Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jason Baron | 2386 | 90.31% | 4 | 36.36% |
Marco Elver | 250 | 9.46% | 2 | 18.18% |
Christoph Hellwig | 2 | 0.08% | 2 | 18.18% |
Robert Richter | 2 | 0.08% | 1 | 9.09% |
Thomas Gleixner | 1 | 0.04% | 1 | 9.09% |
Mauro Carvalho Chehab | 1 | 0.04% | 1 | 9.09% |
Total | 2642 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel E3-1200 * Copyright (C) 2014 Jason Baron <jbaron@akamai.com> * * Support for the E3-1200 processor family. Heavily based on previous * Intel EDAC drivers. * * Since the DRAM controller is on the cpu chip, we can use its PCI device * id to identify these processors. * * PCI DRAM controller device ids (Taken from The PCI ID Repository - http://pci-ids.ucw.cz/) * * 0108: Xeon E3-1200 Processor Family DRAM Controller * 010c: Xeon E3-1200/2nd Generation Core Processor Family DRAM Controller * 0150: Xeon E3-1200 v2/3rd Gen Core processor DRAM Controller * 0158: Xeon E3-1200 v2/Ivy Bridge DRAM Controller * 015c: Xeon E3-1200 v2/3rd Gen Core processor DRAM Controller * 0c04: Xeon E3-1200 v3/4th Gen Core Processor DRAM Controller * 0c08: Xeon E3-1200 v3 Processor DRAM Controller * 1918: Xeon E3-1200 v5 Skylake Host Bridge/DRAM Registers * 5918: Xeon E3-1200 Xeon E3-1200 v6/7th Gen Core Processor Host Bridge/DRAM Registers * 3e..: 8th/9th Gen Core Processor Host Bridge/DRAM Registers * * Based on Intel specification: * http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e3-1200v3-vol-2-datasheet.pdf * http://www.intel.com/content/www/us/en/processors/xeon/xeon-e3-1200-family-vol-2-datasheet.html * http://www.intel.com/content/www/us/en/processors/core/7th-gen-core-family-mobile-h-processor-lines-datasheet-vol-2.html * https://www.intel.com/content/www/us/en/products/docs/processors/core/8th-gen-core-family-datasheet-vol-2.html * * According to the above datasheet (p.16): * " * 6. Software must not access B0/D0/F0 32-bit memory-mapped registers with * requests that cross a DW boundary. * " * * Thus, we make use of the explicit: lo_hi_readq(), which breaks the readq into * 2 readl() calls. This restriction may be lifted in subsequent chip releases, * but lo_hi_readq() ensures that we are safe across all e3-1200 processors. */ #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/edac.h> #include <linux/io-64-nonatomic-lo-hi.h> #include "edac_module.h" #define EDAC_MOD_STR "ie31200_edac" #define ie31200_printk(level, fmt, arg...) \ edac_printk(level, "ie31200", fmt, ##arg) #define PCI_DEVICE_ID_INTEL_IE31200_HB_1 0x0108 #define PCI_DEVICE_ID_INTEL_IE31200_HB_2 0x010c #define PCI_DEVICE_ID_INTEL_IE31200_HB_3 0x0150 #define PCI_DEVICE_ID_INTEL_IE31200_HB_4 0x0158 #define PCI_DEVICE_ID_INTEL_IE31200_HB_5 0x015c #define PCI_DEVICE_ID_INTEL_IE31200_HB_6 0x0c04 #define PCI_DEVICE_ID_INTEL_IE31200_HB_7 0x0c08 #define PCI_DEVICE_ID_INTEL_IE31200_HB_8 0x1918 #define PCI_DEVICE_ID_INTEL_IE31200_HB_9 0x5918 /* Coffee Lake-S */ #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK 0x3e00 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_1 0x3e0f #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_2 0x3e18 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_3 0x3e1f #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_4 0x3e30 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_5 0x3e31 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_6 0x3e32 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_7 0x3e33 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_8 0x3ec2 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_9 