Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laxman Dewangan | 5947 | 80.18% | 16 | 23.88% |
Dmitry Osipenko | 847 | 11.42% | 18 | 26.87% |
Stephen Warren | 196 | 2.64% | 2 | 2.99% |
Jon Hunter | 163 | 2.20% | 11 | 16.42% |
Paul Walmsley | 75 | 1.01% | 1 | 1.49% |
Ben Dooks | 66 | 0.89% | 5 | 7.46% |
Shardar Shariff Md | 63 | 0.85% | 1 | 1.49% |
Dave Jiang | 15 | 0.20% | 1 | 1.49% |
Maxime Ripard | 10 | 0.13% | 1 | 1.49% |
Thierry Reding | 10 | 0.13% | 1 | 1.49% |
Vinod Koul | 6 | 0.08% | 2 | 2.99% |
Gustavo A. R. Silva | 5 | 0.07% | 2 | 2.99% |
Andy Shevchenko | 4 | 0.05% | 1 | 1.49% |
Peter Ujfalusi | 3 | 0.04% | 1 | 1.49% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.49% |
Yue haibing | 2 | 0.03% | 1 | 1.49% |
Wei Yongjun | 2 | 0.03% | 1 | 1.49% |
Sachin Kamat | 1 | 0.01% | 1 | 1.49% |
Total | 7417 | 67 |
// SPDX-License-Identifier: GPL-2.0-only /* * DMA driver for Nvidia's Tegra20 APB DMA controller. * * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_dma.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/wait.h> #include "dmaengine.h" #define CREATE_TRACE_POINTS #include <trace/events/tegra_apb_dma.h> #define TEGRA_APBDMA_GENERAL 0x0 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31) #define TEGRA_APBDMA_CONTROL 0x010 #define TEGRA_APBDMA_IRQ_MASK 0x01c #define TEGRA_APBDMA_IRQ_MASK_SET 0x020 /* CSR register */ #define TEGRA_APBDMA_CHAN_CSR 0x00 #define TEGRA_APBDMA_CSR_ENB BIT(31) #define TEGRA_APBDMA_CSR_IE_EOC BIT(30) #define TEGRA_APBDMA_CSR_HOLD BIT(29) #define TEGRA_APBDMA_CSR_DIR BIT(28) #define TEGRA_APBDMA_CSR_ONCE BIT(27) #define TEGRA_APBDMA_CSR_FLOW BIT(21) #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC /* STATUS register */ #define TEGRA_APBDMA_CHAN_STATUS 0x004 #define TEGRA_APBDMA_STATUS_BUSY BIT(31) #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30) #define TEGRA_APBDMA_STATUS_HALT BIT(29) #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28) #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC #define TEGRA_APBDMA_CHAN_CSRE 0x00C #define TEGRA_APBDMA_CHAN_CSRE_PAUSE BIT(31) /* AHB memory address */ #define TEGRA_APBDMA_CHAN_AHBPTR 0x010 /* AHB sequence register */ #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31) #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28) #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28) #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28) #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28) #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28) #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27) #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24) #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24) #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24) #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19) #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0 /* APB address */ #define TEGRA_APBDMA_CHAN_APBPTR 0x018 /* APB sequence register */ #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28) #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28) #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28) #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28) #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28) #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27) #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16) /* Tegra148 specific registers */ #define TEGRA_APBDMA_CHAN_WCOUNT 0x20 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24 /* * If any burst is in flight and DMA paused then this is the time to complete * on-flight burst and update DMA status register. */ #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20 /* Channel base address offset from APBDMA base address */ #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1) struct tegra_dma; /* * tegra_dma_chip_data Tegra chip specific DMA data * @nr_channels: Number of channels available in the controller. * @channel_reg_size: Channel register size/stride. * @max_dma_count: Maximum DMA transfer count supported by DMA controller. * @support_channel_pause: Support channel wise pause of dma. * @support_separate_wcount_reg: Support separate word count register. */ struct tegra_dma_chip_data { unsigned int nr_channels; unsigned int channel_reg_size; unsigned int max_dma_count; bool support_channel_pause; bool support_separate_wcount_reg; }; /* DMA channel registers */ struct tegra_dma_channel_regs { u32 csr; u32 ahb_ptr; u32 apb_ptr; u32 ahb_seq; u32 apb_seq; u32 wcount; }; /* * tegra_dma_sg_req: DMA request details to configure hardware. This * contains the details for one transfer to configure DMA hw. * The client's request for data transfer can be broken into multiple * sub-transfer as per requester details and hw support. * This sub transfer get added in the list of transfer and point to Tegra * DMA descriptor which manages the transfer details. */ struct tegra_dma_sg_req { struct tegra_dma_channel_regs ch_regs; unsigned int req_len; bool configured; bool last_sg; struct list_head node; struct tegra_dma_desc *dma_desc; unsigned int words_xferred; }; /* * tegra_dma_desc: Tegra DMA descriptors which manages the client requests. * This descriptor keep track of transfer status, callbacks and request * counts etc. */ struct tegra_dma_desc { struct dma_async_tx_descriptor txd; unsigned int bytes_requested; unsigned