Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Rice | 4356 | 99.95% | 1 | 50.00% |
Thomas Gleixner | 2 | 0.05% | 1 | 50.00% |
Total | 4358 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016 Broadcom */ #include <linux/kernel.h> #include <linux/string.h> #include "util.h" #include "spu.h" #include "spum.h" #include "cipher.h" char *hash_alg_name[] = { "None", "md5", "sha1", "sha224", "sha256", "aes", "sha384", "sha512", "sha3_224", "sha3_256", "sha3_384", "sha3_512" }; char *aead_alg_name[] = { "ccm(aes)", "gcm(aes)", "authenc" }; /* Assumes SPU-M messages are in big endian */ void spum_dump_msg_hdr(u8 *buf, unsigned int buf_len) { u8 *ptr = buf; struct SPUHEADER *spuh = (struct SPUHEADER *)buf; unsigned int hash_key_len = 0; unsigned int hash_state_len = 0; unsigned int cipher_key_len = 0; unsigned int iv_len; u32 pflags; u32 cflags; u32 ecf; u32 cipher_alg; u32 cipher_mode; u32 cipher_type; u32 hash_alg; u32 hash_mode; u32 hash_type; u32 sctx_size; /* SCTX length in words */ u32 sctx_pl_len; /* SCTX payload length in bytes */ packet_log("\n"); packet_log("SPU Message header %p len: %u\n", buf, buf_len); /* ========== Decode MH ========== */ packet_log(" MH 0x%08x\n", be32_to_cpu(*((u32 *)ptr))); if (spuh->mh.flags & MH_SCTX_PRES) packet_log(" SCTX present\n"); if (spuh->mh.flags & MH_BDESC_PRES) packet_log(" BDESC present\n"); if (spuh->mh.flags & MH_MFM_PRES) packet_log(" MFM present\n"); if (spuh->mh.flags & MH_BD_PRES) packet_log(" BD present\n"); if (spuh->mh.flags & MH_HASH_PRES) packet_log(" HASH present\n"); if (spuh->mh.flags & MH_SUPDT_PRES) packet_log(" SUPDT present\n"); packet_log(" Opcode 0x%02x\n", spuh->mh.op_code); ptr += sizeof(spuh->mh) + sizeof(spuh->emh); /* skip emh. unused */ /* ========== Decode SCTX ========== */ if (spuh->mh.flags & MH_SCTX_PRES) { pflags = be32_to_cpu(spuh->sa.proto_flags); packet_log(" SCTX[0] 0x%08x\n", pflags); sctx_size = pflags & SCTX_SIZE; packet_log(" Size %u words\n", sctx_size); cflags = be32_to_cpu(spuh->sa.cipher_flags); packet_log(" SCTX[1] 0x%08x\n", cflags); packet_log(" Inbound:%lu (1:decrypt/vrfy 0:encrypt/auth)\n", (cflags & CIPHER_INBOUND) >> CIPHER_INBOUND_SHIFT); packet_log(" Order:%lu (1:AuthFirst 0:EncFirst)\n", (cflags & CIPHER_ORDER) >> CIPHER_ORDER_SHIFT); packet_log(" ICV_IS_512:%lx\n", (cflags & ICV_IS_512) >> ICV_IS_512_SHIFT); cipher_alg = (cflags & CIPHER_ALG) >> CIPHER_ALG_SHIFT; cipher_mode = (cflags & CIPHER_MODE) >> CIPHER_MODE_SHIFT; cipher_type = (cflags & CIPHER_TYPE) >> CIPHER_TYPE_SHIFT; packet_log(" Crypto Alg:%u Mode:%u Type:%u\n", cipher_alg, cipher_mode, cipher_type); hash_alg = (cflags & HASH_ALG) >> HASH_ALG_SHIFT; hash_mode = (cflags & HASH_MODE) >> HASH_MODE_SHIFT; hash_type = (cflags & HASH_TYPE) >> HASH_TYPE_SHIFT; packet_log(" Hash Alg:%x Mode:%x Type:%x\n", hash_alg, hash_mode, hash_type); packet_log(" UPDT_Offset:%u\n", cflags & UPDT_OFST); ecf = be32_to_cpu(spuh->sa.ecf); packet_log(" SCTX[2] 0x%08x\n", ecf); packet_log(" WriteICV:%lu CheckICV:%lu ICV_SIZE:%u ", (ecf & INSERT_ICV) >> INSERT_ICV_SHIFT, (ecf & CHECK_ICV) >> CHECK_ICV_SHIFT, (ecf & ICV_SIZE) >> ICV_SIZE_SHIFT); packet_log("BD_SUPPRESS:%lu\n", (ecf & BD_SUPPRESS) >> BD_SUPPRESS_SHIFT); packet_log(" SCTX_IV:%lu ExplicitIV:%lu GenIV:%lu ", (ecf & SCTX_IV) >> SCTX_IV_SHIFT, (ecf & EXPLICIT_IV) >> EXPLICIT_IV_SHIFT, (ecf & GEN_IV) >> GEN_IV_SHIFT); packet_log("IV_OV_OFST:%lu EXP_IV_SIZE:%u\n", (ecf & IV_OFFSET) >> IV_OFFSET_SHIFT, ecf & EXP_IV_SIZE); ptr += sizeof(struct SCTX); if (hash_alg && hash_mode) { char *name = "NONE"; switch (hash_alg) { case HASH_ALG_MD5: hash_key_len = 16; name = "MD5"; break; case HASH_ALG_SHA1: hash_key_len = 20; name = "SHA1"; break; case HASH_ALG_SHA224: hash_key_len = 28; name = "SHA224"; break; case HASH_ALG_SHA256: hash_key_len = 32; name = "SHA256"; break; case HASH_ALG_SHA384: hash_key_len = 48; name = "SHA384"; break; case HASH_ALG_SHA512: hash_key_len = 64; name = "SHA512"; break; case HASH_ALG_AES: hash_key_len = 0; name = "AES"; break; case HASH_ALG_NONE: break; } packet_log(" Auth Key Type:%s Length:%u Bytes\n", name, hash_key_len); packet_dump(" KEY: ", ptr, hash_key_len); ptr += hash_key_len; } else if ((hash_alg == HASH_ALG_AES) && (hash_mode == HASH_MODE_XCBC)) { char *name = "NONE"; switch (cipher_type) { case CIPHER_TYPE_AES128: hash_key_len = 16; name = "AES128-XCBC"; break; case