0x3ec6 #define PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_10 0x3eca /* Test if HB is for Skylake or later. */ #define DEVICE_ID_SKYLAKE_OR_LATER(did) \ (((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_8) || \ ((did) == PCI_DEVICE_ID_INTEL_IE31200_HB_9) || \ (((did) & PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK) == \ PCI_DEVICE_ID_INTEL_IE31200_HB_CFL_MASK)) #define IE31200_DIMMS 4 #define IE31200_RANKS 8 #define IE31200_RANKS_PER_CHANNEL 4 #define IE31200_DIMMS_PER_CHANNEL 2 #define IE31200_CHANNELS 2 /* Intel IE31200 register addresses - device 0 function 0 - DRAM Controller */ #define IE31200_MCHBAR_LOW 0x48 #define IE31200_MCHBAR_HIGH 0x4c #define IE31200_MCHBAR_MASK GENMASK_ULL(38, 15) #define IE31200_MMR_WINDOW_SIZE BIT(15) /* * Error Status Register (16b) * * 15 reserved * 14 Isochronous TBWRR Run Behind FIFO Full * (ITCV) * 13 Isochronous TBWRR Run Behind FIFO Put * (ITSTV) * 12 reserved * 11 MCH Thermal Sensor Event * for SMI/SCI/SERR (GTSE) * 10 reserved * 9 LOCK to non-DRAM Memory Flag (LCKF) * 8 reserved * 7 DRAM Throttle Flag (DTF) * 6:2 reserved * 1 Multi-bit DRAM ECC Error Flag (DMERR) * 0 Single-bit DRAM ECC Error Flag (DSERR) */ #define IE31200_ERRSTS 0xc8 #define IE31200_ERRSTS_UE BIT(1) #define IE31200_ERRSTS_CE BIT(0) #define IE31200_ERRSTS_BITS (IE31200_ERRSTS_UE | IE31200_ERRSTS_CE) /* * Channel 0 ECC Error Log (64b) * * 63:48 Error Column Address (ERRCOL) * 47:32 Error Row Address (ERRROW) * 31:29 Error Bank Address (ERRBANK) * 28:27 Error Rank Address (ERRRANK) * 26:24 reserved * 23:16 Error Syndrome (ERRSYND) * 15: 2 reserved * 1 Multiple Bit Error Status (MERRSTS) * 0 Correctable Error Status (CERRSTS) */ #define IE31200_C0ECCERRLOG 0x40c8 #define IE31200_C1ECCERRLOG 0x44c8 #define IE31200_C0ECCERRLOG_SKL 0x4048 #define IE31200_C1ECCERRLOG_SKL 0x4448 #define IE31200_ECCERRLOG_CE BIT(0) #define IE31200_ECCERRLOG_UE BIT(1) #define IE31200_ECCERRLOG_RANK_BITS GENMASK_ULL(28, 27) #define IE31200_ECCERRLOG_RANK_SHIFT 27 #define IE31200_ECCERRLOG_SYNDROME_BITS GENMASK_ULL(23, 16) #define IE31200_ECCERRLOG_SYNDROME_SHIFT 16 #define IE31200_ECCERRLOG_SYNDROME(log) \ ((log & IE31200_ECCERRLOG_SYNDROME_BITS) >> \ IE31200_ECCERRLOG_SYNDROME_SHIFT) #define IE31200_CAPID0 0xe4 #define IE31200_CAPID0_PDCD BIT(4) #define IE31200_CAPID0_DDPCD BIT(6) #define IE31200_CAPID0_ECC BIT(1) #define IE31200_MAD_DIMM_0_OFFSET 0x5004 #define IE31200_MAD_DIMM_0_OFFSET_SKL 0x500C #define IE31200_MAD_DIMM_SIZE GENMASK_ULL(7, 0) #define IE31200_MAD_DIMM_A_RANK BIT(17) #define IE31200_MAD_DIMM_A_RANK_SHIFT 17 #define IE31200_MAD_DIMM_A_RANK_SKL BIT(10) #define IE31200_MAD_DIMM_A_RANK_SKL_SHIFT 10 #define IE31200_MAD_DIMM_A_WIDTH BIT(19) #define IE31200_MAD_DIMM_A_WIDTH_SHIFT 19 #define IE31200_MAD_DIMM_A_WIDTH_SKL GENMASK_ULL(9, 8) #define IE31200_MAD_DIMM_A_WIDTH_SKL_SHIFT 8 /* Skylake reports 1GB increments, everything else is 256MB */ #define IE31200_PAGES(n, skl) \ (n << (28 + (2 * skl) - PAGE_SHIFT)) static int nr_channels; struct ie31200_priv { void __iomem *window; void __iomem *c0errlog; void __iomem *c1errlog; }; enum ie31200_chips { IE31200 = 0, }; struct ie31200_dev_info { const char *ctl_name; }; struct ie31200_error_info { u16 errsts; u16 errsts2; u64 eccerrlog[IE31200_CHANNELS]; }; static const struct ie31200_dev_info ie31200_devs[] = { [IE31200] = { .ctl_name = "IE31200" }, }; struct dimm_data { u8 size; /* in multiples of 256MB, except Skylake is 1GB */ u8 dual_rank : 1, x16_width : 2; /* 0 means x8 width */ }; static int how_many_channels(struct