int bytes_transferred; enum dma_status dma_status; struct list_head node; struct list_head tx_list; struct list_head cb_node; unsigned int cb_count; }; struct tegra_dma_channel; typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc, bool to_terminate); /* tegra_dma_channel: Channel specific information */ struct tegra_dma_channel { struct dma_chan dma_chan; char name[12]; bool config_init; unsigned int id; void __iomem *chan_addr; spinlock_t lock; bool busy; struct tegra_dma *tdma; bool cyclic; /* Different lists for managing the requests */ struct list_head free_sg_req; struct list_head pending_sg_req; struct list_head free_dma_desc; struct list_head cb_desc; /* ISR handler and tasklet for bottom half of isr handling */ dma_isr_handler isr_handler; struct tasklet_struct tasklet; /* Channel-slave specific configuration */ unsigned int slave_id; struct dma_slave_config dma_sconfig; struct tegra_dma_channel_regs channel_reg; struct wait_queue_head wq; }; /* tegra_dma: Tegra DMA specific information */ struct tegra_dma { struct dma_device dma_dev; struct device *dev; struct clk *dma_clk; struct reset_control *rst; spinlock_t global_lock; void __iomem *base_addr; const struct tegra_dma_chip_data *chip_data; /* * Counter for managing global pausing of the DMA controller. * Only applicable for devices that don't support individual * channel pausing. */ u32 global_pause_count; /* Last member of the structure */ struct tegra_dma_channel channels[]; }; static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val) { writel(val, tdma->base_addr + reg); } static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg) { return readl(tdma->base_addr + reg); } static inline void tdc_write(struct tegra_dma_channel *tdc, u32 reg, u32 val) { writel(val, tdc->chan_addr + reg); } static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg) { return readl(tdc->chan_addr + reg); } static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc) { return container_of(dc, struct tegra_dma_channel, dma_chan); } static inline struct tegra_dma_desc * txd_to_tegra_dma_desc(struct dma_async_tx_descriptor *td) { return container_of(td, struct tegra_dma_desc, txd); } static inline struct device *tdc2dev(struct tegra_dma_channel *tdc) { return &tdc->dma_chan.dev->device; } static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx); /* Get DMA desc from free list, if not there then allocate it. */ static struct tegra_dma_desc *tegra_dma_desc_get(struct tegra_dma_channel *tdc) { struct tegra_dma_desc *dma_desc; unsigned long flags; spin_lock_irqsave(&tdc->lock, flags); /* Do not allocate if desc are waiting for ack */ list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) { if (async_tx_test_ack(&dma_desc->txd) && !dma_desc->cb_count) { list_del(&dma_desc->node); spin_unlock_irqrestore(&tdc->lock, flags); dma_desc->txd.flags = 0; return dma_desc; } } spin_unlock_irqrestore(&tdc->lock, flags); /* Allocate DMA desc */ dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT); if (!dma_desc) return NULL; dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan); dma_desc->txd.tx_submit = tegra_dma_tx_submit; dma_desc->txd.flags = 0; return dma_desc; } static void tegra_dma_desc_put(struct tegra_dma_channel *tdc, struct tegra_dma_desc *dma_desc) { unsigned long flags; spin_lock_irqsave(&tdc->lock, flags); if (!list_empty(&dma_desc->tx_list)) list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req); list_add_tail(&dma_desc->node, &tdc->free_dma_desc); spin_unlock_irqrestore(&tdc->lock, flags); } static struct tegra_dma_sg_req * tegra_dma_sg_req_get(struct tegra_dma_channel *tdc) { struct tegra_dma_sg_req *sg_req; unsigned long flags; spin_lock_irqsave(&tdc->lock, flags); if (!list_empty(&tdc->free_sg_req)) { sg_req = list_first_entry(&tdc->free_sg_req, typeof(*sg_req), node); list_del(&sg_req->node); spin_unlock_irqrestore(&tdc->lock, flags); return sg_req; } spin_unlock_irqrestore(&tdc->lock, flags); sg_req = kzalloc(sizeof(*sg_req), GFP_NOWAIT); return sg_req; } static int tegra_dma_slave_config(struct dma_chan *dc, struct dma_slave_config *sconfig) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); if (!list_empty(&tdc->pending_sg_req)) { dev_err(tdc2dev(tdc), "Configuration not allowed\n"); return -EBUSY; } memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig)); if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID && sconfig->device_fc) { if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK) return -EINVAL; tdc->slave_id = sconfig->slave_id; } tdc->config_init = true; return 0; } static void tegra_dma_global_pause(struct tegra_dma_channel *tdc, bool wait_for_burst_complete) { struct tegra_dma *tdma = tdc->tdma; spin_lock(&tdma->global_lock); if (tdc->tdma->global_pause_count == 0) { tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0); if (wait_for_burst_complete) udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); } tdc->tdma->global_pause_count++; spin_unlock(&tdma->global_lock); } static void tegra_dma_global_resume(struct tegra_dma_channel *tdc) { struct tegra_dma *tdma = tdc->tdma; spin_lock(&tdma->global_lock); if (WARN_ON(tdc->tdma->global_pause_count == 0)) goto out; if (--tdc->tdma->global_pause_count == 0) tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE); out: spin_unlock(&tdma->global_lock); } static void tegra_dma_pause(struct