j].frequency = freq; } powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; powernow_table[data->numps].driver_data = 0; if (query_current_values_with_pending_wait(data)) { kfree(powernow_table); return -EIO; } pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); data->powernow_table = powernow_table; if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu) print_basics(data); for (j = 0; j < data->numps; j++) if ((pst[j].fid == data->currfid) && (pst[j].vid == data->currvid)) return 0; pr_debug("currfid/vid do not match PST, ignoring\n"); return 0; } /* Find and validate the PSB/PST table in BIOS. */ static int find_psb_table(struct powernow_k8_data *data) { struct psb_s *psb; unsigned int i; u32 mvs; u8 maxvid; u32 cpst = 0; u32 thiscpuid; for (i = 0xc0000; i < 0xffff0; i += 0x10) { /* Scan BIOS looking for the signature. */ /* It can not be at ffff0 - it is too big. */ psb = phys_to_virt(i); if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) continue; pr_debug("found PSB header at 0x%p\n", psb); pr_debug("table vers: 0x%x\n", psb->tableversion); if (psb->tableversion != PSB_VERSION_1_4) { pr_err(FW_BUG "PSB table is not v1.4\n"); return -ENODEV; } pr_debug("flags: 0x%x\n", psb->flags1); if (psb->flags1) { pr_err(FW_BUG "unknown flags\n"); return -ENODEV; } data->vstable = psb->vstable; pr_debug("voltage stabilization time: %d(*20us)\n", data->vstable); pr_debug("flags2: 0x%x\n", psb->flags2); data->rvo = psb->flags2 & 3; data->irt = ((psb->flags2) >> 2) & 3; mvs = ((psb->flags2) >> 4) & 3; data->vidmvs = 1 << mvs; data->batps = ((psb->flags2) >> 6) & 3; pr_debug("ramp voltage offset: %d\n", data->rvo); pr_debug("isochronous relief time: %d\n", data->irt); pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); pr_debug("numpst: 0x%x\n", psb->num_tables); cpst = psb->num_tables; if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0)) { thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0)) cpst = 1; } if (cpst != 1) { pr_err(FW_BUG "numpst must be 1\n"); return -ENODEV; } data->plllock = psb->plllocktime; pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); pr_debug("maxfid: 0x%x\n", psb->maxfid); pr_debug("maxvid: 0x%x\n", psb->maxvid); maxvid = psb->maxvid; data->numps = psb->numps; pr_debug("numpstates: 0x%x\n", data->numps); return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid); } /* * If you see this message, complain to BIOS manufacturer. If * he tells you "we do not support Linux" or some similar * nonsense, remember that Windows 2000 uses the same legacy * mechanism that the old Linux PSB driver uses. Tell them it * is broken with Windows 2000. * * The reference to the AMD documentation is chapter 9 in the * BIOS and Kernel Developer's Guide, which is available on * www.amd.com */ pr_err(FW_BUG "No PSB or ACPI _PSS objects\n"); pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n"); return -ENODEV; } static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { u64 control; if (!data->acpi_data.state_count) return; control = data->acpi_data.states[index].control; data->irt = (control >> IRT_SHIFT) & IRT_MASK; data->rvo = (control >> RVO_SHIFT) & RVO_MASK; data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); data->vstable = (control >> VST_SHIFT) & VST_MASK; } static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { struct cpufreq_frequency_table *powernow_table; int ret_val = -ENODEV; u64 control, status; if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { pr_debug("register performance failed: bad ACPI data\n"); return -EIO; } /* verify the data contained in the ACPI structures */ if (data->acpi_data.state_count <= 1) { pr_debug("No ACPI P-States\n"); goto err_out; } control = data->acpi_data.control_register.space_id; status = data->acpi_data.status_register.space_id; if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { pr_debug("Invalid control/status registers (%llx - %llx)\n", control, status); goto err_out; } /* fill in data->powernow_table */ powernow_table = kzalloc((sizeof(*powernow_table) * (data->acpi_data.state_count + 1)), GFP_KERNEL); if (!powernow_table) goto err_out; /* fill in data */ data->numps = data->acpi_data.state_count; powernow_k8_acpi_pst_values(data, 0); ret_val = fill_powernow_table_fidvid(data, powernow_table); if (ret_val) goto err_out_mem; powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END; data->powernow_table = powernow_table; if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu) print_basics(data); /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { pr_err("unable to alloc powernow_k8_data cpumask\n"); ret_val = -ENOMEM; goto err_out_mem; } return 0; err_out_mem: kfree(powernow_table); err_out: acpi_processor_unregister_performance(data->cpu); /* data->acpi_data.state_count informs us at ->exit() * whether ACPI was used */ data->acpi_data.state_count = 0; return ret_val; } static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table) { int i; for (i = 0; i < data->acpi_data.state_count; i++) { u32 fid; u32 vid; u32 freq, index; u64 status, control; if (data->exttype) { status = data->acpi_data.states[i].status; fid = status & EXT_FID_MASK; vid = (status >> VID_SHIFT) & EXT_VID_MASK; } else { control = data->acpi_data.states[i].control; fid = control & FID_MASK; vid = (control >> VID_SHIFT) & VID_MASK; } pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); index = fid | (vid<<8); powernow_table[i].driver_data = index; freq = find_khz_freq_from_fid(fid); powernow_table[i].frequency = freq; /* verify frequency is OK */ if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { pr_debug("invalid freq %u kHz, ignoring\n", freq); invalidate_entry(powernow_table, i); continue; } /* verify voltage is OK - * BIOSs are using "off" to indicate invalid */ if (vid == VID_OFF) { pr_debug("invalid vid %u, ignoring\n", vid); invalidate_entry(powernow_table, i); continue; } if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { pr_info("invalid freq entries %u kHz vs. %u kHz\n", freq, (unsigned int) (data->acpi_data.states[i].core_frequency * 1000)); invalidate_entry(powernow_table, i); continue; } } return 0; } static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { if (data->acpi_data.state_count) acpi_processor_unregister_performance(data->cpu); free_cpumask_var(data->acpi_data.shared_cpu_map); } static int get_transition_latency(struct powernow_k8_data *data) { int max_latency = 0; int i; for (i = 0; i < data->acpi_data.state_count; i++) { int cur_latency = data->acpi_data.states[i].transition_latency + data->acpi_data.states[i].bus_master_latency; if (cur_latency > max_latency) max_latency = cur_latency; } if (max_latency == 0) { pr_err(FW_WARN "Invalid zero transition latency\n"); max_latency = 1; } /* value in usecs, needs to be in nanoseconds */ return 1000 * max_latency; } /* Take a frequency, and issue the fid/vid transition command */ static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index) { struct cpufreq_policy *policy; u32 fid = 0; u32 vid = 0; int res; struct cpufreq_freqs freqs; pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); /* fid/vid correctness check for k8 */ /* fid are the lower 8 bits of the index we stored into * the cpufreq frequency table in find_psb_table, vid * are the upper 8 bits. */ fid = data->powernow_table[index].driver_data & 0xFF; vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8; pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); if (query_current_values_with_pending_wait(data)) return 1; if ((data->currvid == vid) && (data->currfid == fid)) { pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", fid, vid); return 0; } pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", smp_processor_id(), fid, vid); freqs.old = find_khz_freq_from_fid(data->currfid); freqs.new = find_khz_freq_from_fid(fid); policy = cpufreq_cpu_get(smp_processor_id()); cpufreq_cpu_put(policy); cpufreq_freq_transition_begin(policy, &freqs); res = transition_fid_vid(data, fid, vid); cpufreq_freq_transition_end(policy, &freqs, res); return res; } struct powernowk8_target_arg { struct cpufreq_policy *pol; unsigned newstate; }; static long powernowk8_target_fn(void *arg) { struct powernowk8_target_arg *pta = arg; struct cpufreq_policy *pol = pta->pol; unsigned newstate = pta->newstate; struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); u32 checkfid; u32 checkvid; int ret; if (!data) return -EINVAL; checkfid = data->currfid; checkvid = data->currvid; if (pending_bit_stuck()) { pr_err("failing targ, change pending bit set\n"); return -EIO; } pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n", pol->cpu, data->powernow_table[newstate].frequency, pol->min, pol->max); if (query_current_values_with_pending_wait(data)) return -EIO; pr_debug("targ: curr fid 0x%x, vid 0x%x\n", data->currfid, data->currvid); if ((checkvid != data->currvid) || (checkfid != data->currfid)) { pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", checkfid, data->currfid, checkvid, data->currvid); } mutex_lock(&fidvid_mutex); powernow_k8_acpi_pst_values(data, newstate); ret = transition_frequency_fidvid(data, newstate); if (ret) { pr_err("transition frequency failed\n"); mutex_unlock(&fidvid_mutex); return 1; } mutex_unlock(&fidvid_mutex); pol->cur = find_khz_freq_from_fid(data->currfid); return 0; } /* Driver entry point to switch to the target frequency */ static int powernowk8_target(struct cpufreq_policy *pol, unsigned index) { struct powernowk8_target_arg pta = { .pol = pol, .newstate = index }; return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta); } struct init_on_cpu { struct powernow_k8_data *data; int rc; }; static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu) { struct init_on_cpu *init_on_cpu = _init_on_cpu; if (pending_bit_stuck()) { pr_err("failing init, change pending bit set\n"); init_on_cpu->rc = -ENODEV; return; } if (query_current_values_with_pending_wait(init_on_cpu->data)) { init_on_cpu->rc = -ENODEV; return; } fidvid_msr_init(); init_on_cpu->rc = 0; } #define MISSING_PSS_MSG \ FW_BUG "No compatible ACPI _PSS objects found.