Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kim Phillips | 657 | 29.57% | 4 | 12.12% |
Horia Geantă | 621 | 27.95% | 12 | 36.36% |
Yuan Kang | 440 | 19.80% | 2 | 6.06% |
Andrei Varvara | 340 | 15.30% | 4 | 12.12% |
Andrey Smirnov | 68 | 3.06% | 3 | 9.09% |
Tudor-Dan Ambarus | 50 | 2.25% | 2 | 6.06% |
Catalin Vasile | 32 | 1.44% | 2 | 6.06% |
Arnd Bergmann | 6 | 0.27% | 1 | 3.03% |
Yashpal Dutta | 4 | 0.18% | 1 | 3.03% |
Vakul Garg | 3 | 0.14% | 1 | 3.03% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 3.03% |
Total | 2222 | 33 |
/* SPDX-License-Identifier: GPL-2.0 */ /* * caam descriptor construction helper functions * * Copyright 2008-2012 Freescale Semiconductor, Inc. * Copyright 2019 NXP */ #ifndef DESC_CONSTR_H #define DESC_CONSTR_H #include "desc.h" #include "regs.h" #define IMMEDIATE (1 << 23) #define CAAM_CMD_SZ sizeof(u32) #define CAAM_PTR_SZ caam_ptr_sz #define CAAM_PTR_SZ_MAX sizeof(dma_addr_t) #define CAAM_PTR_SZ_MIN sizeof(u32) #define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * MAX_CAAM_DESCSIZE) #define __DESC_JOB_IO_LEN(n) (CAAM_CMD_SZ * 5 + (n) * 3) #define DESC_JOB_IO_LEN __DESC_JOB_IO_LEN(CAAM_PTR_SZ) #define DESC_JOB_IO_LEN_MAX __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MAX) #define DESC_JOB_IO_LEN_MIN __DESC_JOB_IO_LEN(CAAM_PTR_SZ_MIN) /* * The CAAM QI hardware constructs a job descriptor which points * to shared descriptor (as pointed by context_a of FQ to CAAM). * When the job descriptor is executed by deco, the whole job * descriptor together with shared descriptor gets loaded in * deco buffer which is 64 words long (each 32-bit). * * The job descriptor constructed by QI hardware has layout: * * HEADER (1 word) * Shdesc ptr (1 or 2 words) * SEQ_OUT_PTR (1 word) * Out ptr (1 or 2 words) * Out length (1 word) * SEQ_IN_PTR (1 word) * In ptr (1 or 2 words) * In length (1 word) * * The shdesc ptr is used to fetch shared descriptor contents * into deco buffer. * * Apart from shdesc contents, the total number of words that * get loaded in deco buffer are '8' or '11'. The remaining words * in deco buffer can be used for storing shared descriptor. */ #define MAX_SDLEN ((CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN_MIN) / CAAM_CMD_SZ) #ifdef DEBUG #define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\ &__func__[sizeof("append")]); } while (0) #else #define PRINT_POS #endif #define SET_OK_NO_PROP_ERRORS (IMMEDIATE | LDST_CLASS_DECO | \ LDST_SRCDST_WORD_DECOCTRL | \ (LDOFF_CHG_SHARE_OK_NO_PROP << \ LDST_OFFSET_SHIFT)) #define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \ LDST_SRCDST_WORD_DECOCTRL | \ (LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT)) #define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \ LDST_SRCDST_WORD_DECOCTRL | \ (LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT)) extern bool caam_little_end; extern size_t caam_ptr_sz; /* * HW fetches 4 S/G table entries at a time, irrespective of how many entries * are in the table. It's SW's responsibility to make sure these accesses * do not have side effects. */ static inline int pad_sg_nents(int sg_nents) { return ALIGN(sg_nents, 4); } static inline int desc_len(u32 * const desc) { return caam32_to_cpu(*desc) & HDR_DESCLEN_MASK; } static inline int desc_bytes(void * const desc) { return desc_len(desc) * CAAM_CMD_SZ; } static inline u32 *desc_end(u32 * const desc) { return desc + desc_len(desc); } static inline void *sh_desc_pdb(u32 * const desc) { return desc + 1; } static inline void init_desc(u32 * const desc, u32 options) { *desc = cpu_to_caam32((options | HDR_ONE) + 1); } static inline void init_sh_desc(u32 * const desc, u32 options) { PRINT_POS; init_desc(desc, CMD_SHARED_DESC_HDR | options); } static inline void init_sh_desc_pdb(u32 * const desc, u32 options, size_t