tegra_dma_channel *tdc, bool wait_for_burst_complete) { struct tegra_dma *tdma = tdc->tdma; if (tdma->chip_data->support_channel_pause) { tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, TEGRA_APBDMA_CHAN_CSRE_PAUSE); if (wait_for_burst_complete) udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); } else { tegra_dma_global_pause(tdc, wait_for_burst_complete); } } static void tegra_dma_resume(struct tegra_dma_channel *tdc) { struct tegra_dma *tdma = tdc->tdma; if (tdma->chip_data->support_channel_pause) tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0); else tegra_dma_global_resume(tdc); } static void tegra_dma_stop(struct tegra_dma_channel *tdc) { u32 csr, status; /* Disable interrupts */ csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR); csr &= ~TEGRA_APBDMA_CSR_IE_EOC; tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr); /* Disable DMA */ csr &= ~TEGRA_APBDMA_CSR_ENB; tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr); /* Clear interrupt status if it is there */ status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__); tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status); } tdc->busy = false; } static void tegra_dma_start(struct tegra_dma_channel *tdc, struct tegra_dma_sg_req *sg_req) { struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs; tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr); tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq); tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr); tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq); tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr); if (tdc->tdma->chip_data->support_separate_wcount_reg) tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount); /* Start DMA */ tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr | TEGRA_APBDMA_CSR_ENB); } static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc, struct tegra_dma_sg_req *nsg_req) { unsigned long status; /* * The DMA controller reloads the new configuration for next transfer * after last burst of current transfer completes. * If there is no IEC status then this makes sure that last burst * has not be completed. There may be case that last burst is on * flight and so it can complete but because DMA is paused, it * will not generates interrupt as well as not reload the new * configuration. * If there is already IEC status then interrupt handler need to * load new configuration. */ tegra_dma_pause(tdc, false); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); /* * If interrupt is pending then do nothing as the ISR will handle * the programing for new request. */ if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { dev_err(tdc2dev(tdc), "Skipping new configuration as interrupt is pending\n"); tegra_dma_resume(tdc); return; } /* Safe to program new configuration */ tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr); tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr); if (tdc->tdma->chip_data->support_separate_wcount_reg) tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, nsg_req->ch_regs.wcount); tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB); nsg_req->configured = true; nsg_req->words_xferred = 0; tegra_dma_resume(tdc); } static void tdc_start_head_req(struct tegra_dma_channel *tdc) { struct tegra_dma_sg_req *sg_req; sg_req = list_first_entry(&tdc->pending_sg_req, typeof(*sg_req), node); tegra_dma_start(tdc, sg_req); sg_req->configured = true; sg_req->words_xferred = 0; tdc->busy = true; } static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc) { struct tegra_dma_sg_req *hsgreq, *hnsgreq; hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node); if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) { hnsgreq = list_first_entry(&hsgreq->node, typeof(*hnsgreq), node); tegra_dma_configure_for_next(tdc, hnsgreq); } } static inline unsigned int get_current_xferred_count(struct tegra_dma_channel *tdc, struct tegra_dma_sg_req *sg_req, unsigned long status) { return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4; } static void tegra_dma_abort_all(struct tegra_dma_channel *tdc) { struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sgreq; while (!list_empty(&tdc->pending_sg_req)) { sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); list_move_tail(&sgreq->node, &tdc->free_sg_req); if (sgreq->last_sg) { dma_desc = sgreq->dma_desc; dma_desc->dma_status = DMA_ERROR; list_add_tail(&dma_desc->node, &tdc->free_dma_desc); /* Add in cb list if it is not there. */ if (!dma_desc->cb_count) list_add_tail(&dma_desc->cb_node, &tdc->cb_desc); dma_desc->cb_count++; } } tdc->isr_handler = NULL; } static bool handle_continuous_head_request(struct tegra_dma_channel *tdc, bool to_terminate) { struct tegra_dma_sg_req *hsgreq; /* * Check that head req on list should be in flight. * If it is not in flight then abort transfer as * looping of transfer can not continue. */ hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node); if (!hsgreq->configured) { tegra_dma_stop(tdc); pm_runtime_put(tdc->tdma->dev); dev_err(tdc2dev(tdc), "DMA transfer underflow, aborting DMA\n"); tegra_dma_abort_all(tdc); return false; } /* Configure next request */ if (!to_terminate) tdc_configure_next_head_desc(tdc); return true; } static void handle_once_dma_done(struct tegra_dma_channel *tdc, bool