Contributors: 1
Author Tokens Token Proportion Commits Commit Proportion
Sudeep Holla 2428 100.00% 8 100.00%
Total 2428 8


// SPDX-License-Identifier: GPL-2.0
/*
 * Versatile Express SPC CPUFreq Interface driver
 *
 * Copyright (C) 2013 - 2019 ARM Ltd.
 * Sudeep Holla <sudeep.holla@arm.com>
 *
 * Copyright (C) 2013 Linaro.
 * Viresh Kumar <viresh.kumar@linaro.org>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/cpumask.h>
#include <linux/cpu_cooling.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/topology.h>
#include <linux/types.h>

/* Currently we support only two clusters */
#define A15_CLUSTER	0
#define A7_CLUSTER	1
#define MAX_CLUSTERS	2

#ifdef CONFIG_BL_SWITCHER
#include <asm/bL_switcher.h>
static bool bL_switching_enabled;
#define is_bL_switching_enabled()	bL_switching_enabled
#define set_switching_enabled(x)	(bL_switching_enabled = (x))
#else
#define is_bL_switching_enabled()	false
#define set_switching_enabled(x)	do { } while (0)
#define bL_switch_request(...)		do { } while (0)
#define bL_switcher_put_enabled()	do { } while (0)
#define bL_switcher_get_enabled()	do { } while (0)
#endif

#define ACTUAL_FREQ(cluster, freq)  ((cluster == A7_CLUSTER) ? freq << 1 : freq)
#define VIRT_FREQ(cluster, freq)    ((cluster == A7_CLUSTER) ? freq >> 1 : freq)

static struct thermal_cooling_device *cdev[MAX_CLUSTERS];
static struct clk *clk[MAX_CLUSTERS];
static struct cpufreq_frequency_table *freq_table[MAX_CLUSTERS + 1];
static atomic_t cluster_usage[MAX_CLUSTERS + 1];

static unsigned int clk_big_min;	/* (Big) clock frequencies */
static unsigned int clk_little_max;	/* Maximum clock frequency (Little) */

static DEFINE_PER_CPU(unsigned int, physical_cluster);
static DEFINE_PER_CPU(unsigned int, cpu_last_req_freq);

static struct mutex cluster_lock[MAX_CLUSTERS];

static inline int raw_cpu_to_cluster(int cpu)
{
	return topology_physical_package_id(cpu);
}

static inline int cpu_to_cluster(int cpu)
{
	return is_bL_switching_enabled() ?
		MAX_CLUSTERS : raw_cpu_to_cluster(cpu);
}

static unsigned int find_cluster_maxfreq(int cluster)
{
	int j;
	u32 max_freq = 0, cpu_freq;

	for_each_online_cpu(j) {
		cpu_freq = per_cpu(cpu_last_req_freq, j);

		if (cluster == per_cpu(physical_cluster, j) &&
		    max_freq < cpu_freq)
			max_freq = cpu_freq;
	}

	return max_freq;
}

static unsigned int clk_get_cpu_rate(unsigned int cpu)
{
	u32 cur_cluster = per_cpu(physical_cluster, cpu);
	u32 rate = clk_get_rate(clk[cur_cluster]) / 1000;

	/* For switcher we use virtual A7 clock rates */
	if (is_bL_switching_enabled())
		rate = VIRT_FREQ(cur_cluster, rate);

	return rate;
}

static unsigned int ve_spc_cpufreq_get_rate(unsigned int cpu)
{
	if (is_bL_switching_enabled())
		return per_cpu(cpu_last_req_freq, cpu);
	else
		return clk_get_cpu_rate(cpu);
}

static unsigned int
ve_spc_cpufreq_set_rate(u32 cpu, u32 old_cluster, u32 new_cluster, u32 rate)
{
	u32 new_rate, prev_rate;
	int ret;
	bool bLs = is_bL_switching_enabled();

	mutex_lock(&cluster_lock[new_cluster]);

	if (bLs) {
		prev_rate = per_cpu(cpu_last_req_freq, cpu);
		per_cpu(cpu_last_req_freq, cpu) = rate;
		per_cpu(physical_cluster, cpu) = new_cluster;

		new_rate = find_cluster_maxfreq(new_cluster);
		new_rate = ACTUAL_FREQ(new_cluster, new_rate);
	} else {
		new_rate = rate;
	}

	ret = clk_set_rate(clk[new_cluster], new_rate * 1000);
	if (!ret) {
		/*
		 * FIXME: clk_set_rate hasn't returned an error here however it
		 * may be that clk_change_rate failed due to hardware or
		 * firmware issues and wasn't able to report that due to the
		 * current design of the clk core layer. To work around this
		 * problem we will read back the clock rate and check it is
		 * correct. This needs to be removed once clk core is fixed.
		 */
		if (clk_get_rate(clk[new_cluster]) != new_rate * 1000)
			ret = -EIO;
	}

	if (WARN_ON(ret)) {
		if (bLs) {
			per_cpu(cpu_last_req_freq, cpu) = prev_rate;
			per_cpu(physical_cluster, cpu) = old_cluster;
		}

		mutex_unlock(&cluster_lock[new_cluster]);

		return ret;
	}

	mutex_unlock(&cluster_lock[new_cluster]);

