Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Piotr Ziecik | 3015 | 60.36% | 1 | 2.78% |
Alexander Popov | 1073 | 21.48% | 5 | 13.89% |
Ilya Yanok | 428 | 8.57% | 4 | 11.11% |
Mario Six | 266 | 5.33% | 3 | 8.33% |
Maxime Ripard | 145 | 2.90% | 2 | 5.56% |
Russell King | 19 | 0.38% | 5 | 13.89% |
Vinod Koul | 8 | 0.16% | 1 | 2.78% |
Luis de Bethencourt | 7 | 0.14% | 1 | 2.78% |
Linus Walleij | 6 | 0.12% | 1 | 2.78% |
Rob Herring | 6 | 0.12% | 1 | 2.78% |
Tobias Klauser | 4 | 0.08% | 1 | 2.78% |
Dave Jiang | 3 | 0.06% | 1 | 2.78% |
Anatolij Gustschin | 3 | 0.06% | 1 | 2.78% |
Tejun Heo | 2 | 0.04% | 1 | 2.78% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.78% |
Michael Ellerman | 2 | 0.04% | 1 | 2.78% |
Grant C. Likely | 2 | 0.04% | 2 | 5.56% |
Lucas De Marchi | 1 | 0.02% | 1 | 2.78% |
Axel Lin | 1 | 0.02% | 1 | 2.78% |
Fabian Frederick | 1 | 0.02% | 1 | 2.78% |
Andy Shevchenko | 1 | 0.02% | 1 | 2.78% |
Total | 4995 | 36 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) Freescale Semicondutor, Inc. 2007, 2008. * Copyright (C) Semihalf 2009 * Copyright (C) Ilya Yanok, Emcraft Systems 2010 * Copyright (C) Alexander Popov, Promcontroller 2014 * Copyright (C) Mario Six, Guntermann & Drunck GmbH, 2016 * * Written by Piotr Ziecik <kosmo@semihalf.com>. Hardware description * (defines, structures and comments) was taken from MPC5121 DMA driver * written by Hongjun Chen <hong-jun.chen@freescale.com>. * * Approved as OSADL project by a majority of OSADL members and funded * by OSADL membership fees in 2009; for details see www.osadl.org. */ /* * MPC512x and MPC8308 DMA driver. It supports memory to memory data transfers * (tested using dmatest module) and data transfers between memory and * peripheral I/O memory by means of slave scatter/gather with these * limitations: * - chunked transfers (described by s/g lists with more than one item) are * refused as long as proper support for scatter/gather is missing * - transfers on MPC8308 always start from software as this SoC does not have * external request lines for peripheral flow control * - memory <-> I/O memory transfer chunks of sizes of 1, 2, 4, 16 (for * MPC512x), and 32 bytes are supported, and, consequently, source * addresses and destination addresses must be aligned accordingly; * furthermore, for MPC512x SoCs, the transfer size must be aligned on * (chunk size * maxburst) */ #include <linux/module.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/of_dma.h> #include <linux/of_platform.h> #include <linux/random.h> #include "dmaengine.h" /* Number of DMA Transfer descriptors allocated per channel */ #define MPC_DMA_DESCRIPTORS 64 /* Macro definitions */ #define MPC_DMA_TCD_OFFSET 0x1000 /* * Maximum channel counts for individual hardware variants * and the maximum channel count over all supported controllers, * used for data structure size */ #define MPC8308_DMACHAN_MAX 16 #define MPC512x_DMACHAN_MAX 64 #define MPC_DMA_CHANNELS 64 /* Arbitration mode of group and channel */ #define MPC_DMA_DMACR_EDCG (1 << 31) #define MPC_DMA_DMACR_ERGA (1 << 3) #define MPC_DMA_DMACR_ERCA (1 << 2) /* Error codes */ #define MPC_DMA_DMAES_VLD (1 << 31) #define MPC_DMA_DMAES_GPE (1 << 15) #define MPC_DMA_DMAES_CPE (1 << 14) #define MPC_DMA_DMAES_ERRCHN(err) \ (((err) >> 8) & 0x3f) #define MPC_DMA_DMAES_SAE (1 << 7) #define MPC_DMA_DMAES_SOE (1 << 6) #define MPC_DMA_DMAES_DAE (1 << 5) #define MPC_DMA_DMAES_DOE (1 << 4) #define MPC_DMA_DMAES_NCE (1 << 3) #define MPC_DMA_DMAES_SGE (1 << 2) #define MPC_DMA_DMAES_SBE (1 << 1) #define MPC_DMA_DMAES_DBE (1 << 0) #define MPC_DMA_DMAGPOR_SNOOP_ENABLE (1 << 6) #define MPC_DMA_TSIZE_1 0x00 #define MPC_DMA_TSIZE_2 0x01 #define MPC_DMA_TSIZE_4 0x02 #define MPC_DMA_TSIZE_16 0x04 #define MPC_DMA_TSIZE_32 0x05 /* MPC5121 DMA engine registers */ struct __attribute__ ((__packed__)) mpc_dma_regs { /* 0x00 */ u32 dmacr; /* DMA control register */ u32 dmaes; /* DMA error status */ /* 0x08 */ u32 dmaerqh; /* DMA enable request high(channels 63~32) */ u32 dmaerql; /* DMA enable request low(channels 31~0) */ u32 dmaeeih; /* DMA enable error interrupt high(ch63~32) */ u32 dmaeeil; /* DMA enable error interrupt low(ch31~0) */ /* 0x18 */ u8 dmaserq; /* DMA set enable request */ u8 dmacerq; /* DMA clear enable request */ u8 dmaseei; /* DMA set enable error interrupt */ u8 dmaceei; /* DMA clear enable error interrupt */ /* 0x1c */ u8 dmacint; /* DMA clear interrupt request */ u8 dmacerr; /* DMA clear error */ u8 dmassrt; /* DMA set start bit */ u8 dmacdne; /* DMA clear DONE status bit */ /* 0x20 */ u32 dmainth; /* DMA interrupt request high(ch63~32) */ u32 dmaintl; /* DMA interrupt request low(ch31~0) */ u32 dmaerrh; /* DMA error high(ch63~32) */ u32 dmaerrl; /* DMA error low(ch31~0) */ /* 0x30 */ u32 dmahrsh; /* DMA hw request status high(ch63~32) */ u32 dmahrsl; /* DMA hardware request status low(ch31~0) */ union { u32 dmaihsa; /* DMA interrupt high select AXE(ch63~32) */ u32 dmagpor; /* (General purpose register on MPC8308) */ }; u32 dmailsa; /* DMA interrupt low select AXE(ch31~0) */ /* 0x40 ~ 0xff */ u32 reserve0[48]; /* Reserved */ /* 0x100 */ u8 dchpri[MPC_DMA_CHANNELS]; /* DMA channels(0~63) priority */ }; struct __attribute__ ((__packed__)) mpc_dma_tcd { /* 0x00 */ u32 saddr; /* Source address */ u32 smod:5; /* Source address modulo */ u32 ssize:3; /* Source data transfer size */ u32 dmod:5; /* Destination address modulo */ u32 dsize:3; /* Destination data transfer size */ u32 soff:16; /* Signed source address offset */ /* 0x08 */ u32 nbytes; /* Inner "minor" byte count */ u32 slast; /* Last source address adjustment */ u32 daddr; /* Destination address */ /* 0x14 */ u32 citer_elink:1; /* Enable channel-to-channel linking on * minor loop complete */ u32 citer_linkch:6; /* Link channel for minor loop complete */ u32 citer:9; /* Current "major" iteration count */ u32 doff:16; /* Signed destination address offset */ /* 0x18 */ u32 dlast_sga; /* Last Destination address adjustment/scatter * gather address */ /* 0x1c */ u32 biter_elink:1; /* Enable channel-to-channel linking on major * loop complete */ u32 biter_linkch:6; u32 biter:9; /* Beginning "major" iteration count */ u32 bwc:2; /* Bandwidth control */ u32 major_linkch:6; /* Link channel number */ u32 done:1; /* Channel done */ u32 active:1; /* Channel active */ u32 major_elink:1; /* Enable channel-to-channel linking on major * loop complete */ u32 e_sg:1; /* Enable scatter/gather processing */ u32 d_req:1; /* Disable request */ u32 int_half:1; /* Enable an interrupt when major counter is * half complete */ u32 int_maj:1; /* Enable an interrupt when major iteration * count completes */ u32 start:1; /* Channel start */ }; struct mpc_dma_desc { struct dma_async_tx_descriptor desc; struct mpc_dma_tcd *tcd; dma_addr_t tcd_paddr; int error; struct list_head node; int will_access_peripheral; }; struct mpc_dma_chan { struct dma_chan chan; struct list_head free; struct list_head prepared; struct list_head queued; struct list_head active; struct list_head completed; struct mpc_dma_tcd *tcd; dma_addr_t tcd_paddr; /* Settings for access to peripheral FIFO */ dma_addr_t src_per_paddr; u32 src_tcd_nunits; u8 swidth; dma_addr_t dst_per_paddr; u32 dst_tcd_nunits; u8 dwidth; /* Lock for this structure */ spinlock_t lock; }; struct mpc_dma { struct dma_device dma; struct tasklet_struct tasklet; struct