to_terminate) { struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sgreq; tdc->busy = false; sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); dma_desc = sgreq->dma_desc; dma_desc->bytes_transferred += sgreq->req_len; list_del(&sgreq->node); if (sgreq->last_sg) { dma_desc->dma_status = DMA_COMPLETE; dma_cookie_complete(&dma_desc->txd); if (!dma_desc->cb_count) list_add_tail(&dma_desc->cb_node, &tdc->cb_desc); dma_desc->cb_count++; list_add_tail(&dma_desc->node, &tdc->free_dma_desc); } list_add_tail(&sgreq->node, &tdc->free_sg_req); /* Do not start DMA if it is going to be terminate */ if (to_terminate) return; if (list_empty(&tdc->pending_sg_req)) { pm_runtime_put(tdc->tdma->dev); return; } tdc_start_head_req(tdc); } static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc, bool to_terminate) { struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sgreq; bool st; sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); dma_desc = sgreq->dma_desc; /* if we dma for long enough the transfer count will wrap */ dma_desc->bytes_transferred = (dma_desc->bytes_transferred + sgreq->req_len) % dma_desc->bytes_requested; /* Callback need to be call */ if (!dma_desc->cb_count) list_add_tail(&dma_desc->cb_node, &tdc->cb_desc); dma_desc->cb_count++; sgreq->words_xferred = 0; /* If not last req then put at end of pending list */ if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) { list_move_tail(&sgreq->node, &tdc->pending_sg_req); sgreq->configured = false; st = handle_continuous_head_request(tdc, to_terminate); if (!st) dma_desc->dma_status = DMA_ERROR; } } static void tegra_dma_tasklet(unsigned long data) { struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data; struct dmaengine_desc_callback cb; struct tegra_dma_desc *dma_desc; unsigned int cb_count; unsigned long flags; spin_lock_irqsave(&tdc->lock, flags); while (!list_empty(&tdc->cb_desc)) { dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc), cb_node); list_del(&dma_desc->cb_node); dmaengine_desc_get_callback(&dma_desc->txd, &cb); cb_count = dma_desc->cb_count; dma_desc->cb_count = 0; trace_tegra_dma_complete_cb(&tdc->dma_chan, cb_count, cb.callback); spin_unlock_irqrestore(&tdc->lock, flags); while (cb_count--) dmaengine_desc_callback_invoke(&cb, NULL); spin_lock_irqsave(&tdc->lock, flags); } spin_unlock_irqrestore(&tdc->lock, flags); } static irqreturn_t tegra_dma_isr(int irq, void *dev_id) { struct tegra_dma_channel *tdc = dev_id; u32 status; spin_lock(&tdc->lock); trace_tegra_dma_isr(&tdc->dma_chan, irq); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status); tdc->isr_handler(tdc, false); tasklet_schedule(&tdc->tasklet); wake_up_all(&tdc->wq); spin_unlock(&tdc->lock); return IRQ_HANDLED; } spin_unlock(&tdc->lock); dev_info(tdc2dev(tdc), "Interrupt already served status 0x%08x\n", status); return IRQ_NONE; } static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd) { struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd); struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan); unsigned long flags; dma_cookie_t cookie; spin_lock_irqsave(&tdc->lock, flags); dma_desc->dma_status = DMA_IN_PROGRESS; cookie = dma_cookie_assign(&dma_desc->txd); list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req); spin_unlock_irqrestore(&tdc->lock, flags); return cookie; } static void tegra_dma_issue_pending(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); unsigned long flags; int err; spin_lock_irqsave(&tdc->lock, flags); if (list_empty(&tdc->pending_sg_req)) { dev_err(tdc2dev(tdc), "No DMA request\n"); goto end; } if (!tdc->busy) { err = pm_runtime_get_sync(tdc->tdma->dev); if (err < 0) { dev_err(tdc2dev(tdc), "Failed to enable DMA\n"); goto end; } tdc_start_head_req(tdc); /* Continuous single mode: Configure next req */ if (tdc->cyclic) { /* * Wait for 1 burst time for configure DMA for * next transfer. */ udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME); tdc_configure_next_head_desc(tdc); } } end: spin_unlock_irqrestore(&tdc->lock, flags); } static int tegra_dma_terminate_all(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sgreq; unsigned long flags; u32 status, wcount; bool was_busy; spin_lock_irqsave(&tdc->lock, flags); if (!tdc->busy) goto skip_dma_stop; /* Pause DMA before checking the queue status */ tegra_dma_pause(tdc, true); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); if (status & TEGRA_APBDMA_STATUS_ISE_EOC) { dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__); tdc->isr_handler(tdc, true); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); } if (tdc->tdma->chip_data->support_separate_wcount_reg) wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER); else wcount = status; was_busy = tdc->busy; tegra_dma_stop(tdc); if (!list_empty(&tdc->pending_sg_req) && was_busy) { sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node); sgreq->dma_desc->bytes_transferred += get_current_xferred_count(tdc, sgreq, wcount); } tegra_dma_resume(tdc); pm_runtime_put(tdc->tdma->dev); wake_up_all(&tdc->wq); skip_dma_stop: tegra_dma_abort_all(tdc); while (!list_empty(&tdc->cb_desc)) { dma_desc = list_first_entry(&tdc->cb_desc, typeof(*dma_desc), cb_node); list_del(&dma_desc->cb_node); dma_desc->cb_count = 0; } spin_unlock_irqrestore(&tdc->lock, flags); return 0; } static bool tegra_dma_eoc_interrupt_deasserted(struct tegra_dma_channel *tdc) { unsigned long flags; u32 status; spin_lock_irqsave(&tdc->lock, flags); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); spin_unlock_irqrestore(&tdc->lock, flags); return !