Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 4399 | 65.17% | 11 | 32.35% |
Jack Xiao | 827 | 12.25% | 3 | 8.82% |
Jiange Zhao | 351 | 5.20% | 1 | 2.94% |
Andrey Grodzovsky | 298 | 4.41% | 2 | 5.88% |
Yintian Tao | 273 | 4.04% | 1 | 2.94% |
Tom St Denis | 251 | 3.72% | 5 | 14.71% |
Chengming Gui | 235 | 3.48% | 1 | 2.94% |
Christian König | 78 | 1.16% | 1 | 2.94% |
Rex Zhu | 6 | 0.09% | 1 | 2.94% |
Dan Carpenter | 5 | 0.07% | 1 | 2.94% |
Monk Liu | 5 | 0.07% | 1 | 2.94% |
Sam Ravnborg | 5 | 0.07% | 1 | 2.94% |
Tao Zhou | 5 | 0.07% | 1 | 2.94% |
Kevin Wang | 5 | 0.07% | 1 | 2.94% |
Stanley.Yang | 3 | 0.04% | 1 | 2.94% |
zhengbin | 3 | 0.04% | 1 | 2.94% |
Wang Xiayang | 1 | 0.01% | 1 | 2.94% |
Total | 6750 | 34 |
/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/kthread.h> #include <linux/pci.h> #include <linux/uaccess.h> #include <linux/pm_runtime.h> #include <linux/poll.h> #include <drm/drm_debugfs.h> #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_dm_debugfs.h" #include "amdgpu_ras.h" /** * amdgpu_debugfs_add_files - Add simple debugfs entries * * @adev: Device to attach debugfs entries to * @files: Array of function callbacks that respond to reads * @nfiles: Number of callbacks to register * */ int amdgpu_debugfs_add_files(struct amdgpu_device *adev, const struct drm_info_list *files, unsigned nfiles) { unsigned i; for (i = 0; i < adev->debugfs_count; i++) { if (adev->debugfs[i].files == files) { /* Already registered */ return 0; } } i = adev->debugfs_count + 1; if (i > AMDGPU_DEBUGFS_MAX_COMPONENTS) { DRM_ERROR("Reached maximum number of debugfs components.\n"); DRM_ERROR("Report so we increase " "AMDGPU_DEBUGFS_MAX_COMPONENTS.\n"); return -EINVAL; } adev->debugfs[adev->debugfs_count].files = files; adev->debugfs[adev->debugfs_count].num_files = nfiles; adev->debugfs_count = i; #if defined(CONFIG_DEBUG_FS) drm_debugfs_create_files(files, nfiles, adev->ddev->primary->debugfs_root, adev->ddev->primary); #endif return 0; } int amdgpu_debugfs_wait_dump(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) unsigned long timeout = 600 * HZ; int ret; wake_up_interruptible(&adev->autodump.gpu_hang); ret = wait_for_completion_interruptible_timeout(&adev->autodump.dumping, timeout); if (ret == 0) { pr_err("autodump: timeout, move on to gpu recovery\n"); return -ETIMEDOUT; } #endif return 0; } #if defined(CONFIG_DEBUG_FS) static int amdgpu_debugfs_autodump_open(struct inode *inode, struct file *file) { struct amdgpu_device *adev = inode->i_private; int ret; file->private_data = adev; mutex_lock(&adev->lock_reset); if (adev->autodump.dumping.done) { reinit_completion(&adev->autodump.dumping); ret = 0; } else { ret = -EBUSY; } mutex_unlock(&adev->lock_reset); return ret; } static int amdgpu_debugfs_autodump_release(struct inode *inode, struct file *file) { struct amdgpu_device *adev = file->private_data; complete_all(&adev->autodump.dumping); return 0; } static unsigned int amdgpu_debugfs_autodump_poll(struct file *file, struct poll_table_struct *poll_table) { struct amdgpu_device *adev = file->private_data; poll_wait(file, &adev->autodump.gpu_hang, poll_table); if (adev->in_gpu_reset) return POLLIN | POLLRDNORM | POLLWRNORM; return 0; } static const struct file_operations autodump_debug_fops = { .owner = THIS_MODULE, .open = amdgpu_debugfs_autodump_open, .poll = amdgpu_debugfs_autodump_poll, .release = amdgpu_debugfs_autodump_release, }; static void amdgpu_debugfs_autodump_init(struct amdgpu_device *adev) { init_completion(&adev->autodump.dumping); complete_all(&adev->autodump.dumping); init_waitqueue_head(&adev->autodump.gpu_hang); debugfs_create_file("amdgpu_autodump", 