mpc_dma_chan channels[MPC_DMA_CHANNELS]; struct mpc_dma_regs __iomem *regs; struct mpc_dma_tcd __iomem *tcd; int irq; int irq2; uint error_status; int is_mpc8308; /* Lock for error_status field in this structure */ spinlock_t error_status_lock; }; #define DRV_NAME "mpc512x_dma" /* Convert struct dma_chan to struct mpc_dma_chan */ static inline struct mpc_dma_chan *dma_chan_to_mpc_dma_chan(struct dma_chan *c) { return container_of(c, struct mpc_dma_chan, chan); } /* Convert struct dma_chan to struct mpc_dma */ static inline struct mpc_dma *dma_chan_to_mpc_dma(struct dma_chan *c) { struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(c); return container_of(mchan, struct mpc_dma, channels[c->chan_id]); } /* * Execute all queued DMA descriptors. * * Following requirements must be met while calling mpc_dma_execute(): * a) mchan->lock is acquired, * b) mchan->active list is empty, * c) mchan->queued list contains at least one entry. */ static void mpc_dma_execute(struct mpc_dma_chan *mchan) { struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan); struct mpc_dma_desc *first = NULL; struct mpc_dma_desc *prev = NULL; struct mpc_dma_desc *mdesc; int cid = mchan->chan.chan_id; while (!list_empty(&mchan->queued)) { mdesc = list_first_entry(&mchan->queued, struct mpc_dma_desc, node); /* * Grab either several mem-to-mem transfer descriptors * or one peripheral transfer descriptor, * don't mix mem-to-mem and peripheral transfer descriptors * within the same 'active' list. */ if (mdesc->will_access_peripheral) { if (list_empty(&mchan->active)) list_move_tail(&mdesc->node, &mchan->active); break; } else { list_move_tail(&mdesc->node, &mchan->active); } } /* Chain descriptors into one transaction */ list_for_each_entry(mdesc, &mchan->active, node) { if (!first) first = mdesc; if (!prev) { prev = mdesc; continue; } prev->tcd->dlast_sga = mdesc->tcd_paddr; prev->tcd->e_sg = 1; mdesc->tcd->start = 1; prev = mdesc; } prev->tcd->int_maj = 1; /* Send first descriptor in chain into hardware */ memcpy_toio(&mdma->tcd[cid], first->tcd, sizeof(struct mpc_dma_tcd)); if (first != prev) mdma->tcd[cid].e_sg = 1; if (mdma->is_mpc8308) { /* MPC8308, no request lines, software initiated start */ out_8(&mdma->regs->dmassrt, cid); } else if (first->will_access_peripheral) { /* Peripherals involved, start by external request signal */ out_8(&mdma->regs->dmaserq, cid); } else { /* Memory to memory transfer, software initiated start */ out_8(&mdma->regs->dmassrt, cid); } } /* Handle interrupt on one half of DMA controller (32 channels) */ static void mpc_dma_irq_process(struct mpc_dma *mdma, u32 is, u32 es, int off) { struct mpc_dma_chan *mchan; struct mpc_dma_desc *mdesc; u32 status = is | es; int ch; while ((ch = fls(status) - 1) >= 0) { status &= ~(1 << ch); mchan = &mdma->channels[ch + off]; spin_lock(&mchan->lock); out_8(&mdma->regs->dmacint, ch + off); out_8(&mdma->regs->dmacerr, ch + off); /* Check error status */ if (es & (1 << ch)) list_for_each_entry(mdesc, &mchan->active, node) mdesc->error = -EIO; /* Execute queued descriptors */ list_splice_tail_init(&mchan->active, &mchan->completed); if (!list_empty(&mchan->queued)) mpc_dma_execute(mchan); spin_unlock(&mchan->lock); } } /* Interrupt handler */ static irqreturn_t mpc_dma_irq(int irq, void *data) { struct mpc_dma *mdma = data; uint es; /* Save error status register */ es = in_be32(&mdma->regs->dmaes); spin_lock(&mdma->error_status_lock); if ((es & MPC_DMA_DMAES_VLD) && mdma->error_status == 0) mdma->error_status = es; spin_unlock(&mdma->error_status_lock); /* Handle interrupt on each channel */ if (mdma->dma.chancnt > 32) { mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmainth), in_be32(&mdma->regs->dmaerrh), 32); } mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmaintl), in_be32(&mdma->regs->dmaerrl), 0); /* Schedule tasklet */ tasklet_schedule(&mdma->tasklet); return IRQ_HANDLED; } /* process completed descriptors */ static void mpc_dma_process_completed(struct mpc_dma *mdma) { dma_cookie_t last_cookie = 0; struct mpc_dma_chan *mchan; struct mpc_dma_desc *mdesc; struct dma_async_tx_descriptor *desc; unsigned long flags; LIST_HEAD(list); int i; for (i = 0; i < mdma->dma.chancnt; i++) { mchan = &mdma->channels[i]; /* Get all completed descriptors */ spin_lock_irqsave(&mchan->lock, flags); if (!list_empty(&mchan->completed)) list_splice_tail_init(&mchan->completed, &list); spin_unlock_irqrestore(&mchan->lock, flags); if (list_empty(&list)) continue; /* Execute callbacks and run dependencies */ list_for_each_entry(mdesc, &list, node) { desc = &mdesc->desc; dmaengine_desc_get_callback_invoke(desc, NULL); last_cookie = desc->cookie; dma_run_dependencies(desc); } /* Free descriptors */ spin_lock_irqsave(&mchan->lock, flags); list_splice_tail_init(&list, &mchan->free); mchan->chan.completed_cookie = last_cookie; spin_unlock_irqrestore(&mchan->lock, flags); } } /* DMA Tasklet */ static void mpc_dma_tasklet(unsigned long data) { struct mpc_dma *mdma = (void *)data; unsigned long flags; uint es; spin_lock_irqsave(&mdma->error_status_lock, flags); es = mdma->error_status; mdma->error_status = 0; spin_unlock_irqrestore(&mdma->error_status_lock, flags); /* Print nice error report */ if (es) { dev_err(mdma->dma.dev, "Hardware reported following error(s) on channel %u:\n", MPC_DMA_DMAES_ERRCHN(es)); if (es & MPC_DMA_DMAES_GPE) dev_err(mdma->dma.dev, "- Group Priority Error\n"); if (es & MPC_DMA_DMAES_CPE) dev_err(mdma->dma.dev, "- Channel Priority Error\n"); if (es & MPC_DMA_DMAES_SAE) dev_err(mdma->dma.dev, "- Source Address Error\n"); if (es & MPC_DMA_DMAES_SOE) dev_err(mdma->dma.dev, "- Source Offset Configuration Error\n"); if (es & MPC_DMA_DMAES_DAE) dev_err(mdma->dma.dev, "- Destination Address Error\n"); if (es & MPC_DMA_DMAES_DOE) dev_err(mdma->dma.dev, "- Destination Offset Configuration Error\n"); if (es & MPC_DMA_DMAES_NCE) dev_err(mdma->dma.dev, "- NBytes/Citter Configuration Error\n"); if (es & MPC_DMA_DMAES_SGE) dev_err(mdma->dma.dev, "- Scatter/Gather Configuration Error\n"); if (es & MPC_DMA_DMAES_SBE) dev_err(mdma->dma.dev, "- Source Bus Error\n"); if (es & MPC_DMA_DMAES_DBE) dev_err(mdma->dma.dev, "- Destination Bus Error\n"); } mpc_dma_process_completed(mdma); } /* Submit descriptor to hardware */ static dma_cookie_t mpc_dma_tx_submit(struct dma_async_tx_descriptor *txd) { struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(txd->chan); struct mpc_dma_desc *mdesc; unsigned long flags; dma_cookie_t cookie; mdesc = container_of(txd, struct mpc_dma_desc, desc); spin_lock_irqsave(&mchan->lock, flags); /* Move descriptor to queue */ list_move_tail(&mdesc->node, &mchan->queued); /* If channel is idle, execute all queued descriptors */ if (list_empty(&mchan->active)) mpc_dma_execute(mchan); /* Update cookie */ cookie = dma_cookie_assign(txd); spin_unlock_irqrestore(&mchan->lock, flags); return cookie; } /* Alloc channel resources */ static int mpc_dma_alloc_chan_resources(struct dma_chan *chan) { struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan); struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma_desc *mdesc; struct mpc_dma_tcd *tcd; dma_addr_t tcd_paddr; unsigned long flags; LIST_HEAD(descs); int i; /* Alloc DMA memory for Transfer Control Descriptors */ tcd = dma_alloc_coherent(mdma->dma.dev, MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd), &tcd_paddr, GFP_KERNEL); if (!tcd) return -ENOMEM; /* Alloc descriptors for this channel */ for (i = 0; i < MPC_DMA_DESCRIPTORS; i++) { mdesc = kzalloc(sizeof(struct mpc_dma_desc), GFP_KERNEL); if (!mdesc) { dev_notice(mdma->dma.dev, "Memory allocation error. Allocated only %u descriptors\n", i); break; } dma_async_tx_descriptor_init(&mdesc->desc, chan); mdesc->desc.flags = DMA_CTRL_ACK; mdesc->desc.tx_submit = mpc_dma_tx_submit; mdesc->tcd = &tcd[i]; mdesc->tcd_paddr = tcd_paddr + (i * sizeof(struct mpc_dma_tcd)); list_add_tail(&mdesc->node, &descs); } /* Return error only if no descriptors were allocated */ if (i == 0) { dma_free_coherent(mdma->dma.dev, MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd), tcd, tcd_paddr); return -ENOMEM; } spin_lock_irqsave(&mchan->lock, flags); mchan->tcd = tcd; mchan->tcd_paddr = tcd_paddr; list_splice_tail_init(&descs, &mchan->free); spin_unlock_irqrestore(&mchan->lock, flags); /* Enable Error Interrupt */ out_8(&mdma->regs->dmaseei, chan->chan_id); return 0; } /* Free channel resources */ static void mpc_dma_free_chan_resources(struct dma_chan *chan) { struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan); struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma_desc *mdesc, *tmp; struct mpc_dma_tcd *tcd; dma_addr_t tcd_paddr; unsigned long flags; LIST_HEAD(descs); spin_lock_irqsave(&mchan->lock, flags); /* Channel must be idle */ BUG_ON(!list_empty(&mchan->prepared)); BUG_ON(!list_empty(&mchan->queued)); BUG_ON(!list_empty(&mchan->active)); BUG_ON(!list_empty(&mchan->completed)); /* Move data */ list_splice_tail_init(&mchan->free, &descs); tcd = mchan->tcd; tcd_paddr = mchan->tcd_paddr; spin_unlock_irqrestore(&mchan->lock, flags); /* Free DMA memory used by descriptors */ dma_free_coherent(mdma->dma.dev, MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd), tcd, tcd_paddr); /* Free descriptors */ list_for_each_entry_safe(mdesc, tmp, &descs, node) kfree(mdesc); /* Disable Error Interrupt */ out_8(&mdma->regs->dmaceei, chan->chan_id); } /* Send all pending descriptor to hardware */ static void mpc_dma_issue_pending(struct dma_chan *chan) { /* * We are posting descriptors to the hardware as soon as * they are ready, so this function does nothing. */ } /* Check request completion status */ static enum dma_status mpc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { return dma_cookie_status(chan, cookie, txstate); } /* Prepare descriptor for memory to memory copy */ static struct dma_async_tx_descriptor * mpc_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags) { struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan); struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma_desc *mdesc = NULL; struct mpc_dma_tcd *tcd; unsigned long iflags; /* Get free descriptor */ spin_lock_irqsave(&mchan->lock, iflags); if (!list_empty(&mchan->free)) { mdesc = list_first_entry(&mchan->free, struct mpc_dma_desc, node); list_del(&mdesc->node); } spin_unlock_irqrestore(&mchan->lock, iflags); if (!mdesc) { /* try to free completed descriptors */ mpc_dma_process_completed(mdma); return NULL; } mdesc->error = 0; mdesc->will_access_peripheral = 0; tcd = mdesc->tcd; /* Prepare Transfer Control Descriptor for this transaction */ memset(tcd, 0, sizeof(struct mpc_dma_tcd)); if (IS_ALIGNED(src | dst | len, 32)) { tcd->ssize = MPC_DMA_TSIZE_32; tcd->dsize = MPC_DMA_TSIZE_32; tcd->soff = 32; tcd->doff = 32; } else if (!mdma->is_mpc8308 && IS_ALIGNED(src | dst | len, 16)) { /* MPC8308 doesn't support 16 byte transfers */ tcd->ssize = MPC_DMA_TSIZE_16; tcd->dsize = MPC_DMA_TSIZE_16; tcd->soff = 16; tcd->doff = 16; } else if (IS_ALIGNED(src | dst | len, 4)) { tcd->ssize = MPC_DMA_TSIZE_4; tcd->dsize = MPC_DMA_TSIZE_4; tcd->soff = 4; tcd->doff = 4; } else if (IS_ALIGNED(src | dst | len, 2)) { tcd->ssize = MPC_DMA_TSIZE_2; tcd->dsize = MPC_DMA_TSIZE_2; tcd->soff = 2; tcd->doff = 2; } else { tcd->ssize = MPC_DMA_TSIZE_1; tcd->dsize = MPC_DMA_TSIZE_1; tcd->soff = 1; tcd->doff = 1; } tcd->saddr = src; tcd->daddr = dst; tcd->nbytes = len; tcd->biter = 1; tcd->citer = 1; /* Place descriptor in prepared list */ spin_lock_irqsave(&mchan->lock, iflags); list_add_tail(&mdesc->node, &mchan->prepared); spin_unlock_irqrestore(&mchan->lock, iflags); return &mdesc->desc; } inline u8 buswidth_to_dmatsize(u8 buswidth) { u8 res; for (res = 0; buswidth > 1; buswidth /= 2) res++; return res; } static struct dma_async_tx_descriptor * mpc_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan); struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma_desc *mdesc = NULL; dma_addr_t per_paddr; u32 tcd_nunits; struct mpc_dma_tcd *tcd; unsigned long iflags; struct scatterlist *sg; size_t len; int iter, i; /* Currently there is no proper support for scatter/gather */ if (sg_len != 1) return NULL; if (!is_slave_direction(direction)) return NULL; for_each_sg(sgl, sg, sg_len, i) { spin_lock_irqsave(&mchan->lock, iflags); mdesc = list_first_entry(&mchan->free, struct mpc_dma_desc, node); if (!mdesc) { spin_unlock_irqrestore(&mchan->lock, iflags); /* Try to free completed descriptors */ mpc_dma_process_completed(mdma); return NULL; } list_del(&mdesc->node); if (direction == DMA_DEV_TO_MEM) { per_paddr = mchan->src_per_paddr; tcd_nunits = mchan->src_tcd_nunits; } else { per_paddr = mchan->dst_per_paddr; tcd_nunits = mchan->dst_tcd_nunits; } spin_unlock_irqrestore(&mchan->lock, iflags); if (per_paddr == 0 || tcd_nunits == 0) goto err_prep; mdesc->error = 0; mdesc->will_access_peripheral = 1; /* Prepare Transfer Control Descriptor for this transaction */ tcd = mdesc->tcd; memset(tcd, 0, sizeof(struct mpc_dma_tcd)); if (direction == DMA_DEV_TO_MEM) { tcd->saddr = per_paddr; tcd->daddr = sg_dma_address(sg); if (!IS_ALIGNED(sg_dma_address(sg), mchan->dwidth)) goto err_prep; tcd->soff = 0; tcd->doff = mchan->dwidth; } else { tcd->saddr = sg_dma_address(sg); tcd->daddr = per_paddr; if (!IS_ALIGNED(sg_dma_address(sg), mchan->swidth)) goto err_prep; tcd->soff = mchan->swidth; tcd->doff = 0; } tcd->ssize = buswidth_to_dmatsize(mchan->swidth); tcd->dsize = buswidth_to_dmatsize(mchan->dwidth); if (mdma->is_mpc8308) { tcd->nbytes = sg_dma_len(sg); if (!IS_ALIGNED(tcd->nbytes, mchan->swidth)) goto err_prep; /* No major loops for MPC8303 */ tcd->biter = 1; tcd->citer = 1; } else { len = sg_dma_len(sg); tcd->nbytes = tcd_nunits * tcd->ssize; if (!IS_ALIGNED(len, tcd->nbytes)) goto err_prep; iter = len / tcd->nbytes; if (iter >= 1 << 15) { /* len is too big */ goto err_prep; } /* citer_linkch contains the high bits of iter */ tcd->biter = iter & 0x1ff; tcd->biter_linkch = iter >> 9; tcd->citer = tcd->biter; tcd->citer_linkch = tcd->biter_linkch; } tcd->e_sg = 0; tcd->d_req = 1; /* Place descriptor in prepared list */ spin_lock_irqsave(&mchan->lock, iflags); list_add_tail(&mdesc->node, &mchan->prepared); spin_unlock_irqrestore(&mchan->lock, iflags); } return &mdesc->desc; err_prep: /* Put the descriptor back */ spin_lock_irqsave(&mchan->lock, iflags); list_add_tail(&mdesc->node, &mchan->free); spin_unlock_irqrestore(&mchan->lock, iflags); return NULL; } inline bool is_buswidth_valid(u8 buswidth, bool is_mpc8308) { switch (buswidth) { case 16: if (is_mpc8308) return false; case 1: case 2: case 4: case 32: break; default: return false; } return true; } static int