pdb_bytes) { u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ; init_sh_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT) + pdb_len) | options); } static inline void init_job_desc(u32 * const desc, u32 options) { init_desc(desc, CMD_DESC_HDR | options); } static inline void init_job_desc_pdb(u32 * const desc, u32 options, size_t pdb_bytes) { u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ; init_job_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT)) | options); } static inline void append_ptr(u32 * const desc, dma_addr_t ptr) { if (caam_ptr_sz == sizeof(dma_addr_t)) { dma_addr_t *offset = (dma_addr_t *)desc_end(desc); *offset = cpu_to_caam_dma(ptr); } else { u32 *offset = (u32 *)desc_end(desc); *offset = cpu_to_caam_dma(ptr); } (*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + CAAM_PTR_SZ / CAAM_CMD_SZ); } static inline void init_job_desc_shared(u32 * const desc, dma_addr_t ptr, int len, u32 options) { PRINT_POS; init_job_desc(desc, HDR_SHARED | options | (len << HDR_START_IDX_SHIFT)); append_ptr(desc, ptr); } static inline void append_data(u32 * const desc, const void *data, int len) { u32 *offset = desc_end(desc); if (len) /* avoid sparse warning: memcpy with byte count of 0 */ memcpy(offset, data, len); (*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + (len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ); } static inline void append_cmd(u32 * const desc, u32 command) { u32 *cmd = desc_end(desc); *cmd = cpu_to_caam32(command); (*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 1); } #define append_u32 append_cmd static inline void append_u64(u32 * const desc, u64 data) { u32 *offset = desc_end(desc); /* Only 32-bit alignment is guaranteed in descriptor buffer */ if (caam_little_end) { *offset = cpu_to_caam32(lower_32_bits(data)); *(++offset) = cpu_to_caam32(upper_32_bits(data)); } else { *offset = cpu_to_caam32(upper_32_bits(data)); *(++offset) = cpu_to_caam32(lower_32_bits(data)); } (*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + 2); } /* Write command without affecting header, and return pointer to next word */ static inline u32 *write_cmd(u32 * const desc, u32 command) { *desc = cpu_to_caam32(command); return desc + 1; } static inline void append_cmd_ptr(u32 * const desc, dma_addr_t ptr, int len, u32 command) { append_cmd(desc, command | len); append_ptr(desc, ptr); } /* Write length after pointer, rather than inside command */ static inline void append_cmd_ptr_extlen(u32 * const desc, dma_addr_t ptr, unsigned int len, u32 command) { append_cmd(desc, command); if (!(command & (SQIN_RTO | SQIN_PRE))) append_ptr(desc, ptr); append_cmd(desc, len); } static inline void append_cmd_data(u32 * const desc, const void *data, int len, u32 command) { append_cmd(desc, command | IMMEDIATE | len); append_data(desc, data, len); } #define APPEND_CMD_RET(cmd, op) \ static inline u32 *append_##cmd(u32 * const desc, u32 options) \ { \ u32 *cmd = desc_end(desc); \ PRINT_POS; \ append_cmd(desc, CMD_##op | options); \ return cmd; \ } APPEND_CMD_RET(jump, JUMP) APPEND_CMD_RET(move, MOVE) APPEND_CMD_RET(move_len, MOVE_LEN) static inline void set_jump_tgt_here(u32 * const desc, u32 *jump_cmd) { *jump_cmd = cpu_to_caam32(caam32_to_cpu(*jump_cmd) | (desc_len(desc) - (jump_cmd - desc))); } static inline void set_move_tgt_here(u32 * const desc, u32 *move_cmd) { u32 val = caam32_to_cpu(*move_cmd); val &= ~MOVE_OFFSET_MASK; val |= (desc_len(desc) << (MOVE_OFFSET_SHIFT + 2)) & MOVE_OFFSET_MASK; *move_cmd = cpu_to_caam32(val); } #define APPEND_CMD(cmd, op) \ static inline void append_##cmd(u32 * const desc, u32 options) \ { \ PRINT_POS; \ append_cmd(desc, CMD_##op | options); \ } APPEND_CMD(operation, OPERATION) #define APPEND_CMD_LEN(cmd, op) \ static inline void append_##cmd(u32 * const desc, unsigned int len, \ u32 options) \ { \ PRINT_POS; \ append_cmd(desc, CMD_##op | len | options); \ } APPEND_CMD_LEN(seq_load, SEQ_LOAD) APPEND_CMD_LEN(seq_store, SEQ_STORE) APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD) APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE) #define APPEND_CMD_PTR(cmd, op) \ static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \ unsigned int len, u32 options) \ { \ PRINT_POS; \ append_cmd_ptr(desc, ptr, len, CMD_##op | options); \ } APPEND_CMD_PTR(key, KEY) APPEND_CMD_PTR(load, LOAD) APPEND_CMD_PTR(fifo_load, FIFO_LOAD) APPEND_CMD_PTR(fifo_store, FIFO_STORE) static inline void append_store(u32 * const desc, dma_addr_t ptr, unsigned int len, u32 options) { u32 cmd_src; cmd_src = options & LDST_SRCDST_MASK; append_cmd(desc, CMD_STORE | options | len); /* The following options do not require pointer */ if (!(cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED || cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB || cmd_src == LDST_SRCDST_WORD_DESCBUF_JOB_WE || cmd_src == LDST_SRCDST_WORD_DESCBUF_SHARED_WE)) append_ptr(desc, ptr); } #define APPEND_SEQ_PTR_INTLEN(cmd, op) \ static inline void append_seq_##cmd##_ptr_intlen(u32 * const desc, \ dma_addr_t ptr, \ unsigned int len, \ u32 options) \ { \ PRINT_POS; \ if (options & (SQIN_RTO | SQIN_PRE)) \ append_cmd(desc, CMD_SEQ_##op##_PTR | len | options); \ else \ append_cmd_ptr(desc, ptr, len, CMD_SEQ_##op##_PTR | options); \ } APPEND_SEQ_PTR_INTLEN(in, IN) APPEND_SEQ_PTR_INTLEN(out, OUT) #define APPEND_CMD_PTR_TO_IMM(cmd, op) \ static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \ unsigned int len, u32 options) \ { \ PRINT_POS; \ append_cmd_data(desc, data, len, CMD_##op | options); \ } APPEND_CMD_PTR_TO_IMM(load, LOAD); APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD); #define APPEND_CMD_PTR_EXTLEN(cmd, op) \ static inline void append_##cmd##_extlen(u32 * const desc, dma_addr_t ptr, \ unsigned int len, u32 options) \ { \ PRINT_POS; \ append_cmd_ptr_extlen(desc, ptr, len, CMD_##op | SQIN_EXT | options); \ } APPEND_CMD_PTR_EXTLEN(seq_in_ptr, SEQ_IN_PTR) APPEND_CMD_PTR_EXTLEN(seq_out_ptr, SEQ_OUT_PTR) /* * Determine whether to store length internally or externally depending on * the size of its type */ #define APPEND_CMD_PTR_LEN(cmd, op, type) \ static inline void append_##cmd(u32 * const desc, dma_addr_t ptr, \ type len, u32 options) \ { \ PRINT_POS; \ if (sizeof(type) > sizeof(u16)) \ append_##cmd##_extlen(desc, ptr, len, options); \ else \ append_##cmd##_intlen(desc, ptr, len, options); \ } APPEND_CMD_PTR_LEN(seq_in_ptr, SEQ_IN_PTR, u32) APPEND_CMD_PTR_LEN(seq_out_ptr, SEQ_OUT_PTR, u32) /* * 2nd variant for commands whose specified immediate length differs * from length of immediate data provided, e.g., split keys */ #define APPEND_CMD_PTR_TO_IMM2(cmd, op) \ static inline void append_##cmd##_as_imm(u32 * const desc, const void *data, \ unsigned int data_len, \ unsigned int len, u32 options) \ { \ PRINT_POS; \ append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \ append_data(desc, data, data_len); \ } APPEND_CMD_PTR_TO_IMM2(key, KEY); #define APPEND_CMD_RAW_IMM(cmd, op, type) \ static inline void append_##cmd##_imm_##type(u32 * const desc, type immediate, \ u32 options) \ { \ PRINT_POS; \ if (options & LDST_LEN_MASK) \ append_cmd(desc, CMD_##op | IMMEDIATE | options); \ else \ append_cmd(desc, CMD_##op | IMMEDIATE | options | \ sizeof(type)); \ append_cmd(desc, immediate); \ } APPEND_CMD_RAW_IMM(load, LOAD, u32); /* * ee - endianness * size - size of immediate type in bytes */ #define APPEND_CMD_RAW_IMM2(cmd, op, ee, size) \ static inline void append_##cmd##_imm_##ee##size(u32 *desc, \ u##size immediate, \ u32 options) \ { \ __##ee##size data = cpu_to_##ee##size(immediate); \ PRINT_POS; \ append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(data)); \ append_data(desc, &data, sizeof(data)); \ } APPEND_CMD_RAW_IMM2(load, LOAD, be, 32); /* * Append math command. Only the last part of destination and source need to * be specified */ #define APPEND_MATH(op, desc, dest, src_0, src_1, len) \ append_cmd(desc, CMD_MATH | MATH_FUN_##op | MATH_DEST_##dest | \ MATH_SRC0_##src_0 | MATH_SRC1_##src_1 | (u32)len); #define append_math_add(desc, dest, src0, src1, len) \ APPEND_MATH(ADD, desc, dest, src0, src1, len) #define append_math_sub(desc, dest, src0, src1, len) \ APPEND_MATH(SUB, desc, dest, src0, src1, len) #define append_math_add_c(desc, dest, src0, src1, len) \ APPEND_MATH(ADDC, desc, dest, src0, src1, len) #define append_math_sub_b(desc, dest, src0, src1, len) \ APPEND_MATH(SUBB, desc, dest, src0, src1, len) #define append_math_and(desc, dest, src0, src1, len) \ APPEND_MATH(AND, desc, dest, src0, src1, len) #define append_math_or(desc, dest, src0, src1, len) \ APPEND_MATH(OR, desc, dest, src0, src1, len) #define append_math_xor(desc, dest, src0, src1, len) \ APPEND_MATH(XOR, desc, dest, src0, src1, len) #define append_math_lshift(desc, dest, src0, src1, len) \ APPEND_MATH(LSHIFT, desc, dest, src0, src1, len) #define append_math_rshift(desc, dest, src0, src1, len) \ APPEND_MATH(RSHIFT, desc, dest, src0, src1, len) #define append_math_ldshift(desc, dest, src0, src1, len) \ APPEND_MATH(SHLD, desc, dest, src0, src1, len) /* Exactly one source is IMM. Data is passed in as u32 value */ #define APPEND_MATH_IMM_u32(op, desc, dest, src_0, src_1, data) \ do { \ APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ); \ append_cmd(desc, data); \ } while (0) #define append_math_add_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(ADD, desc, dest, src0, src1, data) #define append_math_sub_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(SUB, desc, dest, src0, src1, data) #define append_math_add_c_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(ADDC, desc, dest, src0, src1, data) #define append_math_sub_b_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(SUBB, desc, dest, src0, src1, data) #define append_math_and_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(AND, desc, dest, src0, src1, data) #define append_math_or_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(OR, desc, dest, src0, src1, data) #define append_math_xor_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(XOR, desc, dest, src0, src1, data) #define append_math_lshift_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(LSHIFT, desc, dest, src0, src1, data) #define append_math_rshift_imm_u32(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u32(RSHIFT, desc, dest, src0, src1, data) /* Exactly one source is IMM. Data is passed in as u64 value */ #define APPEND_MATH_IMM_u64(op, desc, dest, src_0, src_1, data) \ do { \ u32 upper = (data >> 16) >> 16; \ APPEND_MATH(op, desc, dest, src_0, src_1, CAAM_CMD_SZ * 2 | \ (upper ? 0 : MATH_IFB)); \ if (upper) \ append_u64(desc, data); \ else \ append_u32(desc, lower_32_bits(data)); \ } while (0) #define append_math_add_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(ADD, desc, dest, src0, src1, data) #define append_math_sub_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(SUB, desc, dest, src0, src1, data) #define append_math_add_c_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(ADDC, desc, dest, src0, src1, data) #define append_math_sub_b_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(SUBB, desc, dest, src0, src1, data) #define append_math_and_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(AND, desc, dest, src0, src1, data) #define append_math_or_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(OR, desc, dest, src0, src1, data) #define append_math_xor_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(XOR, desc, dest, src0, src1, data) #define