CIPHER_TYPE_AES192: hash_key_len = 24; name = "AES192-XCBC"; break; case CIPHER_TYPE_AES256: hash_key_len = 32; name = "AES256-XCBC"; break; } packet_log(" Auth Key Type:%s Length:%u Bytes\n", name, hash_key_len); packet_dump(" KEY: ", ptr, hash_key_len); ptr += hash_key_len; } if (hash_alg && (hash_mode == HASH_MODE_NONE) && (hash_type == HASH_TYPE_UPDT)) { char *name = "NONE"; switch (hash_alg) { case HASH_ALG_MD5: hash_state_len = 16; name = "MD5"; break; case HASH_ALG_SHA1: hash_state_len = 20; name = "SHA1"; break; case HASH_ALG_SHA224: hash_state_len = 32; name = "SHA224"; break; case HASH_ALG_SHA256: hash_state_len = 32; name = "SHA256"; break; case HASH_ALG_SHA384: hash_state_len = 48; name = "SHA384"; break; case HASH_ALG_SHA512: hash_state_len = 64; name = "SHA512"; break; case HASH_ALG_AES: hash_state_len = 0; name = "AES"; break; case HASH_ALG_NONE: break; } packet_log(" Auth State Type:%s Length:%u Bytes\n", name, hash_state_len); packet_dump(" State: ", ptr, hash_state_len); ptr += hash_state_len; } if (cipher_alg) { char *name = "NONE"; switch (cipher_alg) { case CIPHER_ALG_DES: cipher_key_len = 8; name = "DES"; break; case CIPHER_ALG_3DES: cipher_key_len = 24; name = "3DES"; break; case CIPHER_ALG_RC4: cipher_key_len = 260; name = "ARC4"; break; case CIPHER_ALG_AES: switch (cipher_type) { case CIPHER_TYPE_AES128: cipher_key_len = 16; name = "AES128"; break; case CIPHER_TYPE_AES192: cipher_key_len = 24; name = "AES192"; break; case CIPHER_TYPE_AES256: cipher_key_len = 32; name = "AES256"; break; } break; case CIPHER_ALG_NONE: break; } packet_log(" Cipher Key Type:%s Length:%u Bytes\n", name, cipher_key_len); /* XTS has two keys */ if (cipher_mode == CIPHER_MODE_XTS) { packet_dump(" KEY2: ", ptr, cipher_key_len); ptr += cipher_key_len; packet_dump(" KEY1: ", ptr, cipher_key_len); ptr += cipher_key_len; cipher_key_len *= 2; } else { packet_dump(" KEY: ", ptr, cipher_key_len); ptr += cipher_key_len; } if (ecf & SCTX_IV) { sctx_pl_len = sctx_size * sizeof(u32) - sizeof(struct SCTX); iv_len = sctx_pl_len - (hash_key_len + hash_state_len + cipher_key_len); packet_log(" IV Length:%u Bytes\n", iv_len); packet_dump(" IV: ", ptr, iv_len); ptr += iv_len; } } } /* ========== Decode BDESC ========== */ if (spuh->mh.flags & MH_BDESC_PRES) { #ifdef DEBUG struct BDESC_HEADER *bdesc = (struct BDESC_HEADER *)ptr; #endif packet_log(" BDESC[0] 0x%08x\n", be32_to_cpu(*((u32 *)ptr))); packet_log(" OffsetMAC:%u LengthMAC:%u\n", be16_to_cpu(bdesc->offset_mac), be16_to_cpu(bdesc->length_mac)); ptr += sizeof(u32); packet_log(" BDESC[1] 0x%08x\n", be32_to_cpu(*((u32 *)ptr))); packet_log(" OffsetCrypto:%u LengthCrypto:%u\n", be16_to_cpu(bdesc->offset_crypto), be16_to_cpu(bdesc->length_crypto)); ptr += sizeof(u32); packet_log(" BDESC[2] 0x%08x\n", be32_to_cpu(*((u32 *)ptr))); packet_log(" OffsetICV:%u OffsetIV:%u\n", be16_to_cpu(bdesc->offset_icv), be16_to_cpu(bdesc->offset_iv)); ptr += sizeof(u32); } /* ========== Decode BD ========== */ if (spuh->mh.flags & MH_BD_PRES) { #ifdef DEBUG struct BD_HEADER *bd = (struct BD_HEADER *)ptr; #endif packet_log(" BD[0] 0x%08x\n", be32_to_cpu(*((u32 *)ptr))); packet_log(" Size:%ubytes PrevLength:%u\n", be16_to_cpu(bd->size), be16_to_cpu(bd->prev_length)); ptr += 4; } /* Double check sanity */ if (buf + buf_len != ptr) { packet_log(" Packet parsed incorrectly. "); packet_log("buf:%p buf_len:%u buf+buf_len:%p ptr:%p\n", buf, buf_len, buf + buf_len, ptr); } packet_log("\n"); } /** * spum_ns2_ctx_max_payload() - Determine the max length of the payload for a * SPU message for a given cipher and hash alg context. * @cipher_alg: The cipher algorithm * @cipher_mode: The cipher mode * @blocksize: The size of a block of data for this algo * * The max payload must be a multiple of the blocksize so that if a request is * too large to fit in a single SPU message, the request can be broken into * max_payload sized chunks. Each chunk must be a multiple of blocksize. * * Return: Max payload length in bytes */ u32 spum_ns2_ctx_max_payload(enum spu_cipher_alg cipher_alg, enum spu_cipher_mode cipher_mode, unsigned int blocksize) { u32 max_payload = SPUM_NS2_MAX_PAYLOAD; u32 excess; /* In XTS on SPU-M, we'll need to insert tweak before input data */ if (cipher_mode == CIPHER_MODE_XTS) max_payload -= SPU_XTS_TWEAK_SIZE; excess = max_payload % blocksize; return max_payload - excess; } /** * spum_nsp_ctx_max_payload() - Determine the max length of the payload for a * SPU message for a given cipher and hash alg context. * @cipher_alg: The cipher algorithm * @cipher_mode: The cipher mode * @blocksize: The size of a block of data for this algo * * The max payload must be a multiple of the blocksize so that if a request is * too large to fit in a single SPU message, the request can be broken into * max_payload sized chunks. Each chunk must be a multiple of blocksize. * * Return: Max payload length in bytes */ u32 spum_nsp_ctx_max_payload(enum spu_cipher_alg cipher_alg, enum spu_cipher_mode cipher_mode, unsigned int blocksize) { u32 max_payload = SPUM_NSP_MAX_PAYLOAD; u32 excess; /* In XTS on SPU-M, we'll need to insert tweak before input data */ if (cipher_mode == CIPHER_MODE_XTS) max_payload -= SPU_XTS_TWEAK_SIZE; excess = max_payload % blocksize; return max_payload - excess; } /** spum_payload_length() - Given a SPU-M message header, extract the payload * length. * @spu_hdr: Start of SPU header * * Assumes just MH, EMH, BD (no SCTX, BDESC. Works for response frames. * * Return: payload length in bytes */ u32 spum_payload_length(u8 *spu_hdr) { struct BD_HEADER *bd; u32 pl_len; /* Find BD header. skip MH, EMH */ bd = (struct BD_HEADER *)(spu_hdr + 8); pl_len = be16_to_cpu(bd->size); return pl_len; } /** * spum_response_hdr_len() - Given the length of the hash key and encryption * key, determine the expected length of a SPU response header. * @auth_key_len: authentication key length (bytes) * @enc_key_len: encryption key length (bytes) * @is_hash: true if response message is for a hash operation * * Return: length of SPU response header (bytes) */ u16 spum_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash) { if (is_hash) return SPU_HASH_RESP_HDR_LEN; else return SPU_RESP_HDR_LEN; } /** * spum_hash_pad_len() - Calculate the length of hash padding required to extend * data to a full block size. * @hash_alg: hash algorithm * @hash_mode: hash mode * @chunksize: length of data, in bytes * @hash_block_size: size of a block of data for hash algorithm * * Reserve space for 1 byte (0x80) start of pad and the total length as u64 * * Return: length of hash pad in bytes */ u16 spum_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode, u32 chunksize, u16 hash_block_size) { unsigned int length_len; unsigned int used_space_last_block; int hash_pad_len; /* AES-XCBC hash requires just padding to next block boundary */ if ((hash_alg == HASH_ALG_AES) && (hash_mode == HASH_MODE_XCBC)) { used_space_last_block = chunksize % hash_block_size; hash_pad_len = hash_block_size - used_space_last_block; if (hash_pad_len >= hash_block_size) hash_pad_len -= hash_block_size; return hash_pad_len; } used_space_last_block = chunksize % hash_block_size + 1; if ((hash_alg == HASH_ALG_SHA384) || (hash_alg == HASH_ALG_SHA512)) length_len = 2 * sizeof(u64); else length_len = sizeof(u64); used_space_last_block += length_len; hash_pad_len = hash_block_size - used_space_last_block; if (hash_pad_len < 0) hash_pad_len += hash_block_size; hash_pad_len += 1 + length_len; return hash_pad_len; } /** * spum_gcm_ccm_pad_len() - Determine the required length of GCM or CCM padding. * @cipher_mode: Algo type * @data_size: Length of plaintext (bytes) * * @Return: Length of padding, in bytes */ u32 spum_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode, unsigned int data_size) { u32 pad_len = 0; u32 m1 = SPU_GCM_CCM_ALIGN - 1; if ((cipher_mode == CIPHER_MODE_GCM) || (cipher_mode == CIPHER_MODE_CCM)) pad_len = ((data_size + m1) & ~m1) - data_size; return pad_len; } /** * spum_assoc_resp_len() - Determine the size of the receive buffer required to * catch associated data. * @cipher_mode: cipher mode * @assoc_len: length of associated data (bytes) * @iv_len: length of IV (bytes) * @is_encrypt: true if encrypting. false if decrypting. * * Return: length of associated data in response message (bytes) */ u32 spum_assoc_resp_len(enum spu_cipher_mode cipher_mode, unsigned int assoc_len, unsigned int iv_len, bool is_encrypt) { u32 buflen = 0; u32 pad; if (assoc_len) buflen = assoc_len; if (cipher_mode == CIPHER_MODE_GCM) { /* AAD needs to be padded in responses too */ pad = spum_gcm_ccm_pad_len(cipher_mode, buflen); buflen += pad; } if (cipher_mode == CIPHER_MODE_CCM) { /* * AAD needs to be padded in responses