	/* Recalc freq for old cluster when switching clusters */
	if (old_cluster != new_cluster) {
		/* Switch cluster */
		bL_switch_request(cpu, new_cluster);

		mutex_lock(&cluster_lock[old_cluster]);

		/* Set freq of old cluster if there are cpus left on it */
		new_rate = find_cluster_maxfreq(old_cluster);
		new_rate = ACTUAL_FREQ(old_cluster, new_rate);

		if (new_rate &&
		    clk_set_rate(clk[old_cluster], new_rate * 1000)) {
			pr_err("%s: clk_set_rate failed: %d, old cluster: %d\n",
			       __func__, ret, old_cluster);
		}
		mutex_unlock(&cluster_lock[old_cluster]);
	}

	return 0;
}

/* Set clock frequency */
static int ve_spc_cpufreq_set_target(struct cpufreq_policy *policy,
				     unsigned int index)
{
	u32 cpu = policy->cpu, cur_cluster, new_cluster, actual_cluster;
	unsigned int freqs_new;
	int ret;

	cur_cluster = cpu_to_cluster(cpu);
	new_cluster = actual_cluster = per_cpu(physical_cluster, cpu);

	freqs_new = freq_table[cur_cluster][index].frequency;

	if (is_bL_switching_enabled()) {
		if (actual_cluster == A15_CLUSTER && freqs_new < clk_big_min)
			new_cluster = A7_CLUSTER;
		else if (actual_cluster == A7_CLUSTER &&
			 freqs_new > clk_little_max)
			new_cluster = A15_CLUSTER;
	}

	ret = ve_spc_cpufreq_set_rate(cpu, actual_cluster, new_cluster,
				      freqs_new);

	if (!ret) {
		arch_set_freq_scale(policy->related_cpus, freqs_new,
				    policy->cpuinfo.max_freq);
	}

	return ret;
}

static inline u32 get_table_count(struct cpufreq_frequency_table *table)
{
	int count;

	for (count = 0; table[count].frequency != CPUFREQ_TABLE_END; count++)
		;

	return count;
}

/* get the minimum frequency in the cpufreq_frequency_table */
static inline u32 get_table_min(struct cpufreq_frequency_table *table)
{
	struct cpufreq_frequency_table *pos;
	u32 min_freq = ~0;

	cpufreq_for_each_entry(pos, table)
		if (pos->frequency < min_freq)
			min_freq = pos->frequency;
	return min_freq;
}

/* get the maximum frequency in the cpufreq_frequency_table */
static inline u32 get_table_max(struct cpufreq_frequency_table *table)
{
	struct cpufreq_frequency_table *pos;
	u32 max_freq = 0;

	cpufreq_for_each_entry(pos, table)
		if (pos->frequency > max_freq)
			max_freq = pos->frequency;
	return max_freq;
}

static bool search_frequency(struct cpufreq_frequency_table *table, int size,
			     unsigned int freq)
{
	int count;

	for (count = 0; count < size; count++) {
		if (table[count].frequency == freq)
			return true;
	}

	return false;
}

static int merge_cluster_tables(void)
{
	int i, j, k = 0, count = 1;
	struct cpufreq_frequency_table *table;

	for (i = 0; i < MAX_CLUSTERS; i++)
		count += get_table_count(freq_table[i]);

	table = kcalloc(count, sizeof(*table), GFP_KERNEL);
	if (!table)
		return -ENOMEM;

	freq_table[MAX_CLUSTERS] = table;

	/* Add in reverse order to get freqs in increasing order */
	for (i = MAX_CLUSTERS - 1; i >= 0; i--, count = k) {
		for (j = 0; freq_table[i][j].frequency != CPUFREQ_TABLE_END;
		     j++) {
			if (i == A15_CLUSTER &&
			    search_frequency(table, count, freq_table[i][j].frequency))
				continue; /* skip duplicates */
			table[k++].frequency =
				VIRT_FREQ(i, freq_table[i][j].frequency);
		}
	}

	table[k].driver_data = k;
	table[k].frequency = CPUFREQ_TABLE_END;

	return 0;
}

static void _put_cluster_clk_and_freq_table(struct device *cpu_dev,
					    const struct cpumask *cpumask)
{
	u32 cluster = raw_cpu_to_cluster(cpu_dev->id);

	if (!freq_table[cluster])
		return;

	clk_put(clk[cluster]);
	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);
}

static void put_cluster_clk_and_freq_table(struct device *cpu_dev,
					   const struct cpumask *cpumask)
{
	u32 cluster = cpu_to_cluster(cpu_dev->id);
	int i;

	if (atomic_dec_return(&cluster_usage[cluster]))
		return;

	if (cluster < MAX_CLUSTERS)
		return _put_cluster_clk_and_freq_table(cpu_dev, cpumask);

	for_each_present_cpu(i) {
		struct device *cdev = get_cpu_device(i);

		if (!cdev)
			return;

