Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
George Cherian | 2332 | 92.87% | 3 | 33.33% |
Ard Biesheuvel | 162 | 6.45% | 2 | 22.22% |
Herbert Xu | 10 | 0.40% | 1 | 11.11% |
Colin Ian King | 5 | 0.20% | 2 | 22.22% |
Thomas Gleixner | 2 | 0.08% | 1 | 11.11% |
Total | 2511 | 9 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Cavium, Inc. */ #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/authenc.h> #include <crypto/internal/des.h> #include <crypto/xts.h> #include <linux/crypto.h> #include <linux/err.h> #include <linux/list.h> #include <linux/scatterlist.h> #include "cptvf.h" #include "cptvf_algs.h" struct cpt_device_handle { void *cdev[MAX_DEVICES]; u32 dev_count; }; static struct cpt_device_handle dev_handle; static void cvm_callback(u32 status, void *arg) { struct crypto_async_request *req = (struct crypto_async_request *)arg; req->complete(req, !status); } static inline void update_input_iv(struct cpt_request_info *req_info, u8 *iv, u32 enc_iv_len, u32 *argcnt) { /* Setting the iv information */ req_info->in[*argcnt].vptr = (void *)iv; req_info->in[*argcnt].size = enc_iv_len; req_info->req.dlen += enc_iv_len; ++(*argcnt); } static inline void update_output_iv(struct cpt_request_info *req_info, u8 *iv, u32 enc_iv_len, u32 *argcnt) { /* Setting the iv information */ req_info->out[*argcnt].vptr = (void *)iv; req_info->out[*argcnt].size = enc_iv_len; req_info->rlen += enc_iv_len; ++(*argcnt); } static inline void update_input_data(struct cpt_request_info *req_info, struct scatterlist *inp_sg, u32 nbytes, u32 *argcnt) { req_info->req.dlen += nbytes; while (nbytes) { u32 len = min(nbytes, inp_sg->length); u8 *ptr = sg_virt(inp_sg); req_info->in[*argcnt].vptr = (void *)ptr; req_info->in[*argcnt].size = len; nbytes -= len; ++(*argcnt); ++inp_sg; } } static inline void update_output_data(struct cpt_request_info *req_info, struct scatterlist *outp_sg, u32 nbytes, u32 *argcnt) { req_info->rlen += nbytes; while (nbytes) { u32 len = min(nbytes, outp_sg->length); u8 *ptr = sg_virt(outp_sg); req_info->out[*argcnt].vptr = (void *)ptr; req_info->out[*argcnt].size = len; nbytes -= len; ++(*argcnt); ++outp_sg; } } static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc, u32 *argcnt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cvm_enc_ctx *ctx = crypto_skcipher_ctx(tfm); struct cvm_req_ctx *rctx = skcipher_request_ctx(req); struct fc_context *fctx = &rctx->fctx; u64 *offset_control = &rctx->control_word; u32 enc_iv_len = crypto_skcipher_ivsize(tfm); struct cpt_request_info *req_info = &rctx->cpt_req; u64 *ctrl_flags = NULL; req_info->ctrl.s.grp = 0; req_info->ctrl.s.dma_mode = DMA_GATHER_SCATTER; req_info->ctrl.s.se_req = SE_CORE_REQ; req_info->req.opcode.s.major = MAJOR_OP_FC | DMA_MODE_FLAG(DMA_GATHER_SCATTER); if (enc) req_info->req.opcode.s.minor = 2; else req_info->req.opcode.s.minor = 3; req_info->req.param1 = req->cryptlen; /* Encryption Data length */ req_info->req.param2 = 0; /*Auth data length */ fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type; fctx->enc.enc_ctrl.e.aes_key = ctx->key_type; fctx->enc.enc_ctrl.e.iv_source = FROM_DPTR; if (ctx->cipher_type == AES_XTS) memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2); else memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len); ctrl_flags = (u64 *)&fctx->enc.enc_ctrl.flags; *ctrl_flags = cpu_to_be64(*ctrl_flags); *offset_control = cpu_to_be64(((u64)(enc_iv_len) << 16)); /* Storing Packet Data Information in offset * Control Word First 8 bytes */ req_info->in[*argcnt].vptr = (u8 *)offset_control; req_info->in[*argcnt].size = CONTROL_WORD_LEN; req_info->req.dlen += CONTROL_WORD_LEN; ++(*argcnt); req_info->in[*argcnt].vptr = (u8 *)fctx; req_info->in[*argcnt].size = sizeof(struct fc_context); req_info->req.dlen += sizeof(struct fc_context); ++(*argcnt); return 0; } static inline u32 create_input_list(struct skcipher_request *req, u32 enc, u32 enc_iv_len) { struct cvm_req_ctx *rctx = skcipher_request_ctx(req); struct cpt_request_info *req_info = &rctx->cpt_req; u32 argcnt = 0; create_ctx_hdr(req, enc, &argcnt); update_input_iv(req_info, req->iv, enc_iv_len, &argcnt); update_input_data(req_info, req->src, req->cryptlen, &argcnt); req_info->incnt = argcnt; return 0; } static inline void store_cb_info(struct skcipher_request *req, struct cpt_request_info *req_info) { req_info->callback = (void *)cvm_callback; req_info->callback_arg = (void *)&req->base; } static inline void create_output_list(struct skcipher_request *req, u32 enc_iv_len) { struct cvm_req_ctx *rctx = skcipher_request_ctx(req); struct cpt_request_info *req_info = &rctx->cpt_req; u32 argcnt = 0; /* OUTPUT Buffer Processing * AES encryption/decryption output would be * received in the following format * * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----| * [ 16 Bytes/ [ Request Enc/Dec/ DATA Len AES CBC ] */ /* Reading IV information */ update_output_iv(req_info, req->iv, enc_iv_len, &argcnt); update_output_data(req_info, req->dst, req->cryptlen, &argcnt); req_info->outcnt = argcnt; } static inline int cvm_enc_dec(struct skcipher_request *req, u32 enc) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct cvm_req_ctx *rctx = skcipher_request_ctx(req); u32 enc_iv_len = crypto_skcipher_ivsize(tfm); struct fc_context *fctx = &rctx->fctx; struct cpt_request_info *req_info = &rctx->cpt_req; void *cdev = NULL; int status; memset(req_info, 