too * for CCM, len + 2 needs to be 128-bit aligned. */ pad = spum_gcm_ccm_pad_len(cipher_mode, buflen + 2); buflen += pad; } return buflen; } /** * spu_aead_ivlen() - Calculate the length of the AEAD IV to be included * in a SPU request after the AAD and before the payload. * @cipher_mode: cipher mode * @iv_ctr_len: initialization vector length in bytes * * In Linux ~4.2 and later, the assoc_data sg includes the IV. So no need * to include the IV as a separate field in the SPU request msg. * * Return: Length of AEAD IV in bytes */ u8 spum_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len) { return 0; } /** * spum_hash_type() - Determine the type of hash operation. * @src_sent: The number of bytes in the current request that have already * been sent to the SPU to be hashed. * * We do not use HASH_TYPE_FULL for requests that fit in a single SPU message. * Using FULL causes failures (such as when the string to be hashed is empty). * For similar reasons, we never use HASH_TYPE_FIN. Instead, submit messages * as INIT or UPDT and do the hash padding in sw. */ enum hash_type spum_hash_type(u32 src_sent) { return src_sent ? HASH_TYPE_UPDT : HASH_TYPE_INIT; } /** * spum_digest_size() - Determine the size of a hash digest to expect the SPU to * return. * alg_digest_size: Number of bytes in the final digest for the given algo * alg: The hash algorithm * htype: Type of hash operation (init, update, full, etc) * * When doing incremental hashing for an algorithm with a truncated hash * (e.g., SHA224), the SPU returns the full digest so that it can be fed back as * a partial result for the next chunk. */ u32 spum_digest_size(u32 alg_digest_size, enum hash_alg alg, enum hash_type htype) { u32 digestsize = alg_digest_size; /* SPU returns complete digest when doing incremental hash and truncated * hash algo. */ if ((htype == HASH_TYPE_INIT) || (htype == HASH_TYPE_UPDT)) { if (alg == HASH_ALG_SHA224) digestsize = SHA256_DIGEST_SIZE; else if (alg == HASH_ALG_SHA384) digestsize = SHA512_DIGEST_SIZE; } return digestsize; } /** * spum_create_request() - Build a SPU request message header, up to and * including the BD header. Construct the message starting at spu_hdr. Caller * should allocate this buffer in DMA-able memory at least SPU_HEADER_ALLOC_LEN * bytes long. * @spu_hdr: Start of buffer where SPU request header is to be written * @req_opts: SPU request message options * @cipher_parms: Parameters related to cipher algorithm * @hash_parms: Parameters related to hash algorithm * @aead_parms: Parameters related to AEAD operation * @data_size: Length of data to be encrypted or authenticated. If AEAD, does * not include length of AAD. * Return: the length of the SPU header in bytes. 0 if an error occurs. */ u32 spum_create_request(u8 *spu_hdr, struct spu_request_opts *req_opts, struct spu_cipher_parms *cipher_parms, struct spu_hash_parms *hash_parms, struct spu_aead_parms *aead_parms, unsigned int data_size) { struct SPUHEADER *spuh; struct BDESC_HEADER *bdesc; struct BD_HEADER *bd; u8 *ptr; u32 protocol_bits = 0; u32 cipher_bits = 0; u32 ecf_bits = 0; u8 sctx_words = 0; unsigned int buf_len = 0; /* size of the cipher payload */ unsigned int cipher_len = hash_parms->prebuf_len + data_size + hash_parms->pad_len; /* offset of prebuf or data from end of BD header */ unsigned int cipher_offset = aead_parms->assoc_size + aead_parms->iv_len + aead_parms->aad_pad_len; /* total size of the DB data (without STAT word padding) */ unsigned int real_db_size = spu_real_db_size(aead_parms->assoc_size, aead_parms->iv_len, hash_parms->prebuf_len, data_size, aead_parms->aad_pad_len, aead_parms->data_pad_len, hash_parms->pad_len); unsigned int auth_offset = 0; unsigned int offset_iv = 0; /* size/offset of the auth payload */ unsigned int auth_len; auth_len = real_db_size; if (req_opts->is_aead && req_opts->is_inbound) cipher_len -= hash_parms->digestsize; if (req_opts->is_aead && req_opts->is_inbound) auth_len -= hash_parms->digestsize; if ((hash_parms->alg == HASH_ALG_AES) && (hash_parms->mode == HASH_MODE_XCBC)) { auth_len -= hash_parms->pad_len; cipher_len -= hash_parms->pad_len; } flow_log("%s()\n", __func__); flow_log(" in:%u authFirst:%u\n", req_opts->is_inbound, req_opts->auth_first); flow_log(" %s. cipher alg:%u mode:%u type %u\n", spu_alg_name(cipher_parms->alg, cipher_parms->mode), cipher_parms->alg, cipher_parms->mode, cipher_parms->type); flow_log(" key: %d\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); flow_log(" iv: %d\n", cipher_parms->iv_len); flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); flow_log(" auth alg:%u mode:%u type %u\n", hash_parms->alg, hash_parms->mode, hash_parms->type); flow_log(" digestsize: %u\n", hash_parms->digestsize); flow_log(" authkey: %d\n", hash_parms->key_len); flow_dump(" authkey: ", hash_parms->key_buf, hash_parms->key_len); flow_log(" assoc_size:%u\n", aead_parms->assoc_size); flow_log(" prebuf_len:%u\n", hash_parms->prebuf_len); flow_log(" data_size:%u\n", data_size); flow_log(" hash_pad_len:%u\n", hash_parms->pad_len); flow_log(" real_db_size:%u\n", real_db_size); flow_log(" auth_offset:%u auth_len:%u cipher_offset:%u cipher_len:%u\n", auth_offset, auth_len, cipher_offset, cipher_len); flow_log(" aead_iv: %u\n", aead_parms->iv_len); /* starting out: zero the header (plus some) */ ptr = spu_hdr; memset(ptr, 0, sizeof(struct SPUHEADER)); /* format master header word */ /* Do not set the next bit even though the datasheet says to */ spuh = (struct SPUHEADER *)ptr; ptr += sizeof(struct SPUHEADER); buf_len += sizeof(struct SPUHEADER); spuh->mh.op_code = SPU_CRYPTO_OPERATION_GENERIC; spuh->mh.flags |= (MH_SCTX_PRES | MH_BDESC_PRES | MH_BD_PRES); /* Format sctx word 0 (protocol_bits) */ sctx_words = 3; /* size in words */ /* Format sctx word 1 (cipher_bits) */ if (req_opts->is_inbound) cipher_bits |= CIPHER_INBOUND; if (req_opts->auth_first) cipher_bits |= CIPHER_ORDER; /* Set the crypto parameters in the cipher.flags */ cipher_bits |= cipher_parms->alg << CIPHER_ALG_SHIFT; cipher_bits |= cipher_parms->mode << CIPHER_MODE_SHIFT; cipher_bits |= cipher_parms->type << CIPHER_TYPE_SHIFT; /* Set the auth parameters in the cipher.flags */ cipher_bits |= hash_parms->alg << HASH_ALG_SHIFT; cipher_bits |= hash_parms->mode << HASH_MODE_SHIFT; cipher_bits |= hash_parms->type << HASH_TYPE_SHIFT; /* * Format sctx extensions if required, and update main fields if * required) */ if (hash_parms->alg) { /* Write the authentication key material if present */ if (hash_parms->key_len) { memcpy(ptr, hash_parms->key_buf, hash_parms->key_len); ptr += hash_parms->key_len; buf_len += hash_parms->key_len; sctx_words += hash_parms->key_len / 4; } if ((cipher_parms->mode == CIPHER_MODE_GCM) || (cipher_parms->mode == CIPHER_MODE_CCM)) /* unpadded length */ offset_iv = aead_parms->assoc_size; /* if GCM/CCM we need to write ICV into the payload */ if (!req_opts->is_inbound) { if ((cipher_parms->mode == CIPHER_MODE_GCM) || (cipher_parms->mode == CIPHER_MODE_CCM)) ecf_bits |= 1 << INSERT_ICV_SHIFT; } else { ecf_bits |= CHECK_ICV; } /* Inform the SPU of the ICV size (in words) */ if (hash_parms->digestsize == 64) cipher_bits |= ICV_IS_512; else ecf_bits |= (hash_parms->digestsize / 4) << ICV_SIZE_SHIFT; } if (req_opts->bd_suppress) ecf_bits |= BD_SUPPRESS; /* copy the encryption keys in the SAD entry */ if (cipher_parms->alg) { if (cipher_parms->key_len) { memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len); ptr += cipher_parms->key_len; buf_len += cipher_parms->key_len; sctx_words += cipher_parms->key_len / 4; } /* * if encrypting then set IV size, use SCTX IV unless no IV * given here */ if (cipher_parms->iv_buf && cipher_parms->iv_len) { /* Use SCTX IV */ ecf_bits |= SCTX_IV; /* cipher iv provided so put it in here */ memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len); ptr += cipher_parms->iv_len; buf_len += cipher_parms->iv_len; sctx_words += cipher_parms->iv_len / 4; } } /* * RFC4543 (GMAC/ESP) requires data to be sent as part of AAD * so we need to override the BDESC parameters. */ if (req_opts->is_rfc4543) { if (req_opts->is_inbound) data_size -= hash_parms->digestsize; offset_iv = aead_parms->assoc_size + data_size; cipher_len = 0; cipher_offset = offset_iv; auth_len = cipher_offset + aead_parms->data_pad_len; } /* write in the total sctx length now that we know it */ protocol_bits |= sctx_words; /* Endian adjust the SCTX */ spuh->sa.proto_flags = cpu_to_be32(protocol_bits); spuh->sa.cipher_flags = cpu_to_be32(cipher_bits); spuh->sa.ecf = cpu_to_be32(ecf_bits); /* === create the BDESC section === */ bdesc = (struct BDESC_HEADER *)ptr; bdesc->offset_mac = cpu_to_be16(auth_offset); bdesc->length_mac = cpu_to_be16(auth_len); bdesc->offset_crypto = cpu_to_be16(cipher_offset); bdesc->length_crypto = cpu_to_be16(cipher_len); /* * CCM in SPU-M requires that ICV not be in same 32-bit word as data or * padding. So account for padding as necessary. */ if (cipher_parms->mode == CIPHER_MODE_CCM) auth_len += spum_wordalign_padlen(auth_len); bdesc->offset_icv = cpu_to_be16(auth_len); bdesc->offset_iv = cpu_to_be16(offset_iv); ptr += sizeof(struct BDESC_HEADER); buf_len += sizeof(struct BDESC_HEADER); /* === no MFM section === */ /* === create the BD section === */ /* add the BD header */ bd = (struct BD_HEADER *)ptr; bd->size = cpu_to_be16(real_db_size); bd->prev_length = 0; ptr += sizeof(struct BD_HEADER); buf_len += sizeof(struct BD_HEADER); packet_dump(" SPU request header: ", spu_hdr, buf_len); return buf_len; } /** * spum_cipher_req_init() - Build a SPU request message header, up to and * including the BD header. * @spu_hdr: Start of SPU request header (MH) * @cipher_parms: Parameters that describe the cipher request * * Construct the message starting at spu_hdr. Caller should allocate this buffer * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long. * * Return: the length of the SPU header in bytes. 0 if an error occurs. */ u16 spum_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms) { struct SPUHEADER *spuh; u32 protocol_bits = 0; u32 cipher_bits = 0; u32 ecf_bits = 0; u8 sctx_words = 0; u8 *ptr = spu_hdr; flow_log("%s()\n", __func__); flow_log(" cipher alg:%u mode:%u type %u\n", cipher_parms->alg, cipher_parms->mode, cipher_parms->type); flow_log(" cipher_iv_len: %u\n", cipher_parms->iv_len); flow_log(" key: %d\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); /* starting out: zero the header (plus some) */ memset(spu_hdr, 0, sizeof(struct SPUHEADER)); ptr += sizeof(struct SPUHEADER); /* format master header word */ /* Do not set the next bit even though the datasheet says to */ spuh = (struct SPUHEADER *)spu_hdr; spuh->mh.op_code = SPU_CRYPTO_OPERATION_GENERIC; spuh->mh.flags |= (MH_SCTX_PRES | MH_BDESC_PRES | MH_BD_PRES); /* Format sctx word 0 (protocol_bits) */ sctx_words = 3; /* size in words */ /* copy the encryption keys in the SAD entry */ if (cipher_parms->alg) { if (cipher_parms->key_len) { ptr += cipher_parms->key_len; sctx_words += cipher_parms->key_len / 4; } /* * if encrypting then set IV size, use SCTX IV unless no IV * given here */ if (cipher_parms->iv_len) { /* Use SCTX IV */ ecf_bits |= SCTX_IV; ptr += cipher_parms->iv_len; sctx_words += cipher_parms->iv_len / 4; } } /* Set the crypto parameters in the cipher.flags */ cipher_bits |= cipher_parms->alg << CIPHER_ALG_SHIFT; cipher_bits |= cipher_parms->mode << CIPHER_MODE_SHIFT; cipher_bits |= cipher_parms->type << CIPHER_TYPE_SHIFT; /* copy the encryption keys in the SAD entry */ if (cipher_parms->alg && cipher_parms->key_len) memcpy(spuh + 1, cipher_parms->key_buf, cipher_parms->key_len); /* write in the total sctx length now that we know it */ protocol_bits |= sctx_words; /* Endian adjust the SCTX */ spuh->sa.proto_flags = cpu_to_be32(protocol_bits); /* Endian adjust the SCTX */ spuh->sa.cipher_flags = cpu_to_be32(cipher_bits); spuh->sa.ecf = cpu_to_be32(ecf_bits); packet_dump(" SPU request header: ", spu_hdr, sizeof(struct SPUHEADER)); return sizeof(struct SPUHEADER) + cipher_parms->key_len + cipher_parms->iv_len + sizeof(struct BDESC_HEADER) + sizeof(struct BD_HEADER); } /** * spum_cipher_req_finish() - Finish building a SPU request message header for a * block cipher request. Assumes much of the header was already filled in at * setkey() time in spu_cipher_req_init(). * @spu_hdr: Start of the request message header (MH field) * @spu_req_hdr_len: Length in bytes of the SPU request header * @isInbound: 0 encrypt, 1 decrypt * @cipher_parms: Parameters describing cipher operation to be performed * @update_key: If true, rewrite the cipher key in SCTX * @data_size: Length of the data in the BD field * * Assumes much of the header was already filled in at setkey() time in * spum_cipher_req_init(). * spum_cipher_req_init() fills in the encryption key. For RC4, when submitting * a request for a non-first chunk, we use the 260-byte SUPDT field from the * previous response as the key. update_key is true for this case. Unused in all * other cases. */ void spum_cipher_req_finish(u8 *spu_hdr, u16 spu_req_hdr_len, unsigned int is_inbound, struct spu_cipher_parms *cipher_parms, bool update_key, unsigned int data_size) { struct SPUHEADER *spuh; struct BDESC_HEADER *bdesc; struct BD_HEADER *bd; u8 *bdesc_ptr = spu_hdr + spu_req_hdr_len - (sizeof(struct BD_HEADER) + sizeof(struct BDESC_HEADER)); u32 cipher_bits; flow_log("%s()\n", __func__); flow_log(" in: %u\n", is_inbound); flow_log(" cipher alg: %u, cipher_type: %u\n", cipher_parms->alg, cipher_parms->type); if (update_key) { flow_log(" cipher key len: %u\n", cipher_parms->key_len); flow_dump(" key: ", cipher_parms->key_buf, cipher_parms->key_len); } /* * In XTS mode, API puts "i" parameter (block tweak) in IV. For * SPU-M, should be in start of the BD; tx_sg_create() copies it there. * IV in SPU msg for SPU-M should be 0, since that's the "j" parameter * (block ctr within larger data unit) - given we can send entire disk * block (<= 4KB) in 1 SPU msg, don't need to use this parameter. */ if (cipher_parms->mode == CIPHER_MODE_XTS) memset(cipher_parms->iv_buf, 0, cipher_parms->iv_len); flow_log(" iv len: %d\n", cipher_parms->iv_len); flow_dump(" iv: ", cipher_parms->iv_buf, cipher_parms->iv_len); flow_log(" data_size: %u\n", data_size); /* format master header word */ /* Do not set the next bit even though the datasheet says to */ spuh = (struct SPUHEADER *)spu_hdr; /* cipher_bits was initialized at setkey time */ cipher_bits = be32_to_cpu(spuh->sa.cipher_flags); /* Format sctx word 1 (cipher_bits) */ if (is_inbound) cipher_bits |= CIPHER_INBOUND; else cipher_bits &= ~CIPHER_INBOUND; /* update encryption key for RC4 on non-first chunk */ if (update_key) { spuh->sa.cipher_flags |= cipher_parms->type << CIPHER_TYPE_SHIFT; memcpy(spuh + 1, cipher_parms->key_buf, cipher_parms->key_len); } if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) /* cipher iv provided so put it in here */ memcpy(bdesc_ptr - cipher_parms->iv_len, cipher_parms->iv_buf, cipher_parms->iv_len); spuh->sa.cipher_flags = cpu_to_be32(cipher_bits); /* === create the BDESC section === */ bdesc = (struct BDESC_HEADER *)bdesc_ptr; bdesc->offset_mac = 0; bdesc->length_mac = 0; bdesc->offset_crypto = 0; /* XTS mode, data_size needs to include tweak parameter */ if (cipher_parms->mode == CIPHER_MODE_XTS) bdesc->length_crypto = cpu_to_be16(data_size + SPU_XTS_TWEAK_SIZE); else bdesc->length_crypto = cpu_to_be16(data_size); bdesc->offset_icv = 0; bdesc->offset_iv = 0; /* === no MFM section === */ /* === create the BD section === */ /* add the BD header */ bd = (struct BD_HEADER *)(bdesc_ptr + sizeof(struct BDESC_HEADER)); bd->size = cpu_to_be16(data_size); /* XTS mode, data_size needs to include tweak parameter */ if (cipher_parms->mode == CIPHER_MODE_XTS) bd->size = cpu_to_be16(data_size + SPU_XTS_TWEAK_SIZE); else bd->size = cpu_to_be16(data_size); bd->prev_length = 0; packet_dump(" SPU request header: ", spu_hdr, spu_req_hdr_len); } /** * spum_request_pad() - Create pad bytes at the end of the data. * @pad_start: Start of buffer where pad bytes are to be written * @gcm_ccm_padding: length of GCM/CCM padding, in bytes * @hash_pad_len: Number of bytes of padding extend data to full block * @auth_alg: authentication algorithm * @auth_mode: authentication mode * @total_sent: length inserted at end of hash pad * @status_padding: Number of bytes of padding to align STATUS word * * There may be three forms of pad: * 1. GCM/CCM pad - for GCM/CCM mode ciphers, pad to 16-byte alignment * 2. hash pad - pad to a block length, with 0x80 data terminator and * size at the end * 3. STAT pad - to ensure the STAT field is 4-byte aligned */ void spum_request_pad(u8 *pad_start, u32 gcm_ccm_padding, u32 hash_pad_len, enum hash_alg auth_alg, enum hash_mode auth_mode, unsigned int total_sent, u32 status_padding) { u8 *ptr = pad_start; /* fix data alignent for GCM/CCM */ if (gcm_ccm_padding > 0) { flow_log(" GCM: padding to 16 byte alignment: %u bytes\n", gcm_ccm_padding); memset(ptr, 0, gcm_ccm_padding); ptr += gcm_ccm_padding; } if (hash_pad_len > 0) { /* clear the padding section */ memset(ptr, 0, hash_pad_len); if ((auth_alg == HASH_ALG_AES) && (auth_mode == HASH_MODE_XCBC)) { /* AES/XCBC just requires padding to be 0s */ ptr += hash_pad_len; } else { /* terminate the data */ *ptr = 0x80; ptr += (hash_pad_len - sizeof(u64)); /* add the size at the end as required per alg */ if (auth_alg == HASH_ALG_MD5) *(u64 *)ptr = cpu_to_le64((u64)total_sent * 