		_put_cluster_clk_and_freq_table(cdev, cpumask);
	}

	/* free virtual table */
	kfree(freq_table[cluster]);
}

static int _get_cluster_clk_and_freq_table(struct device *cpu_dev,
					   const struct cpumask *cpumask)
{
	u32 cluster = raw_cpu_to_cluster(cpu_dev->id);
	int ret;

	if (freq_table[cluster])
		return 0;

	/*
	 * platform specific SPC code must initialise the opp table
	 * so just check if the OPP count is non-zero
	 */
	ret = dev_pm_opp_get_opp_count(cpu_dev) <= 0;
	if (ret)
		goto out;

	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table[cluster]);
	if (ret)
		goto out;

	clk[cluster] = clk_get(cpu_dev, NULL);
	if (!IS_ERR(clk[cluster]))
		return 0;

	dev_err(cpu_dev, "%s: Failed to get clk for cpu: %d, cluster: %d\n",
		__func__, cpu_dev->id, cluster);
	ret = PTR_ERR(clk[cluster]);
	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table[cluster]);

out:
	dev_err(cpu_dev, "%s: Failed to get data for cluster: %d\n", __func__,
		cluster);
	return ret;
}

static int get_cluster_clk_and_freq_table(struct device *cpu_dev,
					  const struct cpumask *cpumask)
{
	u32 cluster = cpu_to_cluster(cpu_dev->id);
	int i, ret;

	if (atomic_inc_return(&cluster_usage[cluster]) != 1)
		return 0;

	if (cluster < MAX_CLUSTERS) {
		ret = _get_cluster_clk_and_freq_table(cpu_dev, cpumask);
		if (ret)
			atomic_dec(&cluster_usage[cluster]);
		return ret;
	}

	/*
	 * Get data for all clusters and fill virtual cluster with a merge of
	 * both
	 */
	for_each_present_cpu(i) {
		struct device *cdev = get_cpu_device(i);

		if (!cdev)
			return -ENODEV;

		ret = _get_cluster_clk_and_freq_table(cdev, cpumask);
		if (ret)
			goto put_clusters;
	}

	ret = merge_cluster_tables();
	if (ret)
		goto put_clusters;

	/* Assuming 2 cluster, set clk_big_min and clk_little_max */
	clk_big_min = get_table_min(freq_table[A15_CLUSTER]);
	clk_little_max = VIRT_FREQ(A7_CLUSTER,
				   get_table_max(freq_table[A7_CLUSTER]));

	return 0;

put_clusters:
	for_each_present_cpu(i) {
		struct device *cdev = get_cpu_device(i);

		if (!cdev)
			return -ENODEV;

		_put_cluster_clk_and_freq_table(cdev, cpumask);
	}

	atomic_dec(&cluster_usage[cluster]);

	return ret;
}

/* Per-CPU initialization */
static int ve_spc_cpufreq_init(struct cpufreq_policy *policy)
{
	u32 cur_cluster = cpu_to_cluster(policy->cpu);
	struct device *cpu_dev;
	int ret;

	cpu_dev = get_cpu_device(policy->cpu);
	if (!cpu_dev) {
		pr_err("%s: failed to get cpu%d device\n", __func__,
		       policy->cpu);
		return -ENODEV;
	}

	if (cur_cluster < MAX_CLUSTERS) {
		int cpu;

		dev_pm_opp_get_sharing_cpus(cpu_dev, policy->cpus);

		for_each_cpu(cpu, policy->cpus)
			per_cpu(physical_cluster, cpu) = cur_cluster;
	} else {
		/* Assumption: during init, we are always running on A15 */
		per_cpu(physical_cluster, policy->cpu) = A15_CLUSTER;
	}

	ret = get_cluster_clk_and_freq_table(cpu_dev, policy->cpus);
	if (ret)
		return ret;

	policy->freq_table = freq_table[cur_cluster];
	policy->cpuinfo.transition_latency = 1000000; /* 1 ms */

	dev_pm_opp_of_register_em(policy->cpus);

	if (is_bL_switching_enabled())
		per_cpu(cpu_last_req_freq, policy->cpu) =
						clk_get_cpu_rate(policy->cpu);