mpc_dma_device_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan); unsigned long flags; /* * Software constraints: * - only transfers between a peripheral device and memory are * supported * - transfer chunk sizes of 1, 2, 4, 16 (for MPC512x), and 32 bytes * are supported, and, consequently, source addresses and * destination addresses; must be aligned accordingly; furthermore, * for MPC512x SoCs, the transfer size must be aligned on (chunk * size * maxburst) * - during the transfer, the RAM address is incremented by the size * of transfer chunk * - the peripheral port's address is constant during the transfer. */ if (!IS_ALIGNED(cfg->src_addr, cfg->src_addr_width) || !IS_ALIGNED(cfg->dst_addr, cfg->dst_addr_width)) { return -EINVAL; } if (!is_buswidth_valid(cfg->src_addr_width, mdma->is_mpc8308) || !is_buswidth_valid(cfg->dst_addr_width, mdma->is_mpc8308)) return -EINVAL; spin_lock_irqsave(&mchan->lock, flags); mchan->src_per_paddr = cfg->src_addr; mchan->src_tcd_nunits = cfg->src_maxburst; mchan->swidth = cfg->src_addr_width; mchan->dst_per_paddr = cfg->dst_addr; mchan->dst_tcd_nunits = cfg->dst_maxburst; mchan->dwidth = cfg->dst_addr_width; /* Apply defaults */ if (mchan->src_tcd_nunits == 0) mchan->src_tcd_nunits = 1; if (mchan->dst_tcd_nunits == 0) mchan->dst_tcd_nunits = 1; spin_unlock_irqrestore(&mchan->lock, flags); return 0; } static int mpc_dma_device_terminate_all(struct dma_chan *chan) { struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan); struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan); unsigned long flags; /* Disable channel requests */ spin_lock_irqsave(&mchan->lock, flags); out_8(&mdma->regs->dmacerq, chan->chan_id); list_splice_tail_init(&mchan->prepared, &mchan->free); list_splice_tail_init(&mchan->queued, &mchan->free); list_splice_tail_init(&mchan->active, &mchan->free); spin_unlock_irqrestore(&mchan->lock, flags); return 0; } static int mpc_dma_probe(struct platform_device *op) { struct device_node *dn = op->dev.of_node; struct device *dev = &op->dev; struct dma_device *dma; struct mpc_dma *mdma; struct mpc_dma_chan *mchan; struct resource res; ulong regs_start, regs_size; int retval, i; u8 chancnt; mdma = devm_kzalloc(dev, sizeof(struct mpc_dma), GFP_KERNEL); if (!mdma) { retval = -ENOMEM; goto err; } mdma->irq = irq_of_parse_and_map(dn, 0); if (!mdma->irq) { dev_err(dev, "Error mapping IRQ!\n"); retval = -EINVAL; goto err; } if (of_device_is_compatible(dn, "fsl,mpc8308-dma")) { mdma->is_mpc8308 = 1; mdma->irq2 = irq_of_parse_and_map(dn, 1); if (!mdma->irq2) { dev_err(dev, "Error mapping IRQ!\n"); retval = -EINVAL; goto err_dispose1; } } retval = of_address_to_resource(dn, 0, &res); if (retval) { dev_err(dev, "Error parsing memory region!\n"); goto err_dispose2; } regs_start = res.start; regs_size = resource_size(&res); if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) { dev_err(dev, "Error requesting memory region!\n"); retval = -EBUSY; goto err_dispose2; } mdma->regs = devm_ioremap(dev, regs_start, regs_size); if (!mdma->regs) { dev_err(dev, "Error mapping memory region!\n"); retval = -ENOMEM; goto err_dispose2; } mdma->tcd = (struct mpc_dma_tcd *)((u8 *)(mdma->regs) + MPC_DMA_TCD_OFFSET); retval = request_irq(mdma->irq, &mpc_dma_irq, 0, DRV_NAME, mdma); if (retval) { dev_err(dev, "Error requesting IRQ!\n"); retval = -EINVAL; goto err_dispose2; } if (mdma->is_mpc8308) { retval = request_irq(mdma->irq2, &mpc_dma_irq, 0, DRV_NAME, mdma); if (retval) { dev_err(dev, "Error requesting IRQ2!