0600, adev->ddev->primary->debugfs_root, adev, &autodump_debug_fops); } /** * amdgpu_debugfs_process_reg_op - Handle MMIO register reads/writes * * @read: True if reading * @f: open file handle * @buf: User buffer to write/read to * @size: Number of bytes to write/read * @pos: Offset to seek to * * This debugfs entry has special meaning on the offset being sought. * Various bits have different meanings: * * Bit 62: Indicates a GRBM bank switch is needed * Bit 61: Indicates a SRBM bank switch is needed (implies bit 62 is * zero) * Bits 24..33: The SE or ME selector if needed * Bits 34..43: The SH (or SA) or PIPE selector if needed * Bits 44..53: The INSTANCE (or CU/WGP) or QUEUE selector if needed * * Bit 23: Indicates that the PM power gating lock should be held * This is necessary to read registers that might be * unreliable during a power gating transistion. * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static int amdgpu_debugfs_process_reg_op(bool read, struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; bool pm_pg_lock, use_bank, use_ring; unsigned instance_bank, sh_bank, se_bank, me, pipe, queue, vmid; pm_pg_lock = use_bank = use_ring = false; instance_bank = sh_bank = se_bank = me = pipe = queue = vmid = 0; if (size & 0x3 || *pos & 0x3 || ((*pos & (1ULL << 62)) && (*pos & (1ULL << 61)))) return -EINVAL; /* are we reading registers for which a PG lock is necessary? */ pm_pg_lock = (*pos >> 23) & 1; if (*pos & (1ULL << 62)) { se_bank = (*pos & GENMASK_ULL(33, 24)) >> 24; sh_bank = (*pos & GENMASK_ULL(43, 34)) >> 34; instance_bank = (*pos & GENMASK_ULL(53, 44)) >> 44; if (se_bank == 0x3FF) se_bank = 0xFFFFFFFF; if (sh_bank == 0x3FF) sh_bank = 0xFFFFFFFF; if (instance_bank == 0x3FF) instance_bank = 0xFFFFFFFF; use_bank = true; } else if (*pos & (1ULL << 61)) { me = (*pos & GENMASK_ULL(33, 24)) >> 24; pipe = (*pos & GENMASK_ULL(43, 34)) >> 34; queue = (*pos & GENMASK_ULL(53, 44)) >> 44; vmid = (*pos & GENMASK_ULL(58, 54)) >> 54; use_ring = true; } else { use_bank = use_ring = false; } *pos &= (1UL << 22) - 1; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; if (use_bank) { if ((sh_bank != 0xFFFFFFFF && sh_bank >= adev->gfx.config.max_sh_per_se) || (se_bank != 0xFFFFFFFF && se_bank >= adev->gfx.config.max_shader_engines)) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se_bank, sh_bank, instance_bank); } else if (use_ring) { mutex_lock(&adev->srbm_mutex); amdgpu_gfx_select_me_pipe_q(adev, me, pipe, queue, vmid); } if (pm_pg_lock) mutex_lock(&adev->pm.mutex); while (size) { uint32_t value; if (read) { value = RREG32(*pos >> 2); r = put_user(value, (uint32_t *)buf); } else { r = get_user(value, (uint32_t *)buf); if (!r) amdgpu_mm_wreg_mmio_rlc(adev, *pos >> 2, value, 0); } if (r) { result = r; goto end; } result += 4; buf += 4; *pos += 4; size -= 4; } end: if (use_bank) { amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff); mutex_unlock(&adev->grbm_idx_mutex); } else if (use_ring) { amdgpu_gfx_select_me_pipe_q(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } if (pm_pg_lock) mutex_unlock(&adev->pm.mutex); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_read - Callback for reading MMIO registers */ static ssize_t amdgpu_debugfs_regs_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_process_reg_op(true, f, buf, size, pos); } /** * amdgpu_debugfs_regs_write - Callback for writing MMIO registers */ static ssize_t amdgpu_debugfs_regs_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { return amdgpu_debugfs_process_reg_op(false, f, (char __user *)buf, size, pos); } /** * amdgpu_debugfs_regs_pcie_read - Read from a PCIE register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_pcie_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; value = RREG32_PCIE(*pos >> 2); r = put_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_pcie_write - Write to a PCIE register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_pcie_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } WREG32_PCIE(*pos >> 2, value); result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_didt_read - Read from a DIDT register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_didt_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; value = RREG32_DIDT(*pos >> 2); r = put_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_didt_write - Write to a DIDT register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_didt_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } WREG32_DIDT(*pos >> 2, value); result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_smc_read - Read from a SMC register * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to read. This * allows reading multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_smc_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; value = RREG32_SMC(*pos); r = put_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_smc_write - Write to a SMC register * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * The lower bits are the BYTE offset of the register to write. This * allows writing multiple registers in a single call and having * the returned size reflect that. */ static ssize_t amdgpu_debugfs_regs_smc_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return r; } WREG32_SMC(*pos, value); result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_gca_config_read - Read from gfx config data * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * This file is used to access configuration data in a somewhat * stable fashion. The format is a series of DWORDs with the first * indicating which revision it is. New content is appended to the * end so that older software can still read the data. */ static ssize_t amdgpu_debugfs_gca_config_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; uint32_t *config, no_regs = 0; if (size & 0x3 || *pos & 0x3) return -EINVAL; config = kmalloc_array(256, sizeof(*config), GFP_KERNEL); if (!config) return -ENOMEM; /* version, increment each time something is added */ config[no_regs++] = 3; config[no_regs++] = adev->gfx.config.max_shader_engines; config[no_regs++] = adev->gfx.config.max_tile_pipes; config[no_regs++] = adev->gfx.config.max_cu_per_sh; config[no_regs++] = adev->gfx.config.max_sh_per_se; config[no_regs++] = adev->gfx.config.max_backends_per_se; config[no_regs++] = adev->gfx.config.max_texture_channel_caches; config[no_regs++] = adev->gfx.config.max_gprs; config[no_regs++] = adev->gfx.config.max_gs_threads; config[no_regs++] = adev->gfx.config.max_hw_contexts; config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_frontend; config[no_regs++] = adev->gfx.config.sc_prim_fifo_size_backend; config[no_regs++] = adev->gfx.config.sc_hiz_tile_fifo_size; config[no_regs++] = adev->gfx.config.sc_earlyz_tile_fifo_size; config[no_regs++] = adev->gfx.config.num_tile_pipes; config[no_regs++] = adev->gfx.config.backend_enable_mask; config[no_regs++] = adev->gfx.config.mem_max_burst_length_bytes; config[no_regs++] = adev->gfx.config.mem_row_size_in_kb; config[no_regs++] = adev->gfx.config.shader_engine_tile_size; config[no_regs++] = adev->gfx.config.num_gpus; config[no_regs++] = adev->gfx.config.multi_gpu_tile_size; config[no_regs++] = adev->gfx.config.mc_arb_ramcfg; config[no_regs++] = adev->gfx.config.gb_addr_config; config[no_regs++] = adev->gfx.config.num_rbs; /* rev==1 */ config[no_regs++] = adev->rev_id; config[no_regs++] = adev->pg_flags; config[no_regs++] = adev->cg_flags; /* rev==2 */ config[no_regs++] = adev->family; config[no_regs++] = adev->external_rev_id; /* rev==3 */ config[no_regs++] = adev->pdev->device; config[no_regs++] = adev->pdev->revision; config[no_regs++] = adev->pdev->subsystem_device; config[no_regs++] = adev->pdev->subsystem_vendor; while (size && (*pos < no_regs * 4)) { uint32_t value; value = config[*pos >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { kfree(config); return r; } result += 4; buf += 4; *pos += 4; size -= 4; } kfree(config); return result; } /** * amdgpu_debugfs_sensor_read - Read from the powerplay sensors * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset is treated as the BYTE address of one of the sensors * enumerated in amd/include/kgd_pp_interface.h under the * 'amd_pp_sensors' enumeration. For instance to read the UVD VCLK * you would use the offset 3 * 4 = 12. */ static ssize_t amdgpu_debugfs_sensor_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; int idx, x, outsize, r, valuesize; uint32_t values[16]; if (size & 3 || *pos & 0x3) return -EINVAL; if (!adev->pm.dpm_enabled) return -EINVAL; /* convert offset to sensor number */ idx = *pos >> 2; valuesize = sizeof(values); r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; r = amdgpu_dpm_read_sensor(adev, idx, &values[0], &valuesize); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (r) { amdgpu_virt_disable_access_debugfs(adev); return r; } if (size > valuesize) { amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } outsize = 0; x = 0; if (!r) { while (size) { r = put_user(values[x++], (int32_t *)buf); buf += 4; size -= 4; outsize += 4; } } amdgpu_virt_disable_access_debugfs(adev); return !r ? outsize : r; } /** amdgpu_debugfs_wave_read - Read WAVE STATUS data * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset being sought changes which wave that the status data * will be returned for. The bits are used as follows: * * Bits 0..6: Byte offset into data * Bits 7..14: SE selector * Bits 15..22: SH/SA selector * Bits 23..30: CU/{WGP+SIMD} selector * Bits 31..36: WAVE ID selector * Bits 37..44: SIMD ID selector * * The returned data begins with one DWORD of version information * Followed by WAVE STATUS registers relevant to the GFX IP version * being used. See gfx_v8_0_read_wave_data() for an example output. */ static ssize_t amdgpu_debugfs_wave_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; int r, x; ssize_t result=0; uint32_t offset, se, sh, cu, wave, simd, data[32]; if (size & 3 || *pos & 3) return -EINVAL; /* decode offset */ offset = (*pos & GENMASK_ULL(6, 0)); se = (*pos & GENMASK_ULL(14, 7)) >> 7; sh = (*pos & GENMASK_ULL(22, 15)) >> 15; cu = (*pos & GENMASK_ULL(30, 23)) >> 23; wave = (*pos & GENMASK_ULL(36, 31)) >> 31; simd = (*pos & GENMASK_ULL(44, 37)) >> 37; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; /* switch to the specific se/sh/cu */ mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se, sh, cu); x = 0; if (adev->gfx.funcs->read_wave_data) adev->gfx.funcs->read_wave_data(adev, simd, wave, data, &x); amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); mutex_unlock(&adev->grbm_idx_mutex); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (!x) { amdgpu_virt_disable_access_debugfs(adev); return -EINVAL; } while (size && (offset < x * 4)) { uint32_t value; value = data[offset >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { amdgpu_virt_disable_access_debugfs(adev); return r; } result += 4; buf += 4; offset += 4; size -= 4; } amdgpu_virt_disable_access_debugfs(adev); return result; } /** amdgpu_debugfs_gpr_read - Read wave gprs * * @f: open file handle * @buf: User buffer to store read data in * @size: Number of bytes to read * @pos: Offset to seek to * * The offset being sought changes which wave that the status data * will be returned for. The bits are used as follows: * * Bits 0..11: Byte offset into data * Bits 12..19: SE selector * Bits 20..27: SH/SA selector * Bits 28..35: CU/{WGP+SIMD} selector * Bits 36..43: WAVE ID selector * Bits 37..44: SIMD ID selector * Bits 52..59: Thread selector * Bits 60..61: Bank selector (VGPR=0,SGPR=1) * * The return data comes from the SGPR or VGPR register bank for * the selected operational unit. */ static ssize_t amdgpu_debugfs_gpr_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = f->f_inode->i_private; int r; ssize_t result = 0; uint32_t offset, se, sh, cu, wave, simd, thread, bank, *data; if (size > 4096 || size & 3 || *pos & 3) return -EINVAL; /* decode offset */ offset = (*pos & GENMASK_ULL(11, 0)) >> 2; se = (*pos & GENMASK_ULL(19, 12)) >> 12; sh = (*pos & GENMASK_ULL(27, 20)) >> 20; cu = (*pos & GENMASK_ULL(35, 28)) >> 28; wave = (*pos & GENMASK_ULL(43, 36)) >> 36; simd = (*pos & GENMASK_ULL(51, 44)) >> 44; thread = (*pos & GENMASK_ULL(59, 52)) >> 52; bank = (*pos & GENMASK_ULL(61, 60)) >> 60; data = kcalloc(1024, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; r = amdgpu_virt_enable_access_debugfs(adev); if (r < 0) return r; /* switch to the specific se/sh/cu */ mutex_lock(&adev->grbm_idx_mutex); amdgpu_gfx_select_se_sh(adev, se, sh, cu); if (bank == 0) { if (adev->gfx.funcs->read_wave_vgprs) adev->gfx.funcs->read_wave_vgprs(adev, simd, wave, thread, offset, size>>2, data); } else { if (adev->gfx.funcs->read_wave_sgprs) adev->gfx.funcs->read_wave_sgprs(adev, simd, wave, offset, size>>2, data); } amdgpu_gfx_select_se_sh(adev, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF); mutex_unlock(&adev->grbm_idx_mutex); pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); while (size) { uint32_t value; value = data[result >> 2]; r = put_user(value, (uint32_t *)buf); if (r) { result = r; goto err; } result += 4; buf += 4; size -= 4; } err: kfree(data); amdgpu_virt_disable_access_debugfs(adev); return result; } /** * amdgpu_debugfs_regs_gfxoff_write - Enable/disable GFXOFF * * @f: open file handle * @buf: User buffer to write data from * @size: Number of bytes to write * @pos: Offset to seek to * * Write a 32-bit zero to disable or a 32-bit non-zero to enable */ static ssize_t amdgpu_debugfs_gfxoff_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; ssize_t result = 0; int r; if (size & 0x3 || *pos & 0x3) return -EINVAL; r = pm_runtime_get_sync(adev->ddev->dev); if (r < 0) return r; while (size) { uint32_t value; r = get_user(value, (uint32_t *)buf); if (r) { pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return r; } amdgpu_gfx_off_ctrl(adev, value ? true : false); result += 4; buf += 4; *pos += 4; size -= 4; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); return result; } static const struct file_operations amdgpu_debugfs_regs_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_read, .write = amdgpu_debugfs_regs_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_didt_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_didt_read, .write = amdgpu_debugfs_regs_didt_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_pcie_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_pcie_read, .write = amdgpu_debugfs_regs_pcie_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_regs_smc_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_regs_smc_read, .write = amdgpu_debugfs_regs_smc_write, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gca_config_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gca_config_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_sensors_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_sensor_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_wave_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_wave_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gpr_fops = { .owner = THIS_MODULE, .read = amdgpu_debugfs_gpr_read, .llseek = default_llseek }; static const struct file_operations amdgpu_debugfs_gfxoff_fops = { .owner = THIS_MODULE, .write = amdgpu_debugfs_gfxoff_write, }; static const struct file_operations *debugfs_regs[] = { &amdgpu_debugfs_regs_fops, &amdgpu_debugfs_regs_didt_fops, &amdgpu_debugfs_regs_pcie_fops, &amdgpu_debugfs_regs_smc_fops, &amdgpu_debugfs_gca_config_fops, &amdgpu_debugfs_sensors_fops, &amdgpu_debugfs_wave_fops, &amdgpu_debugfs_gpr_fops, &amdgpu_debugfs_gfxoff_fops, }; static const char *debugfs_regs_names[] = { "amdgpu_regs", "amdgpu_regs_didt", "amdgpu_regs_pcie", "amdgpu_regs_smc", "amdgpu_gca_config", "amdgpu_sensors", "amdgpu_wave", "amdgpu_gpr", "amdgpu_gfxoff", }; /** * amdgpu_debugfs_regs_init - Initialize debugfs entries that provide * register access. * * @adev: The device to attach the debugfs entries to */ int amdgpu_debugfs_regs_init(struct amdgpu_device *adev) { struct drm_minor *minor = adev->ddev->primary; struct dentry *ent, *root = minor->debugfs_root; unsigned int i; for (i = 0; i < ARRAY_SIZE(debugfs_regs); i++) { ent = debugfs_create_file(debugfs_regs_names[i], S_IFREG | S_IRUGO, root, adev, debugfs_regs[i]); if (!i && !IS_ERR_OR_NULL(ent)) i_size_write(ent->d_inode, adev->rmmio_size); adev->debugfs_regs[i] = ent; } return 0; } static int amdgpu_debugfs_test_ib(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; int r = 0, i; r = pm_runtime_get_sync(dev->dev); if (r < 0) return r; /* Avoid accidently unparking the sched thread during GPU reset */ mutex_lock(&adev->lock_reset); /* hold on the scheduler */ for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; kthread_park(ring->sched.thread); } seq_printf(m, "run ib test:\n"); r = amdgpu_ib_ring_tests(adev); if (r) seq_printf(m, "ib ring tests failed (%d).\n", r); else seq_printf(m, "ib ring tests passed.\n"); /* go on the scheduler */ for (i = 0; i < AMDGPU_MAX_RINGS; i++) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->sched.thread) continue; kthread_unpark(ring->sched.thread); } mutex_unlock(&adev->lock_reset); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static int amdgpu_debugfs_get_vbios_dump(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; seq_write(m, adev->bios, adev->bios_size); return 0; } static int amdgpu_debugfs_evict_vram(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; int r; r = pm_runtime_get_sync(dev->dev); if (r < 0) return r; seq_printf(m, "(%d)\n", amdgpu_bo_evict_vram(adev)); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static int amdgpu_debugfs_evict_gtt(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; int r; r = pm_runtime_get_sync(dev->dev); if (r < 0) return