Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
SrujanaChalla | 4585 | 99.87% | 1 | 50.00% |
Christophe Jaillet | 6 | 0.13% | 1 | 50.00% |
Total | 4591 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell OcteonTX CPT driver * * Copyright (C) 2019 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/interrupt.h> #include <linux/module.h> #include "otx_cptvf.h" #include "otx_cptvf_algs.h" #include "otx_cptvf_reqmgr.h" #define DRV_NAME "octeontx-cptvf" #define DRV_VERSION "1.0" static void vq_work_handler(unsigned long data) { struct otx_cptvf_wqe_info *cwqe_info = (struct otx_cptvf_wqe_info *) data; otx_cpt_post_process(&cwqe_info->vq_wqe[0]); } static int init_worker_threads(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; struct otx_cptvf_wqe_info *cwqe_info; int i; cwqe_info = kzalloc(sizeof(*cwqe_info), GFP_KERNEL); if (!cwqe_info) return -ENOMEM; if (cptvf->num_queues) { dev_dbg(&pdev->dev, "Creating VQ worker threads (%d)\n", cptvf->num_queues); } for (i = 0; i < cptvf->num_queues; i++) { tasklet_init(&cwqe_info->vq_wqe[i].twork, vq_work_handler, (u64)cwqe_info); cwqe_info->vq_wqe[i].cptvf = cptvf; } cptvf->wqe_info = cwqe_info; return 0; } static void cleanup_worker_threads(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; struct otx_cptvf_wqe_info *cwqe_info; int i; cwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; if (!cwqe_info) return; if (cptvf->num_queues) { dev_dbg(&pdev->dev, "Cleaning VQ worker threads (%u)\n", cptvf->num_queues); } for (i = 0; i < cptvf->num_queues; i++) tasklet_kill(&cwqe_info->vq_wqe[i].twork); kzfree(cwqe_info); cptvf->wqe_info = NULL; } static void free_pending_queues(struct otx_cpt_pending_qinfo *pqinfo) { struct otx_cpt_pending_queue *queue; int i; for_each_pending_queue(pqinfo, queue, i) { if (!queue->head) continue; /* free single queue */ kzfree((queue->head)); queue->front = 0; queue->rear = 0; queue->qlen = 0; } pqinfo->num_queues = 0; } static int alloc_pending_queues(struct otx_cpt_pending_qinfo *pqinfo, u32 qlen, u32 num_queues) { struct otx_cpt_pending_queue *queue = NULL; size_t size; int ret; u32 i; pqinfo->num_queues = num_queues; size = (qlen * sizeof(struct otx_cpt_pending_entry)); for_each_pending_queue(pqinfo, queue, i) { queue->head = kzalloc((size), GFP_KERNEL); if (!queue->head) { ret = -ENOMEM; goto pending_qfail; } queue->pending_count = 0; queue->front = 0; queue->rear = 0; queue->qlen = qlen; /* init queue spin lock */ spin_lock_init(&queue->lock); } return 0; pending_qfail: free_pending_queues(pqinfo); return ret; } static int init_pending_queues(struct otx_cptvf *cptvf, u32 qlen, u32 num_queues) { struct pci_dev *pdev = cptvf->pdev; int ret; if (!num_queues) return 0; ret = alloc_pending_queues(&cptvf->pqinfo, qlen, num_queues); if (ret) { dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", num_queues); return ret; } return 0; } static void cleanup_pending_queues(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->num_queues) return; dev_dbg(&pdev->dev, "Cleaning VQ pending queue (%u)\n", cptvf->num_queues); free_pending_queues(&cptvf->pqinfo); } static void free_command_queues(struct otx_cptvf *cptvf, struct otx_cpt_cmd_qinfo *cqinfo) { struct otx_cpt_cmd_queue *queue = NULL; struct otx_cpt_cmd_chunk *chunk = NULL; struct pci_dev *pdev = cptvf->pdev; int i; /* clean up for each queue */ for (i = 0; i < cptvf->num_queues; i++) { queue = &cqinfo->queue[i]; while (!list_empty(&cqinfo->queue[i].chead)) { chunk = list_first_entry(&cqinfo->queue[i].chead, struct otx_cpt_cmd_chunk, nextchunk); dma_free_coherent(&pdev->dev, chunk->size, chunk->head, chunk->dma_addr); chunk->head = NULL; chunk->dma_addr = 0; list_del(&chunk->nextchunk); kzfree(chunk); } queue->num_chunks = 0; queue->idx = 0; } } static int alloc_command_queues(struct otx_cptvf *cptvf, struct otx_cpt_cmd_qinfo *cqinfo, u32 qlen) { struct otx_cpt_cmd_chunk *curr, *first, *last; struct otx_cpt_cmd_queue *queue = NULL; struct pci_dev *pdev = cptvf->pdev; size_t q_size, c_size, rem_q_size; u32 qcsize_bytes; int i; /* Qsize in dwords, needed for SADDR config, 1-next chunk pointer */ cptvf->qsize = min(qlen, cqinfo->qchunksize) * OTX_CPT_NEXT_CHUNK_PTR_SIZE + 1; /* Qsize in bytes to create space for alignment */ q_size = qlen * OTX_CPT_INST_SIZE; qcsize_bytes = cqinfo->qchunksize * OTX_CPT_INST_SIZE; /* per queue initialization */ for (i = 0; i < cptvf->num_queues; i++) { c_size = 0; rem_q_size = q_size; first = NULL; last = NULL; queue = &cqinfo->queue[i]; INIT_LIST_HEAD(&queue->chead); do { curr = kzalloc(sizeof(*curr), GFP_KERNEL); if (!curr) goto cmd_qfail; c_size = (rem_q_size > qcsize_bytes) ? qcsize_bytes : rem_q_size; curr->head = dma_alloc_coherent(&pdev->dev, c_size + OTX_CPT_NEXT_CHUNK_PTR_SIZE, &curr->dma_addr, GFP_KERNEL); if (!curr->head) { dev_err(&pdev->dev, "Command Q (%d) chunk (%d) allocation failed\n", i, queue->num_chunks); goto free_curr; } curr->size = c_size; if (queue->num_chunks == 0) { first = curr; queue->base = first; } list_add_tail(&curr->nextchunk, &cqinfo->queue[i].chead); queue->num_chunks++; rem_q_size -= c_size; if (last) *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; last = curr; } while (rem_q_size); /* * Make the queue circular, tie back last chunk entry to head */ curr = first; *((u64 *)(&last->head[last->size])) = (u64)curr->dma_addr; queue->qhead = curr; } return 0; free_curr: kfree(curr); cmd_qfail: free_command_queues(cptvf, cqinfo); return -ENOMEM; } static int init_command_queues(struct otx_cptvf *cptvf, u32 qlen) { struct pci_dev *pdev = cptvf->pdev; int ret; /* setup command queues */ ret = alloc_command_queues(cptvf, &cptvf->cqinfo, qlen); if (ret) { dev_err(&pdev->dev, "Failed to allocate command queues (%u)\n", cptvf->num_queues); return ret; } return ret; } static void cleanup_command_queues(struct otx_cptvf *cptvf) { struct pci_dev *pdev = cptvf->pdev; if (!cptvf->num_queues) return; dev_dbg(&pdev->dev, "Cleaning VQ command queue (%u)\n", cptvf->num_queues); free_command_queues(cptvf, &cptvf->cqinfo); } static void cptvf_sw_cleanup(struct otx_cptvf *cptvf) { cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); cleanup_command_queues(cptvf); } static int cptvf_sw_init(struct otx_cptvf *cptvf, u32 qlen, u32 num_queues) { struct pci_dev *pdev = cptvf->pdev; u32 max_dev_queues = 0; int ret; max_dev_queues = OTX_CPT_NUM_QS_PER_VF; /* possible cpus */ num_queues = min_t(u32, num_queues, max_dev_queues); cptvf->num_queues = num_queues; ret = init_command_queues(cptvf, qlen); if (ret) { dev_err(&pdev->dev, "Failed to setup command queues (%u)\n", num_queues); return ret; } ret = init_pending_queues(cptvf, qlen, num_queues); if (ret) { dev_err(&pdev->dev, "Failed to setup pending queues (%u)\n", num_queues); goto setup_pqfail; } /* Create worker threads for BH processing */ ret = init_worker_threads(cptvf); if (ret) { dev_err(&pdev->dev, "Failed to setup worker threads\n"); goto init_work_fail; } return 0; init_work_fail: cleanup_worker_threads(cptvf); cleanup_pending_queues(cptvf); setup_pqfail: cleanup_command_queues(cptvf); return ret; } static void cptvf_free_irq_affinity(struct otx_cptvf *cptvf, int vec) { irq_set_affinity_hint(pci_irq_vector(cptvf->pdev, vec), NULL); free_cpumask_var(cptvf->affinity_mask[vec]); } static