Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nirmoy Das | 818 | 26.98% | 8 | 12.50% |
Christian König | 741 | 24.44% | 16 | 25.00% |
Alex Deucher | 369 | 12.17% | 3 | 4.69% |
Monk Liu | 228 | 7.52% | 5 | 7.81% |
Andres Rodriguez | 164 | 5.41% | 5 | 7.81% |
Emily Deng | 154 | 5.08% | 1 | 1.56% |
Chunming Zhou | 128 | 4.22% | 6 | 9.38% |
Marek Olšák | 108 | 3.56% | 2 | 3.12% |
Jammy Zhou | 104 | 3.43% | 1 | 1.56% |
Andrey Grodzovsky | 101 | 3.33% | 6 | 9.38% |
xinhui pan | 74 | 2.44% | 1 | 1.56% |
Lucas Stach | 9 | 0.30% | 1 | 1.56% |
Chris Wilson | 7 | 0.23% | 1 | 1.56% |
Dave Airlie | 6 | 0.20% | 1 | 1.56% |
James Zhu | 5 | 0.16% | 1 | 1.56% |
Matthew Wilcox | 4 | 0.13% | 1 | 1.56% |
Huang Rui | 3 | 0.10% | 1 | 1.56% |
Grazvydas Ignotas | 3 | 0.10% | 1 | 1.56% |
Nicolai Hähnle | 3 | 0.10% | 1 | 1.56% |
Guchun Chen | 2 | 0.07% | 1 | 1.56% |
Rex Zhu | 1 | 0.03% | 1 | 1.56% |
Total | 3032 | 64 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: monk liu <monk.liu@amd.com> */ #include <drm/drm_auth.h> #include "amdgpu.h" #include "amdgpu_sched.h" #include "amdgpu_ras.h" #include <linux/nospec.h> #define to_amdgpu_ctx_entity(e) \ container_of((e), struct amdgpu_ctx_entity, entity) const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = { [AMDGPU_HW_IP_GFX] = 1, [AMDGPU_HW_IP_COMPUTE] = 4, [AMDGPU_HW_IP_DMA] = 2, [AMDGPU_HW_IP_UVD] = 1, [AMDGPU_HW_IP_VCE] = 1, [AMDGPU_HW_IP_UVD_ENC] = 1, [AMDGPU_HW_IP_VCN_DEC] = 1, [AMDGPU_HW_IP_VCN_ENC] = 1, [AMDGPU_HW_IP_VCN_JPEG] = 1, }; static int amdgpu_ctx_priority_permit(struct drm_file *filp, enum drm_sched_priority priority) { if (priority < 0 || priority >= DRM_SCHED_PRIORITY_MAX) return -EINVAL; /* NORMAL and below are accessible by everyone */ if (priority <= DRM_SCHED_PRIORITY_NORMAL) return 0; if (capable(CAP_SYS_NICE)) return 0; if (drm_is_current_master(filp)) return 0; return -EACCES; } static enum gfx_pipe_priority amdgpu_ctx_sched_prio_to_compute_prio(enum drm_sched_priority prio) { switch (prio) { case DRM_SCHED_PRIORITY_HIGH_HW: case DRM_SCHED_PRIORITY_KERNEL: return AMDGPU_GFX_PIPE_PRIO_HIGH; default: return AMDGPU_GFX_PIPE_PRIO_NORMAL; } } static unsigned int amdgpu_ctx_prio_sched_to_hw(struct amdgpu_device *adev, enum drm_sched_priority prio, u32 hw_ip) { unsigned int hw_prio; hw_prio = (hw_ip == AMDGPU_HW_IP_COMPUTE) ? amdgpu_ctx_sched_prio_to_compute_prio(prio) : AMDGPU_RING_PRIO_DEFAULT; hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); if (adev->gpu_sched[hw_ip][hw_prio].num_scheds == 0) hw_prio = AMDGPU_RING_PRIO_DEFAULT; return hw_prio; } static int amdgpu_ctx_init_entity(struct amdgpu_ctx *ctx, u32 hw_ip, const u32 ring) { struct amdgpu_device *adev = ctx->adev; struct amdgpu_ctx_entity *entity; struct drm_gpu_scheduler **scheds = NULL, *sched = NULL; unsigned num_scheds = 0; unsigned int hw_prio; enum drm_sched_priority priority; int r; entity = kcalloc(1, offsetof(typeof(*entity), fences[amdgpu_sched_jobs]), GFP_KERNEL); if (!entity) return -ENOMEM; entity->sequence = 1; priority = (ctx->override_priority == DRM_SCHED_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; hw_prio = amdgpu_ctx_prio_sched_to_hw(adev, priority, hw_ip); hw_ip = array_index_nospec(hw_ip, AMDGPU_HW_IP_NUM); scheds = adev->gpu_sched[hw_ip][hw_prio].sched; num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; if (hw_ip == AMDGPU_HW_IP_VCN_ENC || hw_ip == AMDGPU_HW_IP_VCN_DEC) { sched = drm_sched_pick_best(scheds, num_scheds); scheds = &sched; num_scheds = 1; } r = drm_sched_entity_init(&entity->entity, priority, scheds, num_scheds, &ctx->guilty); if (r) goto error_free_entity; ctx->entities[hw_ip][ring] = entity; return 0; error_free_entity: kfree(entity); return r; } static int amdgpu_ctx_init(struct amdgpu_device *adev, enum drm_sched_priority priority, struct drm_file *filp, struct amdgpu_ctx *ctx) { int r; r = amdgpu_ctx_priority_permit(filp, priority); if (r) return r; memset(ctx, 0, sizeof(*ctx)); ctx->adev = adev; kref_init(&ctx->refcount); spin_lock_init(&ctx->ring_lock); mutex_init(&ctx->lock); ctx->reset_counter = atomic_read(&adev->gpu_reset_counter); ctx->reset_counter_query = ctx->reset_counter; ctx->vram_lost_counter = atomic_read(&adev->vram_lost_counter); ctx->init_priority = priority; ctx->override_priority = DRM_SCHED_PRIORITY_UNSET; return 0; } static void amdgpu_ctx_fini_entity(struct amdgpu_ctx_entity *entity) { int i; if (!entity) return; for (i = 0; i < amdgpu_sched_jobs; ++i) dma_fence_put(entity->fences[i]); kfree(entity); } static void amdgpu_ctx_fini(struct kref *ref) { struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount); struct amdgpu_device *adev = ctx->adev; unsigned i, j; if (!adev) return; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < AMDGPU_MAX_ENTITY_NUM; ++j) { amdgpu_ctx_fini_entity(ctx->entities[i][j]); ctx->entities[i][j] = NULL; } } mutex_destroy(&ctx->lock); kfree(ctx); } int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance, u32 ring, struct drm_sched_entity **entity) { int r; if (hw_ip >= AMDGPU_HW_IP_NUM) { DRM_ERROR("unknown HW IP type: %d\n", hw_ip); return -EINVAL; } /* Right now all IPs have only one instance - multiple rings. */ if (instance != 0) { DRM_DEBUG("invalid ip instance: %d\n", instance); return -EINVAL; } if (ring >= amdgpu_ctx_num_entities[hw_ip]) { DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring); return -EINVAL; } if (ctx->entities[hw_ip][ring] == NULL) { r = amdgpu_ctx_init_entity(ctx, hw_ip, ring); if (r) return r; } *entity = &ctx->entities[hw_ip][ring]->entity; return 0; } static int amdgpu_ctx_alloc(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, struct drm_file *filp, enum drm_sched_priority priority, uint32_t *id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; int r; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mutex_lock(&mgr->lock); r = idr_alloc(&mgr->ctx_handles, ctx, 1, AMDGPU_VM_MAX_NUM_CTX, GFP_KERNEL); if (r < 0) { mutex_unlock(&mgr->lock); kfree(ctx); return r; } *id = (uint32_t)r; r = amdgpu_ctx_init(adev, priority, filp, ctx); if (r) { idr_remove(&mgr->ctx_handles, *id); *id = 0; kfree(ctx); } mutex_unlock(&mgr->lock); return r; } static void amdgpu_ctx_do_release(struct kref *ref) { struct amdgpu_ctx *ctx; u32 i, j; ctx = container_of(ref, struct amdgpu_ctx, refcount); for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { if (!ctx->entities[i][j]) continue; drm_sched_entity_destroy(&ctx->entities[i][j]->entity); } } amdgpu_ctx_fini(ref); } static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; mutex_lock(&mgr->lock); ctx = idr_remove(&mgr->ctx_handles, id); if (ctx) kref_put(&ctx->refcount, amdgpu_ctx_do_release); mutex_unlock(&mgr->lock); return ctx ? 