Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srikanth Jampala | 909 | 47.07% | 1 | 12.50% |
Nagadheeraj Rottela | 755 | 39.10% | 3 | 37.50% |
Nagadheeraj, Rottela | 183 | 9.48% | 1 | 12.50% |
Phani Kiran Hemadri | 61 | 3.16% | 1 | 12.50% |
Wenwen Wang | 22 | 1.14% | 1 | 12.50% |
Greg Kroah-Hartman | 1 | 0.05% | 1 | 12.50% |
Total | 1931 | 8 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __NITROX_REQ_H #define __NITROX_REQ_H #include <linux/dma-mapping.h> #include <crypto/aes.h> #include "nitrox_dev.h" #define PENDING_SIG 0xFFFFFFFFFFFFFFFFUL #define PRIO 4001 typedef void (*sereq_completion_t)(void *req, int err); /** * struct gphdr - General purpose Header * @param0: first parameter. * @param1: second parameter. * @param2: third parameter. * @param3: fourth parameter. * * Params tell the iv and enc/dec data offsets. */ struct gphdr { __be16 param0; __be16 param1; __be16 param2; __be16 param3; }; /** * struct se_req_ctrl - SE request information. * @arg: Minor number of the opcode * @ctxc: Context control. * @unca: Uncertainity enabled. * @info: Additional information for SE cores. * @ctxl: Context length in bytes. * @uddl: User defined data length */ union se_req_ctrl { u64 value; struct { u64 raz : 22; u64 arg : 8; u64 ctxc : 2; u64 unca : 1; u64 info : 3; u64 unc : 8; u64 ctxl : 12; u64 uddl : 8; } s; }; #define MAX_IV_LEN 16 /** * struct se_crypto_request - SE crypto request structure. * @opcode: Request opcode (enc/dec) * @flags: flags from crypto subsystem * @ctx_handle: Crypto context handle. * @gph: GP Header * @ctrl: Request Information. * @orh: ORH address * @comp: completion address * @src: Input sglist * @dst: Output sglist */ struct se_crypto_request { u8 opcode; gfp_t gfp; u32 flags; u64 ctx_handle; struct gphdr gph; union se_req_ctrl ctrl; u64 *orh; u64 *comp; struct scatterlist *src; struct scatterlist *dst; }; /* Crypto opcodes */ #define FLEXI_CRYPTO_ENCRYPT_HMAC 0x33 #define ENCRYPT 0 #define DECRYPT 1 /* IV from context */ #define IV_FROM_CTX 0 /* IV from Input data */ #define IV_FROM_DPTR 1 /** * cipher opcodes for firmware */ enum flexi_cipher { CIPHER_NULL = 0, CIPHER_3DES_CBC, CIPHER_3DES_ECB, CIPHER_AES_CBC, CIPHER_AES_ECB, CIPHER_AES_CFB, CIPHER_AES_CTR, CIPHER_AES_GCM, CIPHER_AES_XTS, CIPHER_AES_CCM, CIPHER_AES_CBC_CTS, CIPHER_AES_ECB_CTS, CIPHER_INVALID }; enum flexi_auth { AUTH_NULL = 0, AUTH_MD5, AUTH_SHA1, AUTH_SHA2_SHA224, AUTH_SHA2_SHA256, AUTH_SHA2_SHA384, AUTH_SHA2_SHA512, AUTH_GMAC, AUTH_INVALID }; /** * struct crypto_keys - Crypto keys * @key: Encryption key or KEY1 for AES-XTS * @iv: Encryption IV or Tweak for AES-XTS */ struct crypto_keys { union { u8 key[AES_MAX_KEY_SIZE]; u8 key1[AES_MAX_KEY_SIZE]; } u; u8 iv[AES_BLOCK_SIZE]; }; /** * struct auth_keys - Authentication keys * @ipad: IPAD or KEY2 for AES-XTS * @opad: OPAD or AUTH KEY if auth_input_type = 1 */ struct auth_keys { union { u8 ipad[64]; u8 key2[64]; } u; u8 opad[64]; }; union fc_ctx_flags { __be64 f; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 cipher_type : 4; u64 reserved_59 : 1; u64 aes_keylen : 2; u64 iv_source : 1; u64 hash_type : 4; u64 reserved_49_51 : 3; u64 auth_input_type: 1; u64 mac_len : 8; u64 reserved_0_39 : 40; #else u64 reserved_0_39 : 40; u64 mac_len : 8; u64 auth_input_type: 1; u64 reserved_49_51 : 3; u64 hash_type : 4; u64 iv_source : 1; u64 aes_keylen : 2; u64 reserved_59 : 1; u64 cipher_type : 4; #endif } w0; }; /** * struct flexi_crypto_context - Crypto context * @cipher_type: Encryption cipher type * @aes_keylen: AES key length * @iv_source: Encryption IV source * @hash_type: Authentication type * @auth_input_type: Authentication input type * 1 - Authentication IV and KEY, microcode calculates OPAD/IPAD * 0 - Authentication OPAD/IPAD * @mac_len: mac length * @crypto: Crypto keys * @auth: Authentication keys */ struct flexi_crypto_context { union fc_ctx_flags flags; struct crypto_keys crypto; struct auth_keys auth; }; struct