(status & TEGRA_APBDMA_STATUS_ISE_EOC); } static void tegra_dma_synchronize(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); int err; err = pm_runtime_get_sync(tdc->tdma->dev); if (err < 0) { dev_err(tdc2dev(tdc), "Failed to synchronize DMA: %d\n", err); return; } /* * CPU, which handles interrupt, could be busy in * uninterruptible state, in this case sibling CPU * should wait until interrupt is handled. */ wait_event(tdc->wq, tegra_dma_eoc_interrupt_deasserted(tdc)); tasklet_kill(&tdc->tasklet); pm_runtime_put(tdc->tdma->dev); } static unsigned int tegra_dma_sg_bytes_xferred(struct tegra_dma_channel *tdc, struct tegra_dma_sg_req *sg_req) { u32 status, wcount = 0; if (!list_is_first(&sg_req->node, &tdc->pending_sg_req)) return 0; if (tdc->tdma->chip_data->support_separate_wcount_reg) wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER); status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS); if (!tdc->tdma->chip_data->support_separate_wcount_reg) wcount = status; if (status & TEGRA_APBDMA_STATUS_ISE_EOC) return sg_req->req_len; wcount = get_current_xferred_count(tdc, sg_req, wcount); if (!wcount) { /* * If wcount wasn't ever polled for this SG before, then * simply assume that transfer hasn't started yet. * * Otherwise it's the end of the transfer. * * The alternative would be to poll the status register * until EOC bit is set or wcount goes UP. That's so * because EOC bit is getting set only after the last * burst's completion and counter is less than the actual * transfer size by 4 bytes. The counter value wraps around * in a cyclic mode before EOC is set(!), so we can't easily * distinguish start of transfer from its end. */ if (sg_req->words_xferred) wcount = sg_req->req_len - 4; } else if (wcount < sg_req->words_xferred) { /* * This case will never happen for a non-cyclic transfer. * * For a cyclic transfer, although it is possible for the * next transfer to have already started (resetting the word * count), this case should still not happen because we should * have detected that the EOC bit is set and hence the transfer * was completed. */ WARN_ON_ONCE(1); wcount = sg_req->req_len - 4; } else { sg_req->words_xferred = wcount; } return wcount; } static enum dma_status tegra_dma_tx_status(struct dma_chan *dc, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sg_req; enum dma_status ret; unsigned long flags; unsigned int residual; unsigned int bytes = 0; ret = dma_cookie_status(dc, cookie, txstate); if (ret == DMA_COMPLETE) return ret; spin_lock_irqsave(&tdc->lock, flags); /* Check on wait_ack desc status */ list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) { if (dma_desc->txd.cookie == cookie) { ret = dma_desc->dma_status; goto found; } } /* Check in pending list */ list_for_each_entry(sg_req, &tdc->pending_sg_req, node) { dma_desc = sg_req->dma_desc; if (dma_desc->txd.cookie == cookie) { bytes = tegra_dma_sg_bytes_xferred(tdc, sg_req); ret = dma_desc->dma_status; goto found; } } dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie); dma_desc = NULL; found: if (dma_desc && txstate) { residual = dma_desc->bytes_requested - ((dma_desc->bytes_transferred + bytes) % dma_desc->bytes_requested); dma_set_residue(txstate, residual); } trace_tegra_dma_tx_status(&tdc->dma_chan, cookie, txstate); spin_unlock_irqrestore(&tdc->lock, flags); return ret; } static inline unsigned int get_bus_width(struct tegra_dma_channel *tdc, enum dma_slave_buswidth slave_bw) { switch (slave_bw) { case DMA_SLAVE_BUSWIDTH_1_BYTE: return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8; case DMA_SLAVE_BUSWIDTH_2_BYTES: return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16; case DMA_SLAVE_BUSWIDTH_4_BYTES: return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32; case DMA_SLAVE_BUSWIDTH_8_BYTES: return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64; default: dev_warn(tdc2dev(tdc), "slave bw is not supported, using 32bits\n"); return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32; } } static inline unsigned int get_burst_size(struct tegra_dma_channel *tdc, u32 burst_size, enum dma_slave_buswidth slave_bw, u32 len) { unsigned int burst_byte, burst_ahb_width; /* * burst_size from client is in terms of the bus_width. * convert them into AHB memory width which is 4 byte. */ burst_byte = burst_size * slave_bw; burst_ahb_width = burst_byte / 4; /* If burst size is 0 then calculate the burst size based on length */ if (!burst_ahb_width) { if (len & 0xF) return TEGRA_APBDMA_AHBSEQ_BURST_1; else if ((len >> 4) & 0x1) return TEGRA_APBDMA_AHBSEQ_BURST_4; else return TEGRA_APBDMA_AHBSEQ_BURST_8; } if (burst_ahb_width < 4) return TEGRA_APBDMA_AHBSEQ_BURST_1; else if (burst_ahb_width < 8) return TEGRA_APBDMA_AHBSEQ_BURST_4; else return TEGRA_APBDMA_AHBSEQ_BURST_8; } static int get_transfer_param(struct tegra_dma_channel *tdc, enum dma_transfer_direction direction, u32 *apb_addr, u32 *apb_seq, u32 *csr, unsigned int *burst_size, enum dma_slave_buswidth *slave_bw) { switch (direction) { case DMA_MEM_TO_DEV: *apb_addr = tdc->dma_sconfig.dst_addr; *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width); *burst_size = tdc->dma_sconfig.dst_maxburst; *slave_bw = tdc->dma_sconfig.dst_addr_width; *csr = TEGRA_APBDMA_CSR_DIR; return 0; case DMA_DEV_TO_MEM: *apb_addr = tdc->dma_sconfig.src_addr; *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width); *burst_size = tdc->dma_sconfig.src_maxburst; *slave_bw = tdc->dma_sconfig.src_addr_width; *csr = 0; return 0; default: dev_err(tdc2dev(tdc), "DMA direction is not supported\n"); break; } return -EINVAL; } static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc, struct tegra_dma_channel_regs *ch_regs, u32 len) { u32 len_field = (len - 4) & 0xFFFC; if (tdc->tdma->chip_data->support_separate_wcount_reg) ch_regs->wcount = len_field; else ch_regs->csr |= len_field; } static struct dma_async_tx_descriptor * tegra_dma_prep_slave_sg(struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_sg_req *sg_req = NULL; u32 csr, ahb_seq, apb_ptr, apb_seq; enum dma_slave_buswidth slave_bw; struct tegra_dma_desc *dma_desc; struct list_head req_list; struct scatterlist *sg; unsigned int burst_size; unsigned int i; if (!tdc->config_init) { dev_err(tdc2dev(tdc), "DMA channel is not configured\n"); return NULL; } if (sg_len < 1) { dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len); return NULL; } if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr, &burst_size, &slave_bw) < 0) return NULL; INIT_LIST_HEAD(&req_list); ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB; ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE << TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT; ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32; csr |= TEGRA_APBDMA_CSR_ONCE; if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) { csr |= TEGRA_APBDMA_CSR_FLOW; csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT; } if (flags & DMA_PREP_INTERRUPT) { csr |= TEGRA_APBDMA_CSR_IE_EOC; } else { WARN_ON_ONCE(1); return NULL; } apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1; dma_desc = tegra_dma_desc_get(tdc); if (!dma_desc) { dev_err(tdc2dev(tdc), "DMA descriptors not available\n"); return NULL; } INIT_LIST_HEAD(&dma_desc->tx_list); INIT_LIST_HEAD(&dma_desc->cb_node); dma_desc->cb_count = 0; dma_desc->bytes_requested = 0; dma_desc->bytes_transferred = 0; dma_desc->dma_status = DMA_IN_PROGRESS; /* Make transfer requests */ for_each_sg(sgl, sg, sg_len, i) { u32 len, mem; mem = sg_dma_address(sg); len = sg_dma_len(sg); if ((len & 3) || (mem & 3) || len > tdc->tdma->chip_data->max_dma_count) { dev_err(tdc2dev(tdc), "DMA length/memory address is not supported\n"); tegra_dma_desc_put(tdc, dma_desc); return NULL; } sg_req = tegra_dma_sg_req_get(tdc); if (!sg_req) { dev_err(tdc2dev(tdc), "DMA sg-req not available\n"); tegra_dma_desc_put(tdc, dma_desc); return NULL; } ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len); dma_desc->bytes_requested += len; sg_req->ch_regs.apb_ptr = apb_ptr; sg_req->ch_regs.ahb_ptr = mem; sg_req->ch_regs.csr = csr; tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len); sg_req->ch_regs.apb_seq = apb_seq; sg_req->ch_regs.ahb_seq = ahb_seq; sg_req->configured = false; sg_req->last_sg = false; sg_req->dma_desc = dma_desc; sg_req->req_len = len; list_add_tail(&sg_req->node, &dma_desc->tx_list); } sg_req->last_sg = true; if (flags & DMA_CTRL_ACK) dma_desc->txd.flags = DMA_CTRL_ACK; /* * Make sure that mode should not be conflicting with currently * configured mode. */ if (!tdc->isr_handler) { tdc->isr_handler = handle_once_dma_done; tdc->cyclic = false; } else { if (tdc->cyclic) { dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n"); tegra_dma_desc_put(tdc, dma_desc); return NULL; } } return &dma_desc->txd; } static struct dma_async_tx_descriptor * tegra_dma_prep_dma_cyclic(struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_sg_req *sg_req = NULL; u32 csr, ahb_seq, apb_ptr, apb_seq; enum dma_slave_buswidth slave_bw; struct tegra_dma_desc *dma_desc; dma_addr_t mem = buf_addr; unsigned int burst_size; size_t len, remain_len; if (!buf_len || !period_len) { dev_err(tdc2dev(tdc), "Invalid buffer/period len\n"); return NULL; } if (!tdc->config_init) { dev_err(tdc2dev(tdc), "DMA slave is not configured\n"); return NULL; } /* * We allow to take more number of requests till DMA is * not started. The driver will loop over all requests. * Once DMA is started then new requests can be queued only after * terminating the DMA. */ if (tdc->busy) { dev_err(tdc2dev(tdc), "Request not allowed when DMA running\n"); return NULL; } /* * We only support cycle transfer when buf_len is multiple of * period_len. */ if (buf_len % period_len) { dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n"); return NULL; } len = period_len; if ((len & 3) || (buf_addr & 3) || len > tdc->tdma->chip_data->max_dma_count) { dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n"); return NULL; } if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr, &burst_size, &slave_bw) < 0) return NULL; ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB; ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE << TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT; ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32; if (tdc->slave_id != TEGRA_APBDMA_SLAVE_ID_INVALID) { csr |= TEGRA_APBDMA_CSR_FLOW; csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT; } if (flags & DMA_PREP_INTERRUPT) { csr |= TEGRA_APBDMA_CSR_IE_EOC; } else { WARN_ON_ONCE(1); return