\n" \ FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \ FW_BUG "If that doesn't help, try upgrading your BIOS.\n" /* per CPU init entry point to the driver */ static int powernowk8_cpu_init(struct cpufreq_policy *pol) { struct powernow_k8_data *data; struct init_on_cpu init_on_cpu; int rc, cpu; smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); if (rc) return -ENODEV; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->cpu = pol->cpu; if (powernow_k8_cpu_init_acpi(data)) { /* * Use the PSB BIOS structure. This is only available on * an UP version, and is deprecated by AMD. */ if (num_online_cpus() != 1) { pr_err_once(MISSING_PSS_MSG); goto err_out; } if (pol->cpu != 0) { pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n"); goto err_out; } rc = find_psb_table(data); if (rc) goto err_out; /* Take a crude guess here. * That guess was in microseconds, so multiply with 1000 */ pol->cpuinfo.transition_latency = ( ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + ((1 << data->irt) * 30)) * 1000; } else /* ACPI _PSS objects available */ pol->cpuinfo.transition_latency = get_transition_latency(data); /* only run on specific CPU from here on */ init_on_cpu.data = data; smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, &init_on_cpu, 1); rc = init_on_cpu.rc; if (rc != 0) goto err_out_exit_acpi; cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu)); data->available_cores = pol->cpus; pol->freq_table = data->powernow_table; pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", data->currfid, data->currvid); /* Point all the CPUs in this policy to the same data */ for_each_cpu(cpu, pol->cpus) per_cpu(powernow_data, cpu) = data; return 0; err_out_exit_acpi: powernow_k8_cpu_exit_acpi(data); err_out: kfree(data); return -ENODEV; } static int powernowk8_cpu_exit(struct cpufreq_policy *pol) { struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); int cpu; if (!data) return -EINVAL; powernow_k8_cpu_exit_acpi(data); kfree(data->powernow_table); kfree(data); for_each_cpu(cpu, pol->cpus) per_cpu(powernow_data, cpu) = NULL; return 0; } static void query_values_on_cpu(void *_err) { int *err = _err; struct powernow_k8_data *data = __this_cpu_read(powernow_data); *err = query_current_values_with_pending_wait(data); } static unsigned int powernowk8_get(unsigned int cpu) { struct powernow_k8_data *data = per_cpu(powernow_data, cpu); unsigned int khz = 0; int err; if (!data) return 0; smp_call_function_single(cpu, query_values_on_cpu, &err, true); if (err) goto out; khz = find_khz_freq_from_fid(data->currfid); out: return khz; } static struct cpufreq_driver cpufreq_amd64_driver = { .flags = CPUFREQ_ASYNC_NOTIFICATION, .verify = cpufreq_generic_frequency_table_verify, .target_index = powernowk8_target, .bios_limit = acpi_processor_get_bios_limit, .init = powernowk8_cpu_init, .exit = powernowk8_cpu_exit, .get = powernowk8_get, .name = "powernow-k8", .attr = cpufreq_generic_attr, }; static void __request_acpi_cpufreq(void) { const char drv[] = "acpi-cpufreq"; const char *cur_drv; cur_drv = cpufreq_get_current_driver(); if (!cur_drv) goto request; if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv)))) pr_warn("WTF driver: %s\n", cur_drv); return; request: pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n"); request_module(drv); } /* driver entry point for init */ static int powernowk8_init(void) { unsigned int i, supported_cpus = 0; int ret; if (boot_cpu_has(X86_FEATURE_HW_PSTATE)) { __request_acpi_cpufreq(); return -ENODEV; } if (!x86_match_cpu(powernow_k8_ids)) return -ENODEV; get_online_cpus(); for_each_online_cpu(i) { smp_call_function_single(i, check_supported_cpu, &ret, 1); if (!ret) supported_cpus++; } if (supported_cpus != num_online_cpus()) { put_online_cpus(); return -ENODEV; } put_online_cpus(); ret = cpufreq_register_driver(&cpufreq_amd64_driver); if (ret) return ret; pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n", num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); return ret; } /* driver entry point for term */ static void __exit powernowk8_exit(void) { pr_debug("exit\n"); cpufreq_unregister_driver(&cpufreq_amd64_driver); } MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>"); MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>"); MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); MODULE_LICENSE("GPL"); late_initcall(powernowk8_init); module_exit(powernowk8_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1