\n"); retval = -EINVAL; goto err_free1; } } spin_lock_init(&mdma->error_status_lock); dma = &mdma->dma; dma->dev = dev; dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources; dma->device_free_chan_resources = mpc_dma_free_chan_resources; dma->device_issue_pending = mpc_dma_issue_pending; dma->device_tx_status = mpc_dma_tx_status; dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy; dma->device_prep_slave_sg = mpc_dma_prep_slave_sg; dma->device_config = mpc_dma_device_config; dma->device_terminate_all = mpc_dma_device_terminate_all; INIT_LIST_HEAD(&dma->channels); dma_cap_set(DMA_MEMCPY, dma->cap_mask); dma_cap_set(DMA_SLAVE, dma->cap_mask); if (mdma->is_mpc8308) chancnt = MPC8308_DMACHAN_MAX; else chancnt = MPC512x_DMACHAN_MAX; for (i = 0; i < chancnt; i++) { mchan = &mdma->channels[i]; mchan->chan.device = dma; dma_cookie_init(&mchan->chan); INIT_LIST_HEAD(&mchan->free); INIT_LIST_HEAD(&mchan->prepared); INIT_LIST_HEAD(&mchan->queued); INIT_LIST_HEAD(&mchan->active); INIT_LIST_HEAD(&mchan->completed); spin_lock_init(&mchan->lock); list_add_tail(&mchan->chan.device_node, &dma->channels); } tasklet_init(&mdma->tasklet, mpc_dma_tasklet, (unsigned long)mdma); /* * Configure DMA Engine: * - Dynamic clock, * - Round-robin group arbitration, * - Round-robin channel arbitration. */ if (mdma->is_mpc8308) { /* MPC8308 has 16 channels and lacks some registers */ out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_ERCA); /* enable snooping */ out_be32(&mdma->regs->dmagpor, MPC_DMA_DMAGPOR_SNOOP_ENABLE); /* Disable error interrupts */ out_be32(&mdma->regs->dmaeeil, 0); /* Clear interrupts status */ out_be32(&mdma->regs->dmaintl, 0xFFFF); out_be32(&mdma->regs->dmaerrl, 0xFFFF); } else { out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_EDCG | MPC_DMA_DMACR_ERGA | MPC_DMA_DMACR_ERCA); /* Disable hardware DMA requests */ out_be32(&mdma->regs->dmaerqh, 0); out_be32(&mdma->regs->dmaerql, 0); /* Disable error interrupts */ out_be32(&mdma->regs->dmaeeih, 0); out_be32(&mdma->regs->dmaeeil, 0); /* Clear interrupts status */ out_be32(&mdma->regs->dmainth, 0xFFFFFFFF); out_be32(&mdma->regs->dmaintl, 0xFFFFFFFF); out_be32(&mdma->regs->dmaerrh, 0xFFFFFFFF); out_be32(&mdma->regs->dmaerrl, 0xFFFFFFFF); /* Route interrupts to IPIC */ out_be32(&mdma->regs->dmaihsa, 0); out_be32(&mdma->regs->dmailsa, 0); } /* Register DMA engine */ dev_set_drvdata(dev, mdma); retval = dma_async_device_register(dma); if (retval) goto err_free2; /* Register with OF helpers for DMA lookups (nonfatal) */ if (dev->of_node) { retval = of_dma_controller_register(dev->of_node, of_dma_xlate_by_chan_id, mdma); if (retval) dev_warn(dev, "Could not register for OF lookup\n"); } return 0; err_free2: if (mdma->is_mpc8308) free_irq(mdma->irq2, mdma); err_free1: free_irq(mdma->irq, mdma); err_dispose2: if (mdma->is_mpc8308) irq_dispose_mapping(mdma->irq2); err_dispose1: irq_dispose_mapping(mdma->irq); err: return retval; } static int mpc_dma_remove(struct platform_device *op) { struct device *dev = &op->dev; struct mpc_dma *mdma = dev_get_drvdata(dev); if (dev->of_node) of_dma_controller_free(dev->of_node); dma_async_device_unregister(&mdma->dma); if (mdma->is_mpc8308) { free_irq(mdma->irq2, mdma); irq_dispose_mapping(mdma->irq2); } free_irq(mdma->irq, mdma); irq_dispose_mapping(mdma->irq); tasklet_kill(&mdma->tasklet); return 0; } static const struct of_device_id mpc_dma_match[] = { { .compatible = "fsl,mpc5121-dma", }, { .compatible = "fsl,mpc8308-dma", }, {}, }; MODULE_DEVICE_TABLE(of, mpc_dma_match); static struct platform_driver mpc_dma_driver = { .probe = mpc_dma_probe, .remove = mpc_dma_remove, .driver = { .name = DRV_NAME, .of_match_table = mpc_dma_match, }, }; module_platform_driver(mpc_dma_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Piotr Ziecik <kosmo@semihalf.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1