NULL; } apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1; dma_desc = tegra_dma_desc_get(tdc); if (!dma_desc) { dev_err(tdc2dev(tdc), "not enough descriptors available\n"); return NULL; } INIT_LIST_HEAD(&dma_desc->tx_list); INIT_LIST_HEAD(&dma_desc->cb_node); dma_desc->cb_count = 0; dma_desc->bytes_transferred = 0; dma_desc->bytes_requested = buf_len; remain_len = buf_len; /* Split transfer equal to period size */ while (remain_len) { sg_req = tegra_dma_sg_req_get(tdc); if (!sg_req) { dev_err(tdc2dev(tdc), "DMA sg-req not available\n"); tegra_dma_desc_put(tdc, dma_desc); return NULL; } ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len); sg_req->ch_regs.apb_ptr = apb_ptr; sg_req->ch_regs.ahb_ptr = mem; sg_req->ch_regs.csr = csr; tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len); sg_req->ch_regs.apb_seq = apb_seq; sg_req->ch_regs.ahb_seq = ahb_seq; sg_req->configured = false; sg_req->last_sg = false; sg_req->dma_desc = dma_desc; sg_req->req_len = len; list_add_tail(&sg_req->node, &dma_desc->tx_list); remain_len -= len; mem += len; } sg_req->last_sg = true; if (flags & DMA_CTRL_ACK) dma_desc->txd.flags = DMA_CTRL_ACK; /* * Make sure that mode should not be conflicting with currently * configured mode. */ if (!tdc->isr_handler) { tdc->isr_handler = handle_cont_sngl_cycle_dma_done; tdc->cyclic = true; } else { if (!tdc->cyclic) { dev_err(tdc2dev(tdc), "DMA configuration conflict\n"); tegra_dma_desc_put(tdc, dma_desc); return NULL; } } return &dma_desc->txd; } static int tegra_dma_alloc_chan_resources(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); dma_cookie_init(&tdc->dma_chan); return 0; } static void tegra_dma_free_chan_resources(struct dma_chan *dc) { struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc); struct tegra_dma_desc *dma_desc; struct tegra_dma_sg_req *sg_req; struct list_head dma_desc_list; struct list_head sg_req_list; INIT_LIST_HEAD(&dma_desc_list); INIT_LIST_HEAD(&sg_req_list); dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id); tegra_dma_terminate_all(dc); tasklet_kill(&tdc->tasklet); list_splice_init(&tdc->pending_sg_req, &sg_req_list); list_splice_init(&tdc->free_sg_req, &sg_req_list); list_splice_init(&tdc->free_dma_desc, &dma_desc_list); INIT_LIST_HEAD(&tdc->cb_desc); tdc->config_init = false; tdc->isr_handler = NULL; while (!list_empty(&dma_desc_list)) { dma_desc = list_first_entry(&dma_desc_list, typeof(*dma_desc), node); list_del(&dma_desc->node); kfree(dma_desc); } while (!list_empty(&sg_req_list)) { sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node); list_del(&sg_req->node); kfree(sg_req); } tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID; } static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct tegra_dma *tdma = ofdma->of_dma_data; struct tegra_dma_channel *tdc; struct dma_chan *chan; if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) { dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]); return NULL; } chan = dma_get_any_slave_channel(&tdma->dma_dev); if (!chan) return NULL; tdc = to_tegra_dma_chan(chan); tdc->slave_id = dma_spec->args[0]; return chan; } /* Tegra20 specific DMA controller information */ static const struct tegra_dma_chip_data tegra20_dma_chip_data = { .nr_channels = 16, .channel_reg_size = 0x20, .max_dma_count = 1024UL * 64, .support_channel_pause = false, .support_separate_wcount_reg = false, }; /* Tegra30 specific DMA controller information */ static const struct tegra_dma_chip_data tegra30_dma_chip_data = { .nr_channels = 32, .channel_reg_size = 0x20, .max_dma_count = 1024UL * 64, .support_channel_pause = false, .support_separate_wcount_reg = false, }; /* Tegra114 specific DMA controller information */ static const struct tegra_dma_chip_data tegra114_dma_chip_data = { .nr_channels = 32, .channel_reg_size = 0x20, .max_dma_count = 1024UL * 64, .support_channel_pause = true, .support_separate_wcount_reg = false, }; /* Tegra148 specific DMA controller information */ static const struct tegra_dma_chip_data tegra148_dma_chip_data = { .nr_channels = 32, .channel_reg_size = 0x40, .max_dma_count = 1024UL * 64, .support_channel_pause = true, .support_separate_wcount_reg = true, }; static int tegra_dma_init_hw(struct tegra_dma *tdma) { int err; err = reset_control_assert(tdma->rst); if (err) { dev_err(tdma->dev, "failed to assert reset: %d\n", err); return err; } err = clk_enable(tdma->dma_clk); if (err) { dev_err(tdma->dev, "failed to enable clk: %d\n", err); return err; } /* reset DMA controller */ udelay(2); reset_control_deassert(tdma->rst); /* enable global DMA registers */ tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE); tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0); tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFF); clk_disable(tdma->dma_clk); return 0; } static int tegra_dma_probe(struct platform_device *pdev) { const struct tegra_dma_chip_data *cdata; struct tegra_dma *tdma; unsigned int i; size_t size; int ret; cdata = of_device_get_match_data(&pdev->dev); size = struct_size(tdma, channels, cdata->nr_channels); tdma = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); if (!tdma) return -ENOMEM; tdma->dev = &pdev->dev; tdma->chip_data = cdata; platform_set_drvdata(pdev, tdma); tdma->base_addr = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tdma->base_addr)) return