void cptvf_write_vq_ctl(struct otx_cptvf *cptvf, bool val) { union otx_cptx_vqx_ctl vqx_ctl; vqx_ctl.u = readq(cptvf->reg_base + OTX_CPT_VQX_CTL(0)); vqx_ctl.s.ena = val; writeq(vqx_ctl.u, cptvf->reg_base + OTX_CPT_VQX_CTL(0)); } void otx_cptvf_write_vq_doorbell(struct otx_cptvf *cptvf, u32 val) { union otx_cptx_vqx_doorbell vqx_dbell; vqx_dbell.u = readq(cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */ writeq(vqx_dbell.u, cptvf->reg_base + OTX_CPT_VQX_DOORBELL(0)); } static void cptvf_write_vq_inprog(struct otx_cptvf *cptvf, u8 val) { union otx_cptx_vqx_inprog vqx_inprg; vqx_inprg.u = readq(cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); vqx_inprg.s.inflight = val; writeq(vqx_inprg.u, cptvf->reg_base + OTX_CPT_VQX_INPROG(0)); } static void cptvf_write_vq_done_numwait(struct otx_cptvf *cptvf, u32 val) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); vqx_dwait.s.num_wait = val; writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); } static u32 cptvf_read_vq_done_numwait(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); return vqx_dwait.s.num_wait; } static void cptvf_write_vq_done_timewait(struct otx_cptvf *cptvf, u16 time) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); vqx_dwait.s.time_wait = time; writeq(vqx_dwait.u, cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); } static u16 cptvf_read_vq_done_timewait(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_wait vqx_dwait; vqx_dwait.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_WAIT(0)); return vqx_dwait.s.time_wait; } static void cptvf_enable_swerr_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); /* Enable SWERR interrupts for the requested VF */ vqx_misc_ena.s.swerr = 1; writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); } static void cptvf_enable_mbox_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_ena_w1s vqx_misc_ena; vqx_misc_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); /* Enable MBOX interrupt for the requested VF */ vqx_misc_ena.s.mbox = 1; writeq(vqx_misc_ena.u, cptvf->reg_base + OTX_CPT_VQX_MISC_ENA_W1S(0)); } static void cptvf_enable_done_interrupts(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done_ena_w1s vqx_done_ena; vqx_done_ena.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); /* Enable DONE interrupt for the requested VF */ vqx_done_ena.s.done = 1; writeq(vqx_done_ena.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ENA_W1S(0)); } static void cptvf_clear_dovf_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.dovf = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_irde_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.irde = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_nwrp_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.nwrp = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_mbox_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.mbox = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static void cptvf_clear_swerr_intr(struct otx_cptvf *cptvf) { union otx_cptx_vqx_misc_int vqx_misc_int; vqx_misc_int.u = readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); /* W1C for the VF */ vqx_misc_int.s.swerr = 1; writeq(vqx_misc_int.u, cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static u64 cptvf_read_vf_misc_intr_status(struct otx_cptvf *cptvf) { return readq(cptvf->reg_base + OTX_CPT_VQX_MISC_INT(0)); } static irqreturn_t cptvf_misc_intr_handler(int __always_unused irq, void *arg) { struct otx_cptvf *cptvf = arg; struct pci_dev *pdev = cptvf->pdev; u64 intr; intr = cptvf_read_vf_misc_intr_status(cptvf); /* Check for MISC interrupt types */ if (likely(intr & OTX_CPT_VF_INTR_MBOX_MASK)) { dev_dbg(&pdev->dev, "Mailbox interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); otx_cptvf_handle_mbox_intr(cptvf); cptvf_clear_mbox_intr(cptvf); } else if (unlikely(intr & OTX_CPT_VF_INTR_DOVF_MASK)) { cptvf_clear_dovf_intr(cptvf); /* Clear doorbell count */ otx_cptvf_write_vq_doorbell(cptvf, 0); dev_err(&pdev->dev, "Doorbell overflow error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_IRDE_MASK)) { cptvf_clear_irde_intr(cptvf); dev_err(&pdev->dev, "Instruction NCB read error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_NWRP_MASK)) { cptvf_clear_nwrp_intr(cptvf); dev_err(&pdev->dev, "NCB response write error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else if (unlikely(intr & OTX_CPT_VF_INTR_SERR_MASK)) { cptvf_clear_swerr_intr(cptvf); dev_err(&pdev->dev, "Software error interrupt 0x%llx on CPT VF %d\n", intr, cptvf->vfid); } else { dev_err(&pdev->dev, "Unhandled interrupt in OTX_CPT VF %d\n", cptvf->vfid); } return IRQ_HANDLED; } static inline struct otx_cptvf_wqe *get_cptvf_vq_wqe(struct otx_cptvf *cptvf, int qno) { struct otx_cptvf_wqe_info *nwqe_info; if (unlikely(qno >= cptvf->num_queues)) return NULL; nwqe_info = (struct otx_cptvf_wqe_info *)cptvf->wqe_info; return &nwqe_info->vq_wqe[qno]; } static inline u32 cptvf_read_vq_done_count(struct otx_cptvf *cptvf) { union otx_cptx_vqx_done vqx_done; vqx_done.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE(0)); return vqx_done.s.done; } static inline void cptvf_write_vq_done_ack(struct otx_cptvf *cptvf, u32 ackcnt) { union otx_cptx_vqx_done_ack vqx_dack_cnt; vqx_dack_cnt.u = readq(cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); vqx_dack_cnt.s.done_ack = ackcnt; writeq(vqx_dack_cnt.u, cptvf->reg_base + OTX_CPT_VQX_DONE_ACK(0)); } static irqreturn_t cptvf_done_intr_handler(int __always_unused irq, void *cptvf_dev) { struct otx_cptvf *cptvf = (struct otx_cptvf *)cptvf_dev; struct pci_dev *pdev = cptvf->pdev; /* Read the number of completions */ u32 intr = cptvf_read_vq_done_count(cptvf); if (intr) { struct otx_cptvf_wqe *wqe; /* * Acknowledge the number of scheduled completions for * processing */ cptvf_write_vq_done_ack(cptvf, intr); wqe = get_cptvf_vq_wqe(cptvf, 0); if (unlikely(!wqe)) { dev_err(&pdev->dev, "No work to schedule for VF (%d)\n", cptvf->vfid); return IRQ_NONE; } tasklet_hi_schedule(&wqe->twork); } return IRQ_HANDLED; } static void cptvf_set_irq_affinity(struct otx_cptvf *cptvf, int vec) { struct pci_dev *pdev = cptvf->pdev; int cpu; if (!zalloc_cpumask_var(&cptvf->affinity_mask[vec], GFP_KERNEL)) { dev_err(&pdev->dev, "Allocation failed for affinity_mask for VF %d\n", cptvf->vfid); return; } cpu = cptvf->vfid % num_online_cpus(); cpumask_set_cpu(cpumask_local_spread(cpu, cptvf->node), cptvf->affinity_mask[vec]); irq_set_affinity_hint(pci_irq_vector(pdev, vec), cptvf->affinity_mask[vec]); } static void cptvf_write_vq_saddr(struct otx_cptvf *cptvf, u64 val) { union otx_cptx_vqx_saddr vqx_saddr; vqx_saddr.u = val; writeq(vqx_saddr.u, cptvf->reg_base + OTX_CPT_VQX_SADDR(0)); } static void cptvf_device_init(struct otx_cptvf *cptvf) { u64 base_addr = 0; /* Disable the VQ */ cptvf_write_vq_ctl(cptvf, 0); /* Reset the doorbell */ otx_cptvf_write_vq_doorbell(cptvf, 0); /* Clear inflight */ cptvf_write_vq_inprog(cptvf, 0); /* Write VQ SADDR */ base_addr = (u64)(cptvf->cqinfo.queue[0].qhead->dma_addr); cptvf_write_vq_saddr(cptvf, base_addr); /* Configure timerhold / coalescence */ cptvf_write_vq_done_timewait(cptvf, OTX_CPT_TIMER_HOLD); cptvf_write_vq_done_numwait(cptvf, OTX_CPT_COUNT_HOLD); /* Enable the VQ */ cptvf_write_vq_ctl(cptvf, 