pci_dev *pdev) { int n_channels; unsigned char capid0_2b; /* 2nd byte of CAPID0 */ pci_read_config_byte(pdev, IE31200_CAPID0 + 1, &capid0_2b); /* check PDCD: Dual Channel Disable */ if (capid0_2b & IE31200_CAPID0_PDCD) { edac_dbg(0, "In single channel mode\n"); n_channels = 1; } else { edac_dbg(0, "In dual channel mode\n"); n_channels = 2; } /* check DDPCD - check if both channels are filled */ if (capid0_2b & IE31200_CAPID0_DDPCD) edac_dbg(0, "2 DIMMS per channel disabled\n"); else edac_dbg(0, "2 DIMMS per channel enabled\n"); return n_channels; } static bool ecc_capable(struct pci_dev *pdev) { unsigned char capid0_4b; /* 4th byte of CAPID0 */ pci_read_config_byte(pdev, IE31200_CAPID0 + 3, &capid0_4b); if (capid0_4b & IE31200_CAPID0_ECC) return false; return true; } static int eccerrlog_row(u64 log) { return ((log & IE31200_ECCERRLOG_RANK_BITS) >> IE31200_ECCERRLOG_RANK_SHIFT); } static void ie31200_clear_error_info(struct mem_ctl_info *mci) { /* * Clear any error bits. * (Yes, we really clear bits by writing 1 to them.) */ pci_write_bits16(to_pci_dev(mci->pdev), IE31200_ERRSTS, IE31200_ERRSTS_BITS, IE31200_ERRSTS_BITS); } static void ie31200_get_and_clear_error_info(struct mem_ctl_info *mci, struct ie31200_error_info *info) { struct pci_dev *pdev; struct ie31200_priv *priv = mci->pvt_info; pdev = to_pci_dev(mci->pdev); /* * This is a mess because there is no atomic way to read all the * registers at once and the registers can transition from CE being * overwritten by UE. */ pci_read_config_word(pdev, IE31200_ERRSTS, &info->errsts); if (!(info->errsts & IE31200_ERRSTS_BITS)) return; info->eccerrlog[0] = lo_hi_readq(priv->c0errlog); if (nr_channels == 2) info->eccerrlog[1] = lo_hi_readq(priv->c1errlog); pci_read_config_word(pdev, IE31200_ERRSTS, &info->errsts2); /* * If the error is the same for both reads then the first set * of reads is valid. If there is a change then there is a CE * with no info and the second set of reads is valid and * should be UE info. */ if ((info->errsts ^ info->errsts2) & IE31200_ERRSTS_BITS) { info->eccerrlog[0] = lo_hi_readq(priv->c0errlog); if (nr_channels == 2) info->eccerrlog[1] = lo_hi_readq(priv->c1errlog); } ie31200_clear_error_info(mci); } static void ie31200_process_error_info(struct mem_ctl_info *mci, struct ie31200_error_info *info) { int channel; u64 log; if (!(info->errsts & IE31200_ERRSTS_BITS)) return; if ((info->errsts ^ info->errsts2) & IE31200_ERRSTS_BITS) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, -1, -1, -1, "UE overwrote CE", ""); info->errsts = info->errsts2; } for (channel = 0; channel < nr_channels; channel++) { log = info->eccerrlog[channel]; if (log & IE31200_ECCERRLOG_UE) { edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, eccerrlog_row(log), channel, -1, "ie31200 UE", ""); } else if (log & IE31200_ECCERRLOG_CE) { edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, IE31200_ECCERRLOG_SYNDROME(log), eccerrlog_row(log), channel, -1, "ie31200 CE", ""); } } } static void ie31200_check(struct mem_ctl_info *mci) { struct ie31200_error_info info; edac_dbg(1, "MC%d\n", mci->mc_idx); ie31200_get_and_clear_error_info(mci, &info); ie31200_process_error_info(mci, &info); } static void __iomem *ie31200_map_mchbar(struct pci_dev *pdev) { union { u64 mchbar; struct { u32 mchbar_low; u32 mchbar_high; }; } u; void __iomem *window; pci_read_config_dword(pdev, IE31200_MCHBAR_LOW, &u.mchbar_low); pci_read_config_dword(pdev, IE31200_MCHBAR_HIGH, &u.mchbar_high); u.mchbar &= IE31200_MCHBAR_MASK; if (u.mchbar != (resource_size_t)u.mchbar) { ie31200_printk(KERN_ERR, "mmio space beyond accessible range (0x%llx)\n", (unsigned long long)u.mchbar); return NULL; } window = ioremap(u.mchbar, IE31200_MMR_WINDOW_SIZE); if (!window) ie31200_printk(KERN_ERR, "Cannot map mmio space at 0x%llx\n", (unsigned long long)u.mchbar); return window; } static void __skl_populate_dimm_info(struct dimm_data *dd, u32 addr_decode, int chan) { dd->size = (addr_decode >> (chan << 4)) & IE31200_MAD_DIMM_SIZE; dd->dual_rank = (addr_decode & (IE31200_MAD_DIMM_A_RANK_SKL << (chan << 4))) ? 1 : 0; dd->x16_width = ((addr_decode & (IE31200_MAD_DIMM_A_WIDTH_SKL << (chan << 4))) >> (IE31200_MAD_DIMM_A_WIDTH_SKL_SHIFT + (chan << 4))); } static void __populate_dimm_info(struct dimm_data *dd, u32 addr_decode, int chan) { dd->size = (addr_decode >> (chan << 3)) & IE31200_MAD_DIMM_SIZE; dd->dual_rank = (addr_decode & (IE31200_MAD_DIMM_A_RANK << chan)) ? 1 : 0; dd->x16_width = (addr_decode & (IE31200_MAD_DIMM_A_WIDTH << chan)) ? 1 : 0; } static void populate_dimm_info(struct dimm_data *dd, u32 addr_decode, int chan, bool skl) { if (skl) __skl_populate_dimm_info(dd, addr_decode, chan); else __populate_dimm_info(dd, addr_decode, chan); } static int ie31200_probe1(struct pci_dev *pdev, int dev_idx) { int i, j, ret; struct mem_ctl_info *mci = NULL; struct edac_mc_layer layers[2]; struct dimm_data dimm_info[IE31200_CHANNELS][IE31200_DIMMS_PER_CHANNEL]; void __iomem *window; struct ie31200_priv *priv; u32 addr_decode, mad_offset; /* * Kaby Lake, Coffee Lake seem to work like Skylake. Please re-visit * this logic when adding new CPU support. */ bool skl = DEVICE_ID_SKYLAKE_OR_LATER(pdev->device); edac_dbg(0, "MC:\n"); if (!ecc_capable(pdev)) { ie31200_printk(KERN_INFO, "No ECC support\n"); return -ENODEV; } nr_channels = how_many_channels(pdev); layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; layers[0].size = IE31200_DIMMS; layers[0].is_virt_csrow = true; layers[1].type = EDAC_MC_LAYER_CHANNEL; layers[1].size = nr_channels; layers[1].is_virt_csrow = false; mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ie31200_priv)); if (!mci) return -ENOMEM; window = ie31200_map_mchbar(pdev); if (!window) { ret = -ENODEV; goto fail_free; } edac_dbg(3, "MC: init mci\n"); mci->pdev = &pdev->dev; if (skl) mci->mtype_cap = MEM_FLAG_DDR4; else mci->mtype_cap = MEM_FLAG_DDR3; mci->edac_ctl_cap = EDAC_FLAG_SECDED; mci->edac_cap = EDAC_FLAG_SECDED; mci->mod_name = EDAC_MOD_STR; mci->ctl_name = ie31200_devs[dev_idx].ctl_name; mci->dev_name = pci_name(pdev); mci->edac_check = ie31200_check; mci->ctl_page_to_phys = NULL; priv = mci->pvt_info; priv->window = window; if (skl) { priv->c0errlog = window + IE31200_C0ECCERRLOG_SKL; priv->c1errlog = window + IE31200_C1ECCERRLOG_SKL; mad_offset = IE31200_MAD_DIMM_0_OFFSET_SKL; } else { priv->c0errlog = window + IE31200_C0ECCERRLOG; priv->c1errlog = window + IE31200_C1ECCERRLOG; mad_offset = IE31200_MAD_DIMM_0_OFFSET; } /* populate DIMM info */ for (i = 0; i < IE31200_CHANNELS; i++) { addr_decode = readl(window + mad_offset + (i * 4)); edac_dbg(0, "addr_decode: 0x%x\n", addr_decode); for (j = 0; j < IE31200_DIMMS_PER_CHANNEL; j++) { populate_dimm_info(&dimm_info[i][j], addr_decode, j, skl); edac_dbg(0, "size: 0x%x, rank: %d, width: %d\n", dimm_info[i][j].size, dimm_info[i][j].dual_rank, dimm_info[i][j].x16_width); } } /* * The dram rank boundary (DRB) reg values are boundary addresses * for each DRAM rank with a granularity of 64MB. DRB regs are * cumulative; the last one will contain the total memory * contained in all ranks. */ for (i = 0; i < IE31200_DIMMS_PER_CHANNEL; i++) { for (j = 0; j < IE31200_CHANNELS; j++) { struct dimm_info *dimm; unsigned long nr_pages; nr_pages = IE31200_PAGES(dimm_info[j][i].size, skl); if (nr_pages == 0) continue; if (dimm_info[j][i].dual_rank) { nr_pages = nr_pages / 2; dimm = edac_get_dimm(mci, (i * 2) + 1, j, 0); dimm->nr_pages = nr_pages; edac_dbg(0, "set nr pages: 0x%lx\n", nr_pages); dimm->grain = 8; /* just a guess */ if (skl) dimm->mtype = MEM_DDR4; else dimm->mtype = MEM_DDR3; dimm->dtype = DEV_UNKNOWN; dimm->edac_mode = EDAC_UNKNOWN; } dimm = edac_get_dimm(mci, i * 2, j, 0); dimm->nr_pages = nr_pages; edac_dbg(0, "set nr pages: 0x%lx\n", nr_pages); dimm->grain = 8; /* same guess */ if (skl) dimm->mtype = MEM_DDR4; else dimm->mtype = MEM_DDR3; dimm->dtype = DEV_UNKNOWN; dimm->edac_mode = EDAC_UNKNOWN; } } ie31200_clear_error_info(mci); if (edac_mc_add_mc(mci)) { edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); ret = -ENODEV; goto fail_unmap; } /* get this far and it's successful */ edac_dbg(3, "MC: success\n"); return 0; fail_unmap: iounmap(window); fail_free: edac_mc_free(mci); return ret; } static int ie31200_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { edac_dbg(0, "MC:\n"); if (pci_enable_device(pdev) < 0) return -EIO; return ie31200_probe1(pdev, ent->driver_data); } static void ie31200_remove_one(struct pci_dev *pdev) { struct mem_ctl_info *mci; struct ie31200_priv *priv; edac_dbg(0, "\n"); mci = edac_mc_del_mc(&pdev->dev); if (!mci) return; priv = mci->pvt_info; iounmap(priv->window); edac_mc_free(mci); } static const struct pci_device_id ie31200_pci_tbl[] = { { PCI_VEND_DEV(INTEL, IE31200_HB_1), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_2), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_3), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_4), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_5), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_6), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_7), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_8), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_9), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_1), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_2), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_3), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_4), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_5), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_6), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_7), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_8), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_9), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { PCI_VEND_DEV(INTEL, IE31200_HB_CFL_10), PCI_ANY_ID, PCI_ANY_ID, 0, 0, IE31200 }, { 0, } /* 0 terminated list. */ }; MODULE_DEVICE_TABLE(pci, ie31200_pci_tbl); static struct pci_driver ie31200_driver = { .name = EDAC_MOD_STR, .probe = ie31200_init_one, .remove = ie31200_remove_one, .id_table = ie31200_pci_tbl, }; static int __init ie31200_init(void) { edac_dbg(3, "MC:\n"); /* Ensure that the OPSTATE is set correctly for POLL or NMI */ opstate_init(); return pci_register_driver(&ie31200_driver); } static void __exit ie31200_exit(void) { edac_dbg(3, "MC:\n"); pci_unregister_driver(&ie31200_driver); } module_init(ie31200_init); module_exit(ie31200_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jason Baron <jbaron@akamai.com>"); MODULE_DESCRIPTION("MC support for Intel Processor E31200 memory hub controllers");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1