r; seq_printf(m, "(%d)\n", ttm_bo_evict_mm(&adev->mman.bdev, TTM_PL_TT)); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return 0; } static const struct drm_info_list amdgpu_debugfs_list[] = { {"amdgpu_vbios", amdgpu_debugfs_get_vbios_dump}, {"amdgpu_test_ib", &amdgpu_debugfs_test_ib}, {"amdgpu_evict_vram", &amdgpu_debugfs_evict_vram}, {"amdgpu_evict_gtt", &amdgpu_debugfs_evict_gtt}, }; static void amdgpu_ib_preempt_fences_swap(struct amdgpu_ring *ring, struct dma_fence **fences) { struct amdgpu_fence_driver *drv = &ring->fence_drv; uint32_t sync_seq, last_seq; last_seq = atomic_read(&ring->fence_drv.last_seq); sync_seq = ring->fence_drv.sync_seq; last_seq &= drv->num_fences_mask; sync_seq &= drv->num_fences_mask; do { struct dma_fence *fence, **ptr; ++last_seq; last_seq &= drv->num_fences_mask; ptr = &drv->fences[last_seq]; fence = rcu_dereference_protected(*ptr, 1); RCU_INIT_POINTER(*ptr, NULL); if (!fence) continue; fences[last_seq] = fence; } while (last_seq != sync_seq); } static void amdgpu_ib_preempt_signal_fences(struct dma_fence **fences, int length) { int i; struct dma_fence *fence; for (i = 0; i < length; i++) { fence = fences[i]; if (!fence) continue; dma_fence_signal(fence); dma_fence_put(fence); } } static void amdgpu_ib_preempt_job_recovery(struct drm_gpu_scheduler *sched) { struct drm_sched_job *s_job; struct dma_fence *fence; spin_lock(&sched->job_list_lock); list_for_each_entry(s_job, &sched->ring_mirror_list, node) { fence = sched->ops->run_job(s_job); dma_fence_put(fence); } spin_unlock(&sched->job_list_lock); } static void amdgpu_ib_preempt_mark_partial_job(struct amdgpu_ring *ring) { struct amdgpu_job *job; struct drm_sched_job *s_job, *tmp; uint32_t preempt_seq; struct dma_fence *fence, **ptr; struct amdgpu_fence_driver *drv = &ring->fence_drv; struct drm_gpu_scheduler *sched = &ring->sched; bool preempted = true; if (ring->funcs->type != AMDGPU_RING_TYPE_GFX) return; preempt_seq = le32_to_cpu(*(drv->cpu_addr + 2)); if (preempt_seq <= atomic_read(&drv->last_seq)) { preempted = false; goto no_preempt; } preempt_seq &= drv->num_fences_mask; ptr = &drv->fences[preempt_seq]; fence = rcu_dereference_protected(*ptr, 1); no_preempt: spin_lock(&sched->job_list_lock); list_for_each_entry_safe(s_job, tmp, &sched->ring_mirror_list, node) { if (dma_fence_is_signaled(&s_job->s_fence->finished)) { /* remove job from ring_mirror_list */ list_del_init(&s_job->node); sched->ops->free_job(s_job); continue; } job = to_amdgpu_job(s_job); if (preempted && job->fence == fence) /* mark the job as preempted */ job->preemption_status |= AMDGPU_IB_PREEMPTED; } spin_unlock(&sched->job_list_lock); } static int amdgpu_debugfs_ib_preempt(void *data, u64 val) { int r, resched, length; struct amdgpu_ring *ring; struct dma_fence **fences = NULL; struct amdgpu_device *adev = (struct amdgpu_device *)data; if (val >= AMDGPU_MAX_RINGS) return -EINVAL; ring = adev->rings[val]; if (!ring || !ring->funcs->preempt_ib || !ring->sched.thread) return -EINVAL; /* the last preemption failed */ if (ring->trail_seq != le32_to_cpu(*ring->trail_fence_cpu_addr)) return -EBUSY; length = ring->fence_drv.num_fences_mask + 1; fences = kcalloc(length, sizeof(void *), GFP_KERNEL); if (!fences) return -ENOMEM; /* Avoid accidently unparking the sched thread during GPU reset */ mutex_lock(&adev->lock_reset); /* stop the scheduler */ kthread_park(ring->sched.thread); resched = ttm_bo_lock_delayed_workqueue(&adev->mman.bdev); /* preempt the IB */ r = amdgpu_ring_preempt_ib(ring); if (r) { DRM_WARN("failed to preempt ring %d\n", ring->idx); goto failure; } amdgpu_fence_process(ring); if (atomic_read(&ring->fence_drv.last_seq) != ring->fence_drv.sync_seq) { DRM_INFO("ring %d was preempted\n", ring->idx); amdgpu_ib_preempt_mark_partial_job(ring); /* swap out the old fences */ amdgpu_ib_preempt_fences_swap(ring, fences); amdgpu_fence_driver_force_completion(ring); /* resubmit unfinished jobs */ amdgpu_ib_preempt_job_recovery(&ring->sched); /* wait for jobs finished */ amdgpu_fence_wait_empty(ring); /* signal the old fences */ amdgpu_ib_preempt_signal_fences(fences, length); } failure: /* restart the scheduler */ kthread_unpark(ring->sched.thread); mutex_unlock(&adev->lock_reset); ttm_bo_unlock_delayed_workqueue(&adev->mman.bdev, resched); kfree(fences); return 0; } static int amdgpu_debugfs_sclk_set(void *data, u64 val) { int ret = 0; uint32_t max_freq, min_freq; struct amdgpu_device *adev = (struct amdgpu_device *)data; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return -EINVAL; ret = pm_runtime_get_sync(adev->ddev->dev); if (ret < 0) return ret; if (is_support_sw_smu(adev)) { ret = smu_get_dpm_freq_range(&adev->smu, SMU_SCLK, &min_freq, &max_freq, true); if (ret || val > max_freq || val < min_freq) return -EINVAL; ret = smu_set_soft_freq_range(&adev->smu, SMU_SCLK, (uint32_t)val, (uint32_t)val, true); } else { return 0; } pm_runtime_mark_last_busy(adev->ddev->dev); pm_runtime_put_autosuspend(adev->ddev->dev); if (ret) return -EINVAL; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_ib_preempt, NULL, amdgpu_debugfs_ib_preempt, "%llu\n"); DEFINE_SIMPLE_ATTRIBUTE(fops_sclk_set, NULL, amdgpu_debugfs_sclk_set, "%llu\n"); int amdgpu_debugfs_init(struct amdgpu_device *adev) { int r, i; adev->debugfs_preempt = debugfs_create_file("amdgpu_preempt_ib", 0600, adev->ddev->primary->debugfs_root, adev, &fops_ib_preempt); if (!(adev->debugfs_preempt)) { DRM_ERROR("unable to create amdgpu_preempt_ib debugsfs file\n"); return -EIO; } adev->smu.debugfs_sclk = debugfs_create_file("amdgpu_force_sclk", 0200, adev->ddev->primary->debugfs_root, adev, &fops_sclk_set); if (!(adev->smu.debugfs_sclk)) { DRM_ERROR("unable to create amdgpu_set_sclk debugsfs file\n"); return -EIO; } /* Register debugfs entries for amdgpu_ttm */ r = amdgpu_ttm_debugfs_init(adev); if (r) { DRM_ERROR("Failed to init debugfs\n"); return r; } r = amdgpu_debugfs_pm_init(adev); if (r) { DRM_ERROR("Failed to register debugfs file for dpm!\n"); return r; } if (amdgpu_debugfs_sa_init(adev)) { dev_err(adev->dev, "failed to register debugfs file for SA\n"); } if (amdgpu_debugfs_fence_init(adev)) dev_err(adev->dev, "fence debugfs file creation failed\n"); r = amdgpu_debugfs_gem_init(adev); if (r) DRM_ERROR("registering gem debugfs failed (%d).\n", r); r = amdgpu_debugfs_regs_init(adev); if (r) DRM_ERROR("registering register debugfs failed (%d).\n", r); r = amdgpu_debugfs_firmware_init(adev); if (r) DRM_ERROR("registering firmware debugfs failed (%d).\n", r); #if defined(CONFIG_DRM_AMD_DC) if (amdgpu_device_has_dc_support(adev)) { if (dtn_debugfs_init(adev)) DRM_ERROR("amdgpu: failed initialize dtn debugfs support.\n"); } #endif for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring) continue; if (amdgpu_debugfs_ring_init(adev, ring)) { DRM_ERROR("Failed to register debugfs file for rings !\n"); } } amdgpu_ras_debugfs_create_all(adev); amdgpu_debugfs_autodump_init(adev); return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_list, ARRAY_SIZE(amdgpu_debugfs_list)); } #else int amdgpu_debugfs_init(struct amdgpu_device *adev) { return 0; } int amdgpu_debugfs_regs_init(struct amdgpu_device *adev) { return 0; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1