8); else /* SHA1, SHA2-224, SHA2-256 */ *(u64 *)ptr = cpu_to_be64((u64)total_sent * 8); ptr += sizeof(u64); } } /* pad to a 4byte alignment for STAT */ if (status_padding > 0) { flow_log(" STAT: padding to 4 byte alignment: %u bytes\n", status_padding); memset(ptr, 0, status_padding); ptr += status_padding; } } /** * spum_xts_tweak_in_payload() - Indicate that SPUM DOES place the XTS tweak * field in the packet payload (rather than using IV) * * Return: 1 */ u8 spum_xts_tweak_in_payload(void) { return 1; } /** * spum_tx_status_len() - Return the length of the STATUS field in a SPU * response message. * * Return: Length of STATUS field in bytes. */ u8 spum_tx_status_len(void) { return SPU_TX_STATUS_LEN; } /** * spum_rx_status_len() - Return the length of the STATUS field in a SPU * response message. * * Return: Length of STATUS field in bytes. */ u8 spum_rx_status_len(void) { return SPU_RX_STATUS_LEN; } /** * spum_status_process() - Process the status from a SPU response message. * @statp: start of STATUS word * Return: * 0 - if status is good and response should be processed * !0 - status indicates an error and response is invalid */ int spum_status_process(u8 *statp) { u32 status; status = __be32_to_cpu(*(__be32 *)statp); flow_log("SPU response STATUS %#08x\n", status); if (status & SPU_STATUS_ERROR_FLAG) { pr_err("%s() Warning: Error result from SPU: %#08x\n", __func__, status); if (status & SPU_STATUS_INVALID_ICV) return SPU_INVALID_ICV; return -EBADMSG; } return 0; } /** * spum_ccm_update_iv() - Update the IV as per the requirements for CCM mode. * * @digestsize: Digest size of this request * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len * @assoclen: Length of AAD data * @chunksize: length of input data to be sent in this req * @is_encrypt: true if this is an output/encrypt operation * @is_esp: true if this is an ESP / RFC4309 operation * */ void spum_ccm_update_iv(unsigned int digestsize, struct spu_cipher_parms *cipher_parms, unsigned int assoclen, unsigned int chunksize, bool is_encrypt, bool is_esp) { u8 L; /* L from CCM algorithm, length of plaintext data */ u8 mprime; /* M' from CCM algo, (M - 2) / 2, where M=authsize */ u8 adata; if (cipher_parms->iv_len != CCM_AES_IV_SIZE) { pr_err("%s(): Invalid IV len %d for CCM mode, should be %d\n", __func__, cipher_parms->iv_len, CCM_AES_IV_SIZE); return; } /* * IV needs to be formatted as follows: * * | Byte 0 | Bytes 1 - N | Bytes (N+1) - 15 | * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | Bits 7 - 0 | Bits 7 - 0 | * | 0 |Ad?|(M - 2) / 2| L - 1 | Nonce | Plaintext Length | * * Ad? = 1 if AAD present, 0 if not present * M = size of auth field, 8, 12, or 16 bytes (SPU-M) -or- * 4, 6, 8, 10, 12, 14, 16 bytes (SPU2) * L = Size of Plaintext Length field; Nonce size = 15 - L * * It appears that the crypto API already expects the L-1 portion * to be set in the first byte of the IV, which implicitly determines * the nonce size, and also fills in the nonce. But the other bits * in byte 0 as well as the plaintext length need to be filled in. * * In rfc4309/esp mode, L is not already in the supplied IV and * we need to fill it in, as well as move the IV data to be after * the salt */ if (is_esp) { L = CCM_ESP_L_VALUE; /* RFC4309 has fixed L */ } else { /* L' = plaintext length - 1 so Plaintext length is L' + 1 */ L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >> CCM_B0_L_PRIME_SHIFT) + 1; } mprime = (digestsize - 2) >> 1; /* M' = (M - 2) / 2 */ adata = (assoclen > 0); /* adata = 1 if any associated data */ cipher_parms->iv_buf[0] = (adata << CCM_B0_ADATA_SHIFT) | (mprime << CCM_B0_M_PRIME_SHIFT) | ((L - 1) << CCM_B0_L_PRIME_SHIFT); /* Nonce is already filled in by crypto API, and is 15 - L bytes */ /* Don't include digest in plaintext size when decrypting */ if (!is_encrypt) chunksize -= digestsize; /* Fill in length of plaintext, formatted to be L bytes long */ format_value_ccm(chunksize, &cipher_parms->iv_buf[15 - L + 1], L); } /** * spum_wordalign_padlen() - Given the length of a data field, determine the * padding required to align the data following this field on a 4-byte boundary. * @data_size: length of data field in bytes * * Return: length of status field padding, in bytes */ u32 spum_wordalign_padlen(u32 data_size) { return ((data_size + 3) & ~3) - data_size; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1