crypto_ctx_hdr { struct dma_pool *pool; dma_addr_t dma; void *vaddr; }; struct nitrox_crypto_ctx { struct nitrox_device *ndev; union { u64 ctx_handle; struct flexi_crypto_context *fctx; } u; struct crypto_ctx_hdr *chdr; sereq_completion_t callback; }; struct nitrox_kcrypt_request { struct se_crypto_request creq; u8 *src; u8 *dst; u8 *iv_out; }; /** * struct nitrox_aead_rctx - AEAD request context * @nkreq: Base request context * @cryptlen: Encryption/Decryption data length * @assoclen: AAD length * @srclen: Input buffer length * @dstlen: Output buffer length * @iv: IV data * @ivsize: IV data length * @flags: AEAD req flags * @ctx_handle: Device context handle * @src: Source sglist * @dst: Destination sglist * @ctrl_arg: Identifies the request type (ENCRYPT/DECRYPT) */ struct nitrox_aead_rctx { struct nitrox_kcrypt_request nkreq; unsigned int cryptlen; unsigned int assoclen; unsigned int srclen; unsigned int dstlen; u8 *iv; int ivsize; u32 flags; u64 ctx_handle; struct scatterlist *src; struct scatterlist *dst; u8 ctrl_arg; }; /** * struct nitrox_rfc4106_rctx - rfc4106 cipher request context * @base: AEAD request context * @src: Source sglist * @dst: Destination sglist * @assoc: AAD */ struct nitrox_rfc4106_rctx { struct nitrox_aead_rctx base; struct scatterlist src[3]; struct scatterlist dst[3]; u8 assoc[20]; }; /** * struct pkt_instr_hdr - Packet Instruction Header * @g: Gather used * When [G] is set and [GSZ] != 0, the instruction is * indirect gather instruction. * When [G] is set and [GSZ] = 0, the instruction is * direct gather instruction. * @gsz: Number of pointers in the indirect gather list * @ihi: When set hardware duplicates the 1st 8 bytes of pkt_instr_hdr * and adds them to the packet after the pkt_instr_hdr but before any UDD * @ssz: Not used by the input hardware. But can become slc_store_int[SSZ] * when [IHI] is set. * @fsz: The number of front data bytes directly included in the * PCIe instruction. * @tlen: The length of the input packet in bytes, include: * - 16B pkt_hdr * - Inline context bytes if any, * - UDD if any, * - packet payload bytes */ union pkt_instr_hdr { u64 value; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 raz_48_63 : 16; u64 g : 1; u64 gsz : 7; u64 ihi : 1; u64 ssz : 7; u64 raz_30_31 : 2; u64 fsz : 6; u64 raz_16_23 : 8; u64 tlen : 16; #else u64 tlen : 16; u64 raz_16_23 : 8; u64 fsz : 6; u64 raz_30_31 : 2; u64 ssz : 7; u64 ihi : 1; u64 gsz : 7; u64 g : 1; u64 raz_48_63 : 16; #endif } s; }; /** * struct pkt_hdr - Packet Input Header * @opcode: Request opcode (Major) * @arg: Request opcode (Minor) * @ctxc: Context control. * @unca: When set [UNC] is the uncertainty count for an input packet. * The hardware uses uncertainty counts to predict * output buffer use and avoid deadlock. * @info: Not used by input hardware. Available for use * during SE processing. * @destport: The expected destination port/ring/channel for the packet. * @unc: Uncertainty count for an input packet. * @grp: SE group that will process the input packet. * @ctxl: Context Length in 64-bit words. * @uddl: User-defined data (UDD) length in bytes. * @ctxp: Context pointer. CTXP<63,2:0> must be zero in all cases. */ union pkt_hdr { u64 value[2]; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 opcode : 8; u64 arg : 8; u64 ctxc : 2; u64 unca : 1; u64 raz_44 : 1; u64 info : 3; u64 destport : 9; u64 unc : 8; u64 raz_19_23 : 5; u64 grp : 3; u64 raz_15 : 1; u64 ctxl : 7; u64 uddl : 8; #else u64 uddl : 8; u64 ctxl : 7; u64 raz_15 : 1; u64 grp : 3; u64 raz_19_23 : 5; u64 unc : 8; u64 destport : 9; u64 info : 3; u64 raz_44 : 1; u64 unca : 1; u64 ctxc : 2; u64 arg : 8; u64 opcode : 8; #endif __be64 ctxp; } s; }; /** * struct slc_store_info - Solicited Paceket Output Store Information. * @ssz: The number of scatterlist pointers for the solicited output port * packet. * @rptr: The result pointer for the solicited output port packet. * If [SSZ]=0, [RPTR] must point directly to a buffer on the remote * host that is large enough to hold the entire output packet. * If [SSZ]!