1); /* Flag the VF ready */ cptvf->flags |= OTX_CPT_FLAG_DEVICE_READY; } static ssize_t vf_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); char *msg; switch (cptvf->vftype) { case OTX_CPT_AE_TYPES: msg = "AE"; break; case OTX_CPT_SE_TYPES: msg = "SE"; break; default: msg = "Invalid"; } return scnprintf(buf, PAGE_SIZE, "%s\n", msg); } static ssize_t vf_engine_group_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", cptvf->vfgrp); } static ssize_t vf_engine_group_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); int val, ret; ret = kstrtoint(buf, 10, &val); if (ret) return ret; if (val < 0) return -EINVAL; if (val >= OTX_CPT_MAX_ENGINE_GROUPS) { dev_err(dev, "Engine group >= than max available groups %d\n", OTX_CPT_MAX_ENGINE_GROUPS); return -EINVAL; } ret = otx_cptvf_send_vf_to_grp_msg(cptvf, val); if (ret) return ret; return count; } static ssize_t vf_coalesc_time_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", cptvf_read_vq_done_timewait(cptvf)); } static ssize_t vf_coalesc_num_wait_show(struct device *dev, struct device_attribute *attr, char *buf) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", cptvf_read_vq_done_numwait(cptvf)); } static ssize_t vf_coalesc_time_wait_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); long val; int ret; ret = kstrtol(buf, 10, &val); if (ret != 0) return ret; if (val < OTX_CPT_COALESC_MIN_TIME_WAIT || val > OTX_CPT_COALESC_MAX_TIME_WAIT) return -EINVAL; cptvf_write_vq_done_timewait(cptvf, val); return count; } static ssize_t vf_coalesc_num_wait_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct otx_cptvf *cptvf = dev_get_drvdata(dev); long val; int ret; ret = kstrtol(buf, 10, &val); if (ret != 0) return ret; if (val < OTX_CPT_COALESC_MIN_NUM_WAIT || val > OTX_CPT_COALESC_MAX_NUM_WAIT) return -EINVAL; cptvf_write_vq_done_numwait(cptvf, val); return count; } static DEVICE_ATTR_RO(vf_type); static DEVICE_ATTR_RW(vf_engine_group); static DEVICE_ATTR_RW(vf_coalesc_time_wait); static DEVICE_ATTR_RW(vf_coalesc_num_wait); static struct attribute *otx_cptvf_attrs[] = { &dev_attr_vf_type.attr, &dev_attr_vf_engine_group.attr, &dev_attr_vf_coalesc_time_wait.attr, &dev_attr_vf_coalesc_num_wait.attr, NULL }; static const struct attribute_group otx_cptvf_sysfs_group = { .attrs = otx_cptvf_attrs, }; static int otx_cptvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct otx_cptvf *cptvf; int err; cptvf = devm_kzalloc(dev, sizeof(*cptvf), GFP_KERNEL); if (!cptvf) return -ENOMEM; pci_set_drvdata(pdev, cptvf); cptvf->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); goto clear_drvdata; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto disable_device; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable DMA configuration\n"); goto release_regions; } err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get 48-bit DMA for consistent allocations\n"); goto release_regions; } /* MAP PF's configuration registers */ cptvf->reg_base = pci_iomap(pdev, OTX_CPT_VF_PCI_CFG_BAR, 0); if (!cptvf->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto release_regions; } cptvf->node = dev_to_node(&pdev->dev); err = pci_alloc_irq_vectors(pdev, OTX_CPT_VF_MSIX_VECTORS, OTX_CPT_VF_MSIX_VECTORS, PCI_IRQ_MSIX); if (err < 0) { dev_err(dev, "Request for #%d msix vectors failed\n", OTX_CPT_VF_MSIX_VECTORS); goto unmap_region; } err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf_misc_intr_handler, 0, "CPT VF misc intr", cptvf); if (err) { dev_err(dev, "Failed to request misc irq\n"); goto free_vectors; } /* Enable mailbox interrupt */ cptvf_enable_mbox_interrupts(cptvf); cptvf_enable_swerr_interrupts(cptvf); /* Check