	dev_info(cpu_dev, "%s: CPU %d initialized\n", __func__, policy->cpu);
	return 0;
}

static int ve_spc_cpufreq_exit(struct cpufreq_policy *policy)
{
	struct device *cpu_dev;
	int cur_cluster = cpu_to_cluster(policy->cpu);

	if (cur_cluster < MAX_CLUSTERS) {
		cpufreq_cooling_unregister(cdev[cur_cluster]);
		cdev[cur_cluster] = NULL;
	}

	cpu_dev = get_cpu_device(policy->cpu);
	if (!cpu_dev) {
		pr_err("%s: failed to get cpu%d device\n", __func__,
		       policy->cpu);
		return -ENODEV;
	}

	put_cluster_clk_and_freq_table(cpu_dev, policy->related_cpus);
	return 0;
}

static void ve_spc_cpufreq_ready(struct cpufreq_policy *policy)
{
	int cur_cluster = cpu_to_cluster(policy->cpu);

	/* Do not register a cpu_cooling device if we are in IKS mode */
	if (cur_cluster >= MAX_CLUSTERS)
		return;

	cdev[cur_cluster] = of_cpufreq_cooling_register(policy);
}

static struct cpufreq_driver ve_spc_cpufreq_driver = {
	.name			= "vexpress-spc",
	.flags			= CPUFREQ_STICKY |
					CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
					CPUFREQ_NEED_INITIAL_FREQ_CHECK,
	.verify			= cpufreq_generic_frequency_table_verify,
	.target_index		= ve_spc_cpufreq_set_target,
	.get			= ve_spc_cpufreq_get_rate,
	.init			= ve_spc_cpufreq_init,
	.exit			= ve_spc_cpufreq_exit,
	.ready			= ve_spc_cpufreq_ready,
	.attr			= cpufreq_generic_attr,
};

#ifdef CONFIG_BL_SWITCHER
static int bL_cpufreq_switcher_notifier(struct notifier_block *nfb,
					unsigned long action, void *_arg)
{
	pr_debug("%s: action: %ld\n", __func__, action);

	switch (action) {
	case BL_NOTIFY_PRE_ENABLE:
	case BL_NOTIFY_PRE_DISABLE:
		cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
		break;

	case BL_NOTIFY_POST_ENABLE:
		set_switching_enabled(true);
		cpufreq_register_driver(&ve_spc_cpufreq_driver);
		break;

	case BL_NOTIFY_POST_DISABLE:
		set_switching_enabled(false);
		cpufreq_register_driver(&ve_spc_cpufreq_driver);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
}

static struct notifier_block bL_switcher_notifier = {
	.notifier_call = bL_cpufreq_switcher_notifier,
};

static int __bLs_register_notifier(void)
{
	return bL_switcher_register_notifier(&bL_switcher_notifier);
}

static int __bLs_unregister_notifier(void)
{
	return bL_switcher_unregister_notifier(&bL_switcher_notifier);
}
#else
static int __bLs_register_notifier(void) { return 0; }
static int __bLs_unregister_notifier(void) { return 0; }
#endif

static int ve_spc_cpufreq_probe(struct platform_device *pdev)
{
	int ret, i;

	set_switching_enabled(bL_switcher_get_enabled());

	for (i = 0; i < MAX_CLUSTERS; i++)
		mutex_init(&cluster_lock[i]);

	ret = cpufreq_register_driver(&ve_spc_cpufreq_driver);
	if (ret) {
		pr_info("%s: Failed registering platform driver: %s, err: %d\n",
			__func__, ve_spc_cpufreq_driver.name, ret);
	} else {
		ret = __bLs_register_notifier();
		if (ret)
			cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
		else
			pr_info("%s: Registered platform driver: %s\n",
				__func__, ve_spc_cpufreq_driver.name);
	}

	bL_switcher_put_enabled();
	return ret;
}

static int ve_spc_cpufreq_remove(struct platform_device *pdev)
{
	bL_switcher_get_enabled();
	__bLs_unregister_notifier();
	cpufreq_unregister_driver(&ve_spc_cpufreq_driver);
	bL_switcher_put_enabled();
	pr_info("%s: Un-registered platform driver: %s\n", __func__,
		ve_spc_cpufreq_driver.name);
	return 0;
}

static struct platform_driver ve_spc_cpufreq_platdrv = {
	.driver = {
		.name	= "vexpress-spc-cpufreq",
	},
	.probe		= ve_spc_cpufreq_probe,
	.remove		= ve_spc_cpufreq_remove,
};
module_platform_driver(ve_spc_cpufreq_platdrv);

MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("Vexpress SPC ARM big LITTLE cpufreq driver");
MODULE_LICENSE("GPL v2");