0 : -EINVAL; } static int amdgpu_ctx_query(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; unsigned reset_counter; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } /* TODO: these two are always zero */ out->state.flags = 0x0; out->state.hangs = 0x0; /* determine if a GPU reset has occured since the last call */ reset_counter = atomic_read(&adev->gpu_reset_counter); /* TODO: this should ideally return NO, GUILTY, or INNOCENT. */ if (ctx->reset_counter_query == reset_counter) out->state.reset_status = AMDGPU_CTX_NO_RESET; else out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET; ctx->reset_counter_query = reset_counter; mutex_unlock(&mgr->lock); return 0; } static int amdgpu_ctx_query2(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; unsigned long ras_counter; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } out->state.flags = 0x0; out->state.hangs = 0x0; if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET; if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST; if (atomic_read(&ctx->guilty)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY; /*query ue count*/ ras_counter = amdgpu_ras_query_error_count(adev, false); /*ras counter is monotonic increasing*/ if (ras_counter != ctx->ras_counter_ue) { out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_UE; ctx->ras_counter_ue = ras_counter; } /*query ce count*/ ras_counter = amdgpu_ras_query_error_count(adev, true); if (ras_counter != ctx->ras_counter_ce) { out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RAS_CE; ctx->ras_counter_ce = ras_counter; } mutex_unlock(&mgr->lock); return 0; } int amdgpu_ctx_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { int r; uint32_t id; enum drm_sched_priority priority; union drm_amdgpu_ctx *args = data; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_fpriv *fpriv = filp->driver_priv; r = 0; id = args->in.ctx_id; priority = amdgpu_to_sched_priority(args->in.priority); /* For backwards compatibility reasons, we need to accept * ioctls with garbage in the priority field */ if (priority == DRM_SCHED_PRIORITY_INVALID) priority = DRM_SCHED_PRIORITY_NORMAL; switch (args->in.op) { case AMDGPU_CTX_OP_ALLOC_CTX: r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id); args->out.alloc.ctx_id = id; break; case AMDGPU_CTX_OP_FREE_CTX: r = amdgpu_ctx_free(fpriv, id); break; case AMDGPU_CTX_OP_QUERY_STATE: r = amdgpu_ctx_query(adev, fpriv, id, &args->out); break; case AMDGPU_CTX_OP_QUERY_STATE2: r = amdgpu_ctx_query2(adev, fpriv, id, &args->out); break; default: return -EINVAL; } return r; } struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return NULL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (ctx) kref_get(&ctx->refcount); mutex_unlock(&mgr->lock); return ctx; } int amdgpu_ctx_put(struct amdgpu_ctx *ctx) { if (ctx == NULL) return -EINVAL; kref_put(&ctx->refcount, amdgpu_ctx_do_release); return 0; } void amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, struct dma_fence *fence, uint64_t* handle) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); uint64_t seq = centity->sequence; struct dma_fence *other = NULL; unsigned idx = 0; idx = seq & (amdgpu_sched_jobs - 1); other = centity->fences[idx]; if (other) BUG_ON(!dma_fence_is_signaled(other)); dma_fence_get(fence); spin_lock(&ctx->ring_lock); centity->fences[idx] = fence; centity->sequence++; spin_unlock(&ctx->ring_lock); dma_fence_put(other); if (handle) *handle = seq; } struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, uint64_t seq) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); struct dma_fence *fence; spin_lock(&ctx->ring_lock); if (seq == ~0ull) seq = centity->sequence - 1; if (seq >= centity->sequence) { spin_unlock(&ctx->ring_lock); return ERR_PTR(-EINVAL); } if (seq + amdgpu_sched_jobs < centity->sequence) { spin_unlock(&ctx->ring_lock); return NULL; } fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]); spin_unlock(&ctx->ring_lock); return fence; } static void amdgpu_ctx_set_entity_priority(struct amdgpu_ctx *ctx, struct amdgpu_ctx_entity *aentity, int hw_ip, enum drm_sched_priority priority) { struct amdgpu_device *adev = ctx->adev; unsigned int hw_prio; struct drm_gpu_scheduler **scheds = NULL; unsigned num_scheds; /* set sw priority */ drm_sched_entity_set_priority(&aentity->entity, priority); /* set hw priority */ if (hw_ip == AMDGPU_HW_IP_COMPUTE) { hw_prio = amdgpu_ctx_prio_sched_to_hw(adev, priority, AMDGPU_HW_IP_COMPUTE); hw_prio = array_index_nospec(hw_prio, AMDGPU_RING_PRIO_MAX); scheds = adev->gpu_sched[hw_ip][hw_prio].sched; num_scheds = adev->gpu_sched[hw_ip][hw_prio].num_scheds; drm_sched_entity_modify_sched(&aentity->entity, scheds, num_scheds); } } void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx, enum drm_sched_priority priority) { enum drm_sched_priority ctx_prio; unsigned i, j; ctx->override_priority = priority; ctx_prio = (ctx->override_priority == DRM_SCHED_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { if (!ctx->entities[i][j]) continue; amdgpu_ctx_set_entity_priority(ctx, ctx->entities[i][j], i, ctx_prio); } } } int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); struct dma_fence *other; unsigned idx; long r; spin_lock(&ctx->ring_lock); idx = centity->sequence & (amdgpu_sched_jobs - 1); other = dma_fence_get(centity->fences[idx]); spin_unlock(&ctx->ring_lock); if (!other) return 0; r = dma_fence_wait(other, true); if (r < 0 && r != -ERESTARTSYS) DRM_ERROR("Error (%ld) waiting for fence!\n", r); dma_fence_put(other); return r; } void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr) { mutex_init(&mgr->lock); idr_init(&mgr->ctx_handles); } long amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr, long timeout) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i, j; idp = &mgr->ctx_handles; mutex_lock(&mgr->lock); idr_for_each_entry(idp, ctx, id) { for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { struct drm_sched_entity *entity; if (!ctx->entities[i][j]) continue; entity = &ctx->entities[i][j]->entity; timeout = drm_sched_entity_flush(entity, timeout); } } } mutex_unlock(&mgr->lock); return timeout; } void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i, j; idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (kref_read(&ctx->refcount) != 1) { DRM_ERROR("ctx %p is still alive\n", ctx); continue; } for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) { struct drm_sched_entity *entity; if (!ctx->entities[i][j]) continue; entity = &ctx->entities[i][j]->entity; drm_sched_entity_fini(entity); } } } } void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id; amdgpu_ctx_mgr_entity_fini(mgr); idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1) DRM_ERROR("ctx %p is still alive\n", ctx); } idr_destroy(&mgr->ctx_handles); mutex_destroy(&mgr->lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1