append_math_lshift_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(LSHIFT, desc, dest, src0, src1, data) #define append_math_rshift_imm_u64(desc, dest, src0, src1, data) \ APPEND_MATH_IMM_u64(RSHIFT, desc, dest, src0, src1, data) /** * struct alginfo - Container for algorithm details * @algtype: algorithm selector; for valid values, see documentation of the * functions where it is used. * @keylen: length of the provided algorithm key, in bytes * @keylen_pad: padded length of the provided algorithm key, in bytes * @key_dma: dma (bus) address where algorithm key resides * @key_virt: virtual address where algorithm key resides * @key_inline: true - key can be inlined in the descriptor; false - key is * referenced by the descriptor */ struct alginfo { u32 algtype; unsigned int keylen; unsigned int keylen_pad; dma_addr_t key_dma; const void *key_virt; bool key_inline; }; /** * desc_inline_query() - Provide indications on which data items can be inlined * and which shall be referenced in a shared descriptor. * @sd_base_len: Shared descriptor base length - bytes consumed by the commands, * excluding the data items to be inlined (or corresponding * pointer if an item is not inlined). Each cnstr_* function that * generates descriptors should have a define mentioning * corresponding length. * @jd_len: Maximum length of the job descriptor(s) that will be used * together with the shared descriptor. * @data_len: Array of lengths of the data items trying to be inlined * @inl_mask: 32bit mask with bit x = 1 if data item x can be inlined, 0 * otherwise. * @count: Number of data items (size of @data_len array); must be <= 32 * * Return: 0 if data can be inlined / referenced, negative value if not. If 0, * check @inl_mask for details. */ static inline int desc_inline_query(unsigned int sd_base_len, unsigned int jd_len, unsigned int *data_len, u32 *inl_mask, unsigned int count) { int rem_bytes = (int)(CAAM_DESC_BYTES_MAX - sd_base_len - jd_len); unsigned int i; *inl_mask = 0; for (i = 0; (i < count) && (rem_bytes > 0); i++) { if (rem_bytes - (int)(data_len[i] + (count - i - 1) * CAAM_PTR_SZ) >= 0) { rem_bytes -= data_len[i]; *inl_mask |= (1 << i); } else { rem_bytes -= CAAM_PTR_SZ; } } return (rem_bytes >= 0) ? 0 : -1; } /** * append_proto_dkp - Derived Key Protocol (DKP): key -> split key * @desc: pointer to buffer used for descriptor construction * @adata: pointer to authentication transform definitions. * keylen should be the length of initial key, while keylen_pad * the length of the derived (split) key. * Valid algorithm values - one of OP_ALG_ALGSEL_{MD5, SHA1, SHA224, * SHA256, SHA384, SHA512}. */ static inline void append_proto_dkp(u32 * const desc, struct alginfo *adata) { u32 protid; /* * Quick & dirty translation from OP_ALG_ALGSEL_{MD5, SHA*} * to OP_PCLID_DKP_{MD5, SHA*} */ protid = (adata->algtype & OP_ALG_ALGSEL_SUBMASK) | (0x20 << OP_ALG_ALGSEL_SHIFT); if (adata->key_inline) { int words; if (adata->keylen > adata->keylen_pad) { append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid | OP_PCL_DKP_SRC_PTR | OP_PCL_DKP_DST_IMM | adata->keylen); append_ptr(desc, adata->key_dma); words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) - CAAM_PTR_SZ) / CAAM_CMD_SZ; } else { append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid | OP_PCL_DKP_SRC_IMM | OP_PCL_DKP_DST_IMM | adata->keylen); append_data(desc, adata->key_virt, adata->keylen); words = (ALIGN(adata->keylen_pad, CAAM_CMD_SZ) - ALIGN(adata->keylen, CAAM_CMD_SZ)) / CAAM_CMD_SZ; } /* Reserve space in descriptor buffer for the derived key */ if (words) (*desc) = cpu_to_caam32(caam32_to_cpu(*desc) + words); } else { append_operation(desc, OP_TYPE_UNI_PROTOCOL | protid | OP_PCL_DKP_SRC_PTR | OP_PCL_DKP_DST_PTR | adata->keylen); append_ptr(desc, adata->key_dma); } } #endif /* DESC_CONSTR_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1