0, sizeof(struct cpt_request_info)); memset(fctx, 0, sizeof(struct fc_context)); create_input_list(req, enc, enc_iv_len); create_output_list(req, enc_iv_len); store_cb_info(req, req_info); cdev = dev_handle.cdev[smp_processor_id()]; status = cptvf_do_request(cdev, req_info); /* We perform an asynchronous send and once * the request is completed the driver would * intimate through registered call back functions */ if (status) return status; else return -EINPROGRESS; } static int cvm_encrypt(struct skcipher_request *req) { return cvm_enc_dec(req, true); } static int cvm_decrypt(struct skcipher_request *req) { return cvm_enc_dec(req, false); } static int cvm_xts_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm); int err; const u8 *key1 = key; const u8 *key2 = key + (keylen / 2); err = xts_check_key(tfm, key, keylen); if (err) return err; ctx->key_len = keylen; memcpy(ctx->enc_key, key1, keylen / 2); memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2); ctx->cipher_type = AES_XTS; switch (ctx->key_len) { case 32: ctx->key_type = AES_128_BIT; break; case 64: ctx->key_type = AES_256_BIT; break; default: return -EINVAL; } return 0; } static int cvm_validate_keylen(struct cvm_enc_ctx *ctx, u32 keylen) { if ((keylen == 16) || (keylen == 24) || (keylen == 32)) { ctx->key_len = keylen; switch (ctx->key_len) { case 16: ctx->key_type = AES_128_BIT; break; case 24: ctx->key_type = AES_192_BIT; break; case 32: ctx->key_type = AES_256_BIT; break; default: return -EINVAL; } if (ctx->cipher_type == DES3_CBC) ctx->key_type = 0; return 0; } return -EINVAL; } static int cvm_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen, u8 cipher_type) { struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); struct cvm_enc_ctx *ctx = crypto_tfm_ctx(tfm); ctx->cipher_type = cipher_type; if (!cvm_validate_keylen(ctx, keylen)) { memcpy(ctx->enc_key, key, keylen); return 0; } else { return -EINVAL; } } static int cvm_cbc_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { return cvm_setkey(cipher, key, keylen, AES_CBC); } static int cvm_ecb_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { return cvm_setkey(cipher, key, keylen, AES_ECB); } static int cvm_cfb_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { return cvm_setkey(cipher, key, keylen, AES_CFB); } static int cvm_cbc_des3_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { return verify_skcipher_des3_key(cipher, key) ?: cvm_setkey(cipher, key, keylen, DES3_CBC); } static int cvm_ecb_des3_setkey(struct crypto_skcipher *cipher, const u8 *key, u32 keylen) { return verify_skcipher_des3_key(cipher, key) ?: cvm_setkey(cipher, key, keylen, DES3_ECB); } static int cvm_enc_dec_init(struct crypto_skcipher *tfm) { crypto_skcipher_set_reqsize(tfm, sizeof(struct cvm_req_ctx)); return 0; } static struct skcipher_alg algs[] = { { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "xts(aes)", .base.cra_driver_name = "cavium-xts-aes", .base.cra_module = THIS_MODULE, .ivsize = AES_BLOCK_SIZE, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .setkey = cvm_xts_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, }, { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cavium-cbc-aes", .base.cra_module = THIS_MODULE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = cvm_cbc_aes_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, }, { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "ecb(aes)", .base.cra_driver_name = "cavium-ecb-aes", .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = cvm_ecb_aes_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, }, { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_enc_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "cfb(aes)", .base.cra_driver_name = "cavium-cfb-aes", .base.cra_module = THIS_MODULE, .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = cvm_cfb_aes_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, }, { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "cbc(des3_ede)", .base.cra_driver_name = "cavium-cbc-des3_ede", .base.cra_module = THIS_MODULE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = cvm_cbc_des3_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, }, { .base.cra_flags = CRYPTO_ALG_ASYNC, .base.cra_blocksize = DES3_EDE_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct cvm_des3_ctx), .base.cra_alignmask = 7, .base.cra_priority = 4001, .base.cra_name = "ecb(des3_ede)", .base.cra_driver_name = "cavium-ecb-des3_ede", .base.cra_module = THIS_MODULE, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .setkey = cvm_ecb_des3_setkey, .encrypt = cvm_encrypt, .decrypt = cvm_decrypt, .init = cvm_enc_dec_init, } }; static inline int cav_register_algs(void) { int err = 0; err = crypto_register_skciphers(algs, ARRAY_SIZE(algs)); if (err) return err; return 0; } static inline void cav_unregister_algs(void) { crypto_unregister_skciphers(algs, ARRAY_SIZE(algs)); } int cvm_crypto_init(struct cpt_vf *cptvf) { struct pci_dev *pdev = cptvf->pdev; u32 dev_count; dev_count = dev_handle.dev_count; dev_handle.cdev[dev_count] = cptvf; dev_handle.dev_count++; if (dev_count == 3) { if (cav_register_algs()) { dev_err(&pdev->dev, "Error in registering crypto algorithms\n"); return -EINVAL; } } return 0; } void cvm_crypto_exit(void) { u32 dev_count; dev_count = --dev_handle.dev_count; if (!dev_count) cav_unregister_algs(); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1