=0, [RPTR] must point to an array of ([SSZ]+3)/4 * sglist components at [RPTR] on the remote host. */ union slc_store_info { u64 value[2]; struct { #if defined(__BIG_ENDIAN_BITFIELD) u64 raz_39_63 : 25; u64 ssz : 7; u64 raz_0_31 : 32; #else u64 raz_0_31 : 32; u64 ssz : 7; u64 raz_39_63 : 25; #endif __be64 rptr; } s; }; /** * struct nps_pkt_instr - NPS Packet Instruction of SE cores. * @dptr0 : Input pointer points to buffer in remote host. * @ih: Packet Instruction Header (8 bytes) * @irh: Packet Input Header (16 bytes) * @slc: Solicited Packet Output Store Information (16 bytes) * @fdata: Front data * * 64-Byte Instruction Format */ struct nps_pkt_instr { __be64 dptr0; union pkt_instr_hdr ih; union pkt_hdr irh; union slc_store_info slc; u64 fdata[2]; }; /** * struct aqmq_command_s - The 32 byte command for AE processing. * @opcode: Request opcode * @param1: Request control parameter 1 * @param2: Request control parameter 2 * @dlen: Input length * @dptr: Input pointer points to buffer in remote host * @rptr: Result pointer points to buffer in remote host * @grp: AQM Group (0..7) * @cptr: Context pointer */ struct aqmq_command_s { __be16 opcode; __be16 param1; __be16 param2; __be16 dlen; __be64 dptr; __be64 rptr; union { __be64 word3; #if defined(__BIG_ENDIAN_BITFIELD) u64 grp : 3; u64 cptr : 61; #else u64 cptr : 61; u64 grp : 3; #endif }; }; /** * struct ctx_hdr - Book keeping data about the crypto context * @pool: Pool used to allocate crypto context * @dma: Base DMA address of the cypto context * @ctx_dma: Actual usable crypto context for NITROX */ struct ctx_hdr { struct dma_pool *pool; dma_addr_t dma; dma_addr_t ctx_dma; }; /* * struct sglist_component - SG list component format * @len0: The number of bytes at [PTR0] on the remote host. * @len1: The number of bytes at [PTR1] on the remote host. * @len2: The number of bytes at [PTR2] on the remote host. * @len3: The number of bytes at [PTR3] on the remote host. * @dma0: First pointer point to buffer in remote host. * @dma1: Second pointer point to buffer in remote host. * @dma2: Third pointer point to buffer in remote host. * @dma3: Fourth pointer point to buffer in remote host. */ struct nitrox_sgcomp { __be16 len[4]; __be64 dma[4]; }; /* * strutct nitrox_sgtable - SG list information * @sgmap_cnt: Number of buffers mapped * @total_bytes: Total bytes in sglist. * @sgcomp_len: Total sglist components length. * @sgcomp_dma: DMA address of sglist component. * @sg: crypto request buffer. * @sgcomp: sglist component for NITROX. */ struct nitrox_sgtable { u8 sgmap_cnt; u16 total_bytes; u32 sgcomp_len; dma_addr_t sgcomp_dma; struct scatterlist *sg; struct nitrox_sgcomp *sgcomp; }; /* Response Header Length */ #define ORH_HLEN 8 /* Completion bytes Length */ #define COMP_HLEN 8 struct resp_hdr { u64 *orh; u64 *completion; }; typedef void (*completion_t)(void *arg, int err); /** * struct nitrox_softreq - Represents the NIROX Request. * @response: response list entry * @backlog: Backlog list entry * @ndev: Device used to submit the request * @cmdq: Command queue for submission * @resp: Response headers * @instr: 64B instruction * @in: SG table for input * @out SG table for output * @tstamp: Request submitted time in jiffies * @callback: callback after request completion/timeout * @cb_arg: callback argument */ struct nitrox_softreq { struct list_head response; struct list_head backlog; u32 flags; gfp_t gfp; atomic_t status; struct nitrox_device *ndev; struct nitrox_cmdq *cmdq; struct nps_pkt_instr instr; struct resp_hdr resp; struct nitrox_sgtable in; struct nitrox_sgtable out; unsigned long tstamp; completion_t callback; void *cb_arg; }; static inline int flexi_aes_keylen(int keylen) { int aes_keylen; switch (keylen) { case AES_KEYSIZE_128: aes_keylen = 1; break; case AES_KEYSIZE_192: aes_keylen = 2; break; case