cpt pf status, gets chip ID / device Id from PF if ready */ err = otx_cptvf_check_pf_ready(cptvf); if (err) goto free_misc_irq; /* CPT VF software resources initialization */ cptvf->cqinfo.qchunksize = OTX_CPT_CMD_QCHUNK_SIZE; err = cptvf_sw_init(cptvf, OTX_CPT_CMD_QLEN, OTX_CPT_NUM_QS_PER_VF); if (err) { dev_err(dev, "cptvf_sw_init() failed\n"); goto free_misc_irq; } /* Convey VQ LEN to PF */ err = otx_cptvf_send_vq_size_msg(cptvf); if (err) goto sw_cleanup; /* CPT VF device initialization */ cptvf_device_init(cptvf); /* Send msg to PF to assign currnet Q to required group */ err = otx_cptvf_send_vf_to_grp_msg(cptvf, cptvf->vfgrp); if (err) goto sw_cleanup; cptvf->priority = 1; err = otx_cptvf_send_vf_priority_msg(cptvf); if (err) goto sw_cleanup; err = request_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf_done_intr_handler, 0, "CPT VF done intr", cptvf); if (err) { dev_err(dev, "Failed to request done irq\n"); goto free_done_irq; } /* Enable done interrupt */ cptvf_enable_done_interrupts(cptvf); /* Set irq affinity masks */ cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); cptvf_set_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); err = otx_cptvf_send_vf_up(cptvf); if (err) goto free_irq_affinity; /* Initialize algorithms and set ops */ err = otx_cpt_crypto_init(pdev, THIS_MODULE, cptvf->vftype == OTX_CPT_SE_TYPES ? OTX_CPT_SE : OTX_CPT_AE, cptvf->vftype, 1, cptvf->num_vfs); if (err) { dev_err(dev, "Failed to register crypto algs\n"); goto free_irq_affinity; } err = sysfs_create_group(&dev->kobj, &otx_cptvf_sysfs_group); if (err) { dev_err(dev, "Creating sysfs entries failed\n"); goto crypto_exit; } return 0; crypto_exit: otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); free_irq_affinity: cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); free_done_irq: free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); sw_cleanup: cptvf_sw_cleanup(cptvf); free_misc_irq: free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); free_vectors: pci_free_irq_vectors(cptvf->pdev); unmap_region: pci_iounmap(pdev, cptvf->reg_base); release_regions: pci_release_regions(pdev); disable_device: pci_disable_device(pdev); clear_drvdata: pci_set_drvdata(pdev, NULL); return err; } static void otx_cptvf_remove(struct pci_dev *pdev) { struct otx_cptvf *cptvf = pci_get_drvdata(pdev); if (!cptvf) { dev_err(&pdev->dev, "Invalid CPT-VF device\n"); return; } /* Convey DOWN to PF */ if (otx_cptvf_send_vf_down(cptvf)) { dev_err(&pdev->dev, "PF not responding to DOWN msg\n"); } else { sysfs_remove_group(&pdev->dev.kobj, &otx_cptvf_sysfs_group); otx_cpt_crypto_exit(pdev, THIS_MODULE, cptvf->vftype); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_DONE); cptvf_free_irq_affinity(cptvf, CPT_VF_INT_VEC_E_MISC); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_DONE), cptvf); free_irq(pci_irq_vector(pdev, CPT_VF_INT_VEC_E_MISC), cptvf); cptvf_sw_cleanup(cptvf); pci_free_irq_vectors(cptvf->pdev); pci_iounmap(pdev, cptvf->reg_base); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } /* Supported devices */ static const struct pci_device_id otx_cptvf_id_table[] = { {PCI_VDEVICE(CAVIUM, OTX_CPT_PCI_VF_DEVICE_ID), 0}, { 0, } /* end of table */ }; static struct pci_driver otx_cptvf_pci_driver = { .name = DRV_NAME, .id_table = otx_cptvf_id_table, .probe = otx_cptvf_probe, .remove = otx_cptvf_remove, }; module_pci_driver(otx_cptvf_pci_driver); MODULE_AUTHOR("Marvell International Ltd."); MODULE_DESCRIPTION("Marvell OcteonTX CPT Virtual Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, otx_cptvf_id_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1