PTR_ERR(tdma->base_addr); tdma->dma_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(tdma->dma_clk)) { dev_err(&pdev->dev, "Error: Missing controller clock\n"); return PTR_ERR(tdma->dma_clk); } tdma->rst = devm_reset_control_get(&pdev->dev, "dma"); if (IS_ERR(tdma->rst)) { dev_err(&pdev->dev, "Error: Missing reset\n"); return PTR_ERR(tdma->rst); } spin_lock_init(&tdma->global_lock); ret = clk_prepare(tdma->dma_clk); if (ret) return ret; ret = tegra_dma_init_hw(tdma); if (ret) goto err_clk_unprepare; pm_runtime_irq_safe(&pdev->dev); pm_runtime_enable(&pdev->dev); INIT_LIST_HEAD(&tdma->dma_dev.channels); for (i = 0; i < cdata->nr_channels; i++) { struct tegra_dma_channel *tdc = &tdma->channels[i]; int irq; tdc->chan_addr = tdma->base_addr + TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET + (i * cdata->channel_reg_size); irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err_pm_disable; } snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i); ret = devm_request_irq(&pdev->dev, irq, tegra_dma_isr, 0, tdc->name, tdc); if (ret) { dev_err(&pdev->dev, "request_irq failed with err %d channel %d\n", ret, i); goto err_pm_disable; } tdc->dma_chan.device = &tdma->dma_dev; dma_cookie_init(&tdc->dma_chan); list_add_tail(&tdc->dma_chan.device_node, &tdma->dma_dev.channels); tdc->tdma = tdma; tdc->id = i; tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID; tasklet_init(&tdc->tasklet, tegra_dma_tasklet, (unsigned long)tdc); spin_lock_init(&tdc->lock); init_waitqueue_head(&tdc->wq); INIT_LIST_HEAD(&tdc->pending_sg_req); INIT_LIST_HEAD(&tdc->free_sg_req); INIT_LIST_HEAD(&tdc->free_dma_desc); INIT_LIST_HEAD(&tdc->cb_desc); } dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask); dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask); tdma->global_pause_count = 0; tdma->dma_dev.dev = &pdev->dev; tdma->dma_dev.device_alloc_chan_resources = tegra_dma_alloc_chan_resources; tdma->dma_dev.device_free_chan_resources = tegra_dma_free_chan_resources; tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg; tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic; tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | BIT(DMA_SLAVE_BUSWIDTH_8_BYTES); tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; tdma->dma_dev.device_config = tegra_dma_slave_config; tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all; tdma->dma_dev.device_synchronize = tegra_dma_synchronize; tdma->dma_dev.device_tx_status = tegra_dma_tx_status; tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending; ret = dma_async_device_register(&tdma->dma_dev); if (ret < 0) { dev_err(&pdev->dev, "Tegra20 APB DMA driver registration failed %d\n", ret); goto err_pm_disable; } ret = of_dma_controller_register(pdev->dev.of_node, tegra_dma_of_xlate, tdma); if (ret < 0) { dev_err(&pdev->dev, "Tegra20 APB DMA OF registration failed %d\n", ret); goto err_unregister_dma_dev; } dev_info(&pdev->dev, "Tegra20 APB DMA driver registered %u channels\n", cdata->nr_channels); return 0; err_unregister_dma_dev: dma_async_device_unregister(&tdma->dma_dev); err_pm_disable: pm_runtime_disable(&pdev->dev); err_clk_unprepare: clk_unprepare(tdma->dma_clk); return ret; } static int tegra_dma_remove(struct platform_device *pdev) { struct tegra_dma *tdma = platform_get_drvdata(pdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&tdma->dma_dev); pm_runtime_disable(&pdev->dev); clk_unprepare(tdma->dma_clk); return 0; } static int __maybe_unused tegra_dma_runtime_suspend(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); clk_disable(tdma->dma_clk); return 0; } static int __maybe_unused tegra_dma_runtime_resume(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); return clk_enable(tdma->dma_clk); } static int __maybe_unused tegra_dma_dev_suspend(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); unsigned long flags; unsigned int i; bool busy; for (i = 0; i < tdma->chip_data->nr_channels; i++) { struct tegra_dma_channel *tdc = &tdma->channels[i]; tasklet_kill(&tdc->tasklet); spin_lock_irqsave(&tdc->lock, flags); busy = tdc->busy; spin_unlock_irqrestore(&tdc->lock, flags); if (busy) { dev_err(tdma->dev, "channel %u busy\n", i); return -EBUSY; } } return pm_runtime_force_suspend(dev); } static int __maybe_unused tegra_dma_dev_resume(struct device *dev) { struct tegra_dma *tdma = dev_get_drvdata(dev); int err; err = tegra_dma_init_hw(tdma); if (err) return err; return pm_runtime_force_resume(dev); } static const struct dev_pm_ops tegra_dma_dev_pm_ops = { SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(tegra_dma_dev_suspend, tegra_dma_dev_resume) }; static const struct of_device_id tegra_dma_of_match[] = { { .compatible = "nvidia,tegra148-apbdma", .data = &tegra148_dma_chip_data, }, { .compatible = "nvidia,tegra114-apbdma", .data = &tegra114_dma_chip_data, }, { .compatible = "nvidia,tegra30-apbdma", .data = &tegra30_dma_chip_data, }, { .compatible = "nvidia,tegra20-apbdma", .data = &tegra20_dma_chip_data, }, { }, }; MODULE_DEVICE_TABLE(of, tegra_dma_of_match); static struct platform_driver tegra_dmac_driver = { .driver = { .name = "tegra-apbdma", .pm = &tegra_dma_dev_pm_ops, .of_match_table = tegra_dma_of_match, }, .probe = tegra_dma_probe, .remove = tegra_dma_remove, }; module_platform_driver(tegra_dmac_driver); MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver"); MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1