AES_KEYSIZE_256: aes_keylen = 3; break; default: aes_keylen = -EINVAL; break; } return aes_keylen; } static inline void *alloc_req_buf(int nents, int extralen, gfp_t gfp) { size_t size; size = sizeof(struct scatterlist) * nents; size += extralen; return kzalloc(size, gfp); } /** * create_single_sg - Point SG entry to the data * @sg: Destination SG list * @buf: Data * @buflen: Data length * * Returns next free entry in the destination SG list **/ static inline struct scatterlist *create_single_sg(struct scatterlist *sg, void *buf, int buflen) { sg_set_buf(sg, buf, buflen); sg++; return sg; } /** * create_multi_sg - Create multiple sg entries with buflen data length from * source sglist * @to_sg: Destination SG list * @from_sg: Source SG list * @buflen: Data length * * Returns next free entry in the destination SG list **/ static inline struct scatterlist *create_multi_sg(struct scatterlist *to_sg, struct scatterlist *from_sg, int buflen) { struct scatterlist *sg = to_sg; unsigned int sglen; for (; buflen && from_sg; buflen -= sglen) { sglen = from_sg->length; if (sglen > buflen) sglen = buflen; sg_set_buf(sg, sg_virt(from_sg), sglen); from_sg = sg_next(from_sg); sg++; } return sg; } static inline void set_orh_value(u64 *orh) { WRITE_ONCE(*orh, PENDING_SIG); } static inline void set_comp_value(u64 *comp) { WRITE_ONCE(*comp, PENDING_SIG); } static inline int alloc_src_req_buf(struct nitrox_kcrypt_request *nkreq, int nents, int ivsize) { struct se_crypto_request *creq = &nkreq->creq; nkreq->src = alloc_req_buf(nents, ivsize, creq->gfp); if (!nkreq->src) return -ENOMEM; return 0; } static inline void nitrox_creq_copy_iv(char *dst, char *src, int size) { memcpy(dst, src, size); } static inline struct scatterlist *nitrox_creq_src_sg(char *iv, int ivsize) { return (struct scatterlist *)(iv + ivsize); } static inline void nitrox_creq_set_src_sg(struct nitrox_kcrypt_request *nkreq, int nents, int ivsize, struct scatterlist *src, int buflen) { char *iv = nkreq->src; struct scatterlist *sg; struct se_crypto_request *creq = &nkreq->creq; creq->src = nitrox_creq_src_sg(iv, ivsize); sg = creq->src; sg_init_table(sg, nents); /* Input format: * +----+----------------+ * | IV | SRC sg entries | * +----+----------------+ */ /* IV */ sg = create_single_sg(sg, iv, ivsize); /* SRC entries */ create_multi_sg(sg, src, buflen); } static inline int alloc_dst_req_buf(struct nitrox_kcrypt_request *nkreq, int nents) { int extralen = ORH_HLEN + COMP_HLEN; struct se_crypto_request *creq = &nkreq->creq; nkreq->dst = alloc_req_buf(nents, extralen, creq->gfp); if (!nkreq->dst) return -ENOMEM; return 0; } static inline void nitrox_creq_set_orh(struct nitrox_kcrypt_request *nkreq) { struct se_crypto_request *creq = &nkreq->creq; creq->orh = (u64 *)(nkreq->dst); set_orh_value(creq->orh); } static inline void nitrox_creq_set_comp(struct nitrox_kcrypt_request *nkreq) { struct se_crypto_request *creq = &nkreq->creq; creq->comp = (u64 *)(nkreq->dst + ORH_HLEN); set_comp_value(creq->comp); } static inline struct scatterlist *nitrox_creq_dst_sg(char *dst) { return (struct scatterlist *)(dst + ORH_HLEN + COMP_HLEN); } static inline void nitrox_creq_set_dst_sg(struct nitrox_kcrypt_request *nkreq, int nents, int ivsize, struct scatterlist *dst, int buflen) { struct se_crypto_request *creq = &nkreq->creq; struct scatterlist *sg; char *iv = nkreq->src; creq->dst = nitrox_creq_dst_sg(nkreq->dst); sg = creq->dst; sg_init_table(sg, nents); /* Output format: * +-----+----+----------------+-----------------+ * | ORH | IV | DST sg entries | COMPLETION Bytes| * +-----+----+----------------+-----------------+ */ /* ORH */ sg = create_single_sg(sg, creq->orh, ORH_HLEN); /* IV */ sg = create_single_sg(sg, iv, ivsize); /* DST entries */ sg = create_multi_sg(sg, dst, buflen); /* COMPLETION Bytes */ create_single_sg(sg, creq->comp, COMP_HLEN); } #endif /* __NITROX_REQ_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1