Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kent Yoder | 1687 | 62.62% | 1 | 10.00% |
Fionnuala Gunter | 759 | 28.17% | 1 | 10.00% |
Herbert Xu | 95 | 3.53% | 2 | 20.00% |
Leonidas Da Silva Barbosa | 76 | 2.82% | 1 | 10.00% |
Marcelo H. Cerri | 50 | 1.86% | 2 | 20.00% |
Eric Biggers | 24 | 0.89% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.07% | 1 | 10.00% |
David Gstir | 1 | 0.04% | 1 | 10.00% |
Total | 2694 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /** * AES CCM routines supporting the Power 7+ Nest Accelerators driver * * Copyright (C) 2012 International Business Machines Inc. * * Author: Kent Yoder <yoder1@us.ibm.com> */ #include <crypto/internal/aead.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/scatterwalk.h> #include <linux/module.h> #include <linux/types.h> #include <linux/crypto.h> #include <asm/vio.h> #include "nx_csbcpb.h" #include "nx.h" static int ccm_aes_nx_set_key(struct crypto_aead *tfm, const u8 *in_key, unsigned int key_len) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&tfm->base); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead; nx_ctx_init(nx_ctx, HCOP_FC_AES); switch (key_len) { case AES_KEYSIZE_128: NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128); NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_128); nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128]; break; default: return -EINVAL; } csbcpb->cpb.hdr.mode = NX_MODE_AES_CCM; memcpy(csbcpb->cpb.aes_ccm.key, in_key, key_len); csbcpb_aead->cpb.hdr.mode = NX_MODE_AES_CCA; memcpy(csbcpb_aead->cpb.aes_cca.key, in_key, key_len); return 0; } static int ccm4309_aes_nx_set_key(struct crypto_aead *tfm, const u8 *in_key, unsigned int key_len) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&tfm->base); if (key_len < 3) return -EINVAL; key_len -= 3; memcpy(nx_ctx->priv.ccm.nonce, in_key + key_len, 3); return ccm_aes_nx_set_key(tfm, in_key, key_len); } static int ccm_aes_nx_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 4: case 6: case 8: case 10: case 12: case 14: case 16: break; default: return -EINVAL; } return 0; } static int ccm4309_aes_nx_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { switch (authsize) { case 8: case 12: case 16: break; default: return -EINVAL; } return 0; } /* taken from crypto/ccm.c */ static int set_msg_len(u8 *block, unsigned int msglen, int csize) { __be32 data; memset(block, 0, csize); block += csize; if (csize >= 4) csize = 4; else if (msglen > (unsigned int)(1 << (8 * csize))) return -EOVERFLOW; data = cpu_to_be32(msglen); memcpy(block - csize, (u8 *)&data + 4 - csize, csize); return 0; } /* taken from crypto/ccm.c */ static inline int crypto_ccm_check_iv(const u8 *iv) { /* 2 <= L <= 8, so 1 <= L' <= 7. */ if (1 > iv[0] || iv[0] > 7) return -EINVAL; return 0; } /* based on code from crypto/ccm.c */ static int generate_b0(u8 *iv, unsigned int assoclen, unsigned int authsize, unsigned int cryptlen, u8 *b0) { unsigned int l, lp, m = authsize; int rc; memcpy(b0, iv, 16); lp = b0[0]; l = lp + 1; /* set m, bits 3-5 */ *b0 |= (8 * ((m - 2) / 2)); /* set adata, bit 6, if associated data is used */ if (assoclen) *b0 |= 64; rc = set_msg_len(b0 + 16 - l, cryptlen, l); return rc; } static int generate_pat(u8 *iv, struct aead_request *req, struct nx_crypto_ctx *nx_ctx, unsigned int authsize, unsigned int nbytes, unsigned int assoclen, u8 *out) { struct nx_sg *nx_insg = nx_ctx->in_sg; struct nx_sg *nx_outsg = nx_ctx->out_sg; unsigned int iauth_len = 0; u8 tmp[16], *b1 = NULL, *b0 = NULL, *result = NULL; int rc; unsigned int max_sg_len; /* zero the ctr value */ memset(iv + 15 - iv[0], 0, iv[0] + 1); /* page 78 of nx_wb.pdf has, * Note: RFC3610 allows the AAD data to be up to 2^64 -1 bytes * in length. If a full message is used, the AES CCA implementation * restricts the maximum AAD length to 2^32 -1 bytes. * If partial messages are used, the implementation supports * 2^64 -1 bytes maximum AAD length. * * However, in the cryptoapi's aead_request structure, * assoclen is an unsigned int, thus it cannot hold a length * value greater than 2^32 - 1. * Thus the AAD is further constrained by this and is never * greater than 2^32. */ if (!assoclen) { b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0; } else if (assoclen <= 14) { /* if associated data is 14 bytes or less, we do 1 GCM * operation on 2 AES blocks, B0 (stored in the csbcpb) and B1, * which is fed in through the source buffers here */ b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0; b1 = nx_ctx->priv.ccm.iauth_tag; iauth_len = assoclen; } else if (assoclen <= 65280) { /* if associated data is less than (2^16 - 2^8), we construct * B1 differently and feed in the associated data to a CCA * operation */ b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0; b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1; iauth_len = 14; } else { b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0; b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1; iauth_len = 10; } /* generate B0 */ rc = generate_b0(iv, assoclen, authsize, nbytes, b0); if (rc) return rc; /* generate B1: * add control info for associated data * RFC 3610 and NIST Special Publication 800-38C */ if (b1) { memset(b1, 0, 16); if (assoclen <= 65280) { *(u16 *)b1 = assoclen; scatterwalk_map_and_copy(b1 + 2, req->src, 0, iauth_len, SCATTERWALK_FROM_SG); } else { *(u16 *)b1 = (u16)(0xfffe); *(u32 *)&b1[2] = assoclen; scatterwalk_map_and_copy(b1 + 6, req->src, 0, iauth_len, SCATTERWALK_FROM_SG); } } /* now copy any remaining AAD to scatterlist and call nx... */ if (!assoclen) { return rc; } else if (assoclen <= 14) { unsigned int len = 16; nx_insg = nx_build_sg_list(nx_insg, b1, &len, nx_ctx->ap->sglen); if (len != 16) return -EINVAL; nx_outsg = nx_build_sg_list(nx_outsg, tmp, &len, nx_ctx->ap->sglen); if (len != 16) return -EINVAL; /* inlen should be negative, indicating to phyp that its a * pointer to an sg list */ nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg); NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_ENDE_ENCRYPT; NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_INTERMEDIATE; result = nx_ctx->csbcpb->cpb.aes_ccm.out_pat_or_mac; rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) return rc; atomic_inc(&(nx_ctx->stats->aes_ops)); atomic64_add(assoclen, &nx_ctx->stats->aes_bytes); } else { unsigned int processed = 0, to_process; processed += iauth_len; /* page_limit: number of sg entries that fit on one page */ max_sg_len = min_t(u64, nx_ctx->ap->sglen, nx_driver.of.max_sg_len/sizeof(struct nx_sg)); max_sg_len = min_t(u64, max_sg_len, nx_ctx->ap->databytelen/NX_PAGE_SIZE); do { to_process = min_t(u32, assoclen - processed, nx_ctx->ap->databytelen); nx_insg = nx_walk_and_build(nx_ctx->in_sg, nx_ctx->ap->sglen, req->src, processed, &to_process); if ((to_process + processed) < assoclen) { NX_CPB_FDM(nx_ctx->csbcpb_aead) |= NX_FDM_INTERMEDIATE; } else { NX_CPB_FDM(nx_ctx->csbcpb_aead) &= ~NX_FDM_INTERMEDIATE; } nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0; rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) return rc; memcpy(nx_ctx->csbcpb_aead->cpb.aes_cca.b0, nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0, AES_BLOCK_SIZE); NX_CPB_FDM(nx_ctx->csbcpb_aead) |= NX_FDM_CONTINUATION; atomic_inc(&(nx_ctx->stats->aes_ops)); atomic64_add(assoclen, &nx_ctx->stats->aes_bytes); processed += to_process; } while (processed < assoclen); result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0; } memcpy(out, result, AES_BLOCK_SIZE); return rc; } static int ccm_nx_decrypt(struct aead_request *req, u8 *iv, unsigned int assoclen) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; unsigned int nbytes = req->cryptlen; unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req)); struct nx_ccm_priv *priv = &nx_ctx->priv.ccm; unsigned long irq_flags; unsigned int processed = 0, to_process; int rc = -1; spin_lock_irqsave(&nx_ctx->lock, irq_flags); nbytes -= authsize; /* copy out the auth tag to compare with later */ scatterwalk_map_and_copy(priv->oauth_tag, req->src, nbytes + req->assoclen, authsize, SCATTERWALK_FROM_SG); rc = generate_pat(iv, req, nx_ctx, authsize, nbytes, assoclen, csbcpb->cpb.aes_ccm.in_pat_or_b0); if (rc) goto out; do { /* to_process: the AES_BLOCK_SIZE data chunk to process in this * update. This value is bound by sg list limits. */ to_process = nbytes - processed; if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; else NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_ENDE_ENCRYPT; rc = nx_build_sg_lists(nx_ctx, iv, req->dst, req->src, &to_process, processed + req->assoclen, csbcpb->cpb.aes_ccm.iv_or_ctr); if (rc) goto out; rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; /* for partial completion, copy following for next * entry into loop... */ memcpy(iv, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE); memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0, csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE); memcpy(csbcpb->cpb.aes_ccm.in_s0, csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; /* update stats */ atomic_inc(&(nx_ctx->stats->aes_ops)); atomic64_add(csbcpb->csb.processed_byte_count, &(nx_ctx->stats->aes_bytes)); processed += to_process; } while (processed < nbytes); rc = crypto_memneq(csbcpb->cpb.aes_ccm.out_pat_or_mac, priv->oauth_tag, authsize) ? -EBADMSG : 0; out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } static int ccm_nx_encrypt(struct aead_request *req, u8 *iv, unsigned int assoclen) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm); struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; unsigned int nbytes = req->cryptlen; unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req)); unsigned long irq_flags; unsigned int processed = 0, to_process; int rc = -1; spin_lock_irqsave(&nx_ctx->lock, irq_flags); rc = generate_pat(iv, req, nx_ctx, authsize, nbytes, assoclen, csbcpb->cpb.aes_ccm.in_pat_or_b0); if (rc) goto out; do { /* to process: the AES_BLOCK_SIZE data chunk to process in this * update. This value is bound by sg list limits. */ to_process = nbytes - processed; if ((to_process + processed) < nbytes) NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; else NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT; rc = nx_build_sg_lists(nx_ctx, iv, req->dst, req->src, &to_process, processed + req->assoclen, csbcpb->cpb.aes_ccm.iv_or_ctr); if (rc) goto out; rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP); if (rc) goto out; /* for partial completion, copy following for next * entry into loop... */ memcpy(iv, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE); memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0, csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE); memcpy(csbcpb->cpb.aes_ccm.in_s0, csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE); NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; /* update stats */ atomic_inc(&(nx_ctx->stats->aes_ops)); atomic64_add(csbcpb->csb.processed_byte_count, &(nx_ctx->stats->aes_bytes)); processed += to_process; } while (processed < nbytes); /* copy out the auth tag */ scatterwalk_map_and_copy(csbcpb->cpb.aes_ccm.out_pat_or_mac, req->dst, nbytes + req->assoclen, authsize, SCATTERWALK_TO_SG); out: spin_unlock_irqrestore(&nx_ctx->lock, irq_flags); return rc; } static int ccm4309_aes_nx_encrypt(struct aead_request *req) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm); struct nx_gcm_rctx *rctx = aead_request_ctx(req); u8 *iv = rctx->iv; iv[0] = 3; memcpy(iv + 1, nx_ctx->priv.ccm.nonce, 3); memcpy(iv + 4, req->iv, 8); return ccm_nx_encrypt(req, iv, req->assoclen - 8); } static int ccm_aes_nx_encrypt(struct aead_request *req) { int rc; rc = crypto_ccm_check_iv(req->iv); if (rc) return rc; return ccm_nx_encrypt(req, req->iv, req->assoclen); } static int ccm4309_aes_nx_decrypt(struct aead_request *req) { struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm); struct nx_gcm_rctx *rctx = aead_request_ctx(req); u8 *iv = rctx->iv; iv[0] = 3; memcpy(iv + 1, nx_ctx->priv.ccm.nonce, 3); memcpy(iv + 4, req->iv, 8); return ccm_nx_decrypt(req, iv, req->assoclen - 8); } static int ccm_aes_nx_decrypt(struct aead_request *req) { int rc; rc = crypto_ccm_check_iv(req->iv); if (rc) return rc; return ccm_nx_decrypt(req, req->iv, req->assoclen); } struct aead_alg nx_ccm_aes_alg = { .base = { .cra_name = "ccm(aes)", .cra_driver_name = "ccm-aes-nx", .cra_priority = 300, .cra_flags = CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_module = THIS_MODULE, }, .init = nx_crypto_ctx_aes_ccm_init, .exit = nx_crypto_ctx_aead_exit, .ivsize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .setkey = ccm_aes_nx_set_key, .setauthsize = ccm_aes_nx_setauthsize, .encrypt = ccm_aes_nx_encrypt, .decrypt = ccm_aes_nx_decrypt, }; struct aead_alg nx_ccm4309_aes_alg = { .base = { .cra_name = "rfc4309(ccm(aes))", .cra_driver_name = "rfc4309-ccm-aes-nx", .cra_priority = 300, .cra_flags = CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct nx_crypto_ctx), .cra_module = THIS_MODULE, }, .init = nx_crypto_ctx_aes_ccm_init, .exit = nx_crypto_ctx_aead_exit, .ivsize = 8, .maxauthsize = AES_BLOCK_SIZE, .setkey = ccm4309_aes_nx_set_key, .setauthsize = ccm4309_aes_nx_setauthsize, .encrypt = ccm4309_aes_nx_encrypt, .decrypt = ccm4309_aes_nx_decrypt, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1