Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 15102 | 92.43% | 20 | 24.69% |
Michel Dänzer | 299 | 1.83% | 10 | 12.35% |
Emily Deng | 213 | 1.30% | 1 | 1.23% |
Stephen Chandler Paul | 127 | 0.78% | 1 | 1.23% |
yanyang1 | 108 | 0.66% | 1 | 1.23% |
Tom St Denis | 82 | 0.50% | 5 | 6.17% |
Mario Kleiner | 74 | 0.45% | 4 | 4.94% |
Marek Olšák | 54 | 0.33% | 1 | 1.23% |
Peter Rosin | 53 | 0.32% | 1 | 1.23% |
Mauro Rossi | 52 | 0.32% | 1 | 1.23% |
Ville Syrjälä | 28 | 0.17% | 4 | 4.94% |
Thomas Zimmermann | 25 | 0.15% | 2 | 2.47% |
Christian König | 21 | 0.13% | 4 | 4.94% |
Junwei (Martin) Zhang | 17 | 0.10% | 1 | 1.23% |
Daniel Stone | 13 | 0.08% | 1 | 1.23% |
Eric Engestrom | 12 | 0.07% | 2 | 2.47% |
Gustavo Padovan | 11 | 0.07% | 3 | 3.70% |
Samuel Li | 9 | 0.06% | 7 | 8.64% |
Jean Delvare | 7 | 0.04% | 1 | 1.23% |
Daniel Vetter | 5 | 0.03% | 1 | 1.23% |
Maarten Lankhorst | 4 | 0.02% | 1 | 1.23% |
Sam Ravnborg | 4 | 0.02% | 1 | 1.23% |
Alexandre Demers | 4 | 0.02% | 2 | 2.47% |
Huang Rui | 3 | 0.02% | 1 | 1.23% |
Cihangir Akturk | 3 | 0.02% | 1 | 1.23% |
Baoyou Xie | 3 | 0.02% | 1 | 1.23% |
Hawking Zhang | 2 | 0.01% | 1 | 1.23% |
Jammy Zhou | 2 | 0.01% | 1 | 1.23% |
Shashank Sharma | 1 | 0.01% | 1 | 1.23% |
Total | 16338 | 81 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <drm/drm_fourcc.h> #include <drm/drm_vblank.h> #include "amdgpu.h" #include "amdgpu_pm.h" #include "amdgpu_i2c.h" #include "cikd.h" #include "atom.h" #include "amdgpu_atombios.h" #include "atombios_crtc.h" #include "atombios_encoders.h" #include "amdgpu_pll.h" #include "amdgpu_connectors.h" #include "amdgpu_display.h" #include "dce_v8_0.h" #include "dce/dce_8_0_d.h" #include "dce/dce_8_0_sh_mask.h" #include "gca/gfx_7_2_enum.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev); static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev); static const u32 crtc_offsets[6] = { CRTC0_REGISTER_OFFSET, CRTC1_REGISTER_OFFSET, CRTC2_REGISTER_OFFSET, CRTC3_REGISTER_OFFSET, CRTC4_REGISTER_OFFSET, CRTC5_REGISTER_OFFSET }; static const u32 hpd_offsets[] = { HPD0_REGISTER_OFFSET, HPD1_REGISTER_OFFSET, HPD2_REGISTER_OFFSET, HPD3_REGISTER_OFFSET, HPD4_REGISTER_OFFSET, HPD5_REGISTER_OFFSET }; static const uint32_t dig_offsets[] = { CRTC0_REGISTER_OFFSET, CRTC1_REGISTER_OFFSET, CRTC2_REGISTER_OFFSET, CRTC3_REGISTER_OFFSET, CRTC4_REGISTER_OFFSET, CRTC5_REGISTER_OFFSET, (0x13830 - 0x7030) >> 2, }; static const struct { uint32_t reg; uint32_t vblank; uint32_t vline; uint32_t hpd; } interrupt_status_offsets[6] = { { .reg = mmDISP_INTERRUPT_STATUS, .vblank = DISP_INTERRUPT_STATUS__LB_D1_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS__LB_D1_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS__DC_HPD1_INTERRUPT_MASK }, { .reg = mmDISP_INTERRUPT_STATUS_CONTINUE, .vblank = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS_CONTINUE__LB_D2_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS_CONTINUE__DC_HPD2_INTERRUPT_MASK }, { .reg = mmDISP_INTERRUPT_STATUS_CONTINUE2, .vblank = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS_CONTINUE2__LB_D3_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS_CONTINUE2__DC_HPD3_INTERRUPT_MASK }, { .reg = mmDISP_INTERRUPT_STATUS_CONTINUE3, .vblank = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS_CONTINUE3__LB_D4_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS_CONTINUE3__DC_HPD4_INTERRUPT_MASK }, { .reg = mmDISP_INTERRUPT_STATUS_CONTINUE4, .vblank = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS_CONTINUE4__LB_D5_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS_CONTINUE4__DC_HPD5_INTERRUPT_MASK }, { .reg = mmDISP_INTERRUPT_STATUS_CONTINUE5, .vblank = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VBLANK_INTERRUPT_MASK, .vline = DISP_INTERRUPT_STATUS_CONTINUE5__LB_D6_VLINE_INTERRUPT_MASK, .hpd = DISP_INTERRUPT_STATUS_CONTINUE5__DC_HPD6_INTERRUPT_MASK } }; static u32 dce_v8_0_audio_endpt_rreg(struct amdgpu_device *adev, u32 block_offset, u32 reg) { unsigned long flags; u32 r; spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); r = RREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset); spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); return r; } static void dce_v8_0_audio_endpt_wreg(struct amdgpu_device *adev, u32 block_offset, u32 reg, u32 v) { unsigned long flags; spin_lock_irqsave(&adev->audio_endpt_idx_lock, flags); WREG32(mmAZALIA_F0_CODEC_ENDPOINT_INDEX + block_offset, reg); WREG32(mmAZALIA_F0_CODEC_ENDPOINT_DATA + block_offset, v); spin_unlock_irqrestore(&adev->audio_endpt_idx_lock, flags); } static u32 dce_v8_0_vblank_get_counter(struct amdgpu_device *adev, int crtc) { if (crtc >= adev->mode_info.num_crtc) return 0; else return RREG32(mmCRTC_STATUS_FRAME_COUNT + crtc_offsets[crtc]); } static void dce_v8_0_pageflip_interrupt_init(struct amdgpu_device *adev) { unsigned i; /* Enable pflip interrupts */ for (i = 0; i < adev->mode_info.num_crtc; i++) amdgpu_irq_get(adev, &adev->pageflip_irq, i); } static void dce_v8_0_pageflip_interrupt_fini(struct amdgpu_device *adev) { unsigned i; /* Disable pflip interrupts */ for (i = 0; i < adev->mode_info.num_crtc; i++) amdgpu_irq_put(adev, &adev->pageflip_irq, i); } /** * dce_v8_0_page_flip - pageflip callback. * * @adev: amdgpu_device pointer * @crtc_id: crtc to cleanup pageflip on * @crtc_base: new address of the crtc (GPU MC address) * * Triggers the actual pageflip by updating the primary * surface base address. */ static void dce_v8_0_page_flip(struct amdgpu_device *adev, int crtc_id, u64 crtc_base, bool async) { struct amdgpu_crtc *amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; struct drm_framebuffer *fb = amdgpu_crtc->base.primary->fb; /* flip at hsync for async, default is vsync */ WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, async ? GRPH_FLIP_CONTROL__GRPH_SURFACE_UPDATE_H_RETRACE_EN_MASK : 0); /* update pitch */ WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb->pitches[0] / fb->format->cpp[0]); /* update the primary scanout addresses */ WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, upper_32_bits(crtc_base)); /* writing to the low address triggers the update */ WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, lower_32_bits(crtc_base)); /* post the write */ RREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset); } static int dce_v8_0_crtc_get_scanoutpos(struct amdgpu_device *adev, int crtc, u32 *vbl, u32 *position) { if ((crtc < 0) || (crtc >= adev->mode_info.num_crtc)) return -EINVAL; *vbl = RREG32(mmCRTC_V_BLANK_START_END + crtc_offsets[crtc]); *position = RREG32(mmCRTC_STATUS_POSITION + crtc_offsets[crtc]); return 0; } /** * dce_v8_0_hpd_sense - hpd sense callback. * * @adev: amdgpu_device pointer * @hpd: hpd (hotplug detect) pin * * Checks if a digital monitor is connected (evergreen+). * Returns true if connected, false if not connected. */ static bool dce_v8_0_hpd_sense(struct amdgpu_device *adev, enum amdgpu_hpd_id hpd) { bool connected = false; if (hpd >= adev->mode_info.num_hpd) return connected; if (RREG32(mmDC_HPD1_INT_STATUS + hpd_offsets[hpd]) & DC_HPD1_INT_STATUS__DC_HPD1_SENSE_MASK) connected = true; return connected; } /** * dce_v8_0_hpd_set_polarity - hpd set polarity callback. * * @adev: amdgpu_device pointer * @hpd: hpd (hotplug detect) pin * * Set the polarity of the hpd pin (evergreen+). */ static void dce_v8_0_hpd_set_polarity(struct amdgpu_device *adev, enum amdgpu_hpd_id hpd) { u32 tmp; bool connected = dce_v8_0_hpd_sense(adev, hpd); if (hpd >= adev->mode_info.num_hpd) return; tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); if (connected) tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; else tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_POLARITY_MASK; WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); } /** * dce_v8_0_hpd_init - hpd setup callback. * * @adev: amdgpu_device pointer * * Setup the hpd pins used by the card (evergreen+). * Enable the pin, set the polarity, and enable the hpd interrupts. */ static void dce_v8_0_hpd_init(struct amdgpu_device *adev) { struct drm_device *dev = adev->ddev; struct drm_connector *connector; struct drm_connector_list_iter iter; u32 tmp; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) continue; tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); tmp |= DC_HPD1_CONTROL__DC_HPD1_EN_MASK; WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); if (connector->connector_type == DRM_MODE_CONNECTOR_eDP || connector->connector_type == DRM_MODE_CONNECTOR_LVDS) { /* don't try to enable hpd on eDP or LVDS avoid breaking the * aux dp channel on imac and help (but not completely fix) * https://bugzilla.redhat.com/show_bug.cgi?id=726143 * also avoid interrupt storms during dpms. */ tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); tmp &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], tmp); continue; } dce_v8_0_hpd_set_polarity(adev, amdgpu_connector->hpd.hpd); amdgpu_irq_get(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); } drm_connector_list_iter_end(&iter); } /** * dce_v8_0_hpd_fini - hpd tear down callback. * * @adev: amdgpu_device pointer * * Tear down the hpd pins used by the card (evergreen+). * Disable the hpd interrupts. */ static void dce_v8_0_hpd_fini(struct amdgpu_device *adev) { struct drm_device *dev = adev->ddev; struct drm_connector *connector; struct drm_connector_list_iter iter; u32 tmp; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); if (amdgpu_connector->hpd.hpd >= adev->mode_info.num_hpd) continue; tmp = RREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd]); tmp &= ~DC_HPD1_CONTROL__DC_HPD1_EN_MASK; WREG32(mmDC_HPD1_CONTROL + hpd_offsets[amdgpu_connector->hpd.hpd], 0); amdgpu_irq_put(adev, &adev->hpd_irq, amdgpu_connector->hpd.hpd); } drm_connector_list_iter_end(&iter); } static u32 dce_v8_0_hpd_get_gpio_reg(struct amdgpu_device *adev) { return mmDC_GPIO_HPD_A; } static bool dce_v8_0_is_display_hung(struct amdgpu_device *adev) { u32 crtc_hung = 0; u32 crtc_status[6]; u32 i, j, tmp; for (i = 0; i < adev->mode_info.num_crtc; i++) { if (RREG32(mmCRTC_CONTROL + crtc_offsets[i]) & CRTC_CONTROL__CRTC_MASTER_EN_MASK) { crtc_status[i] = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); crtc_hung |= (1 << i); } } for (j = 0; j < 10; j++) { for (i = 0; i < adev->mode_info.num_crtc; i++) { if (crtc_hung & (1 << i)) { tmp = RREG32(mmCRTC_STATUS_HV_COUNT + crtc_offsets[i]); if (tmp != crtc_status[i]) crtc_hung &= ~(1 << i); } } if (crtc_hung == 0) return false; udelay(100); } return true; } static void dce_v8_0_set_vga_render_state(struct amdgpu_device *adev, bool render) { u32 tmp; /* Lockout access through VGA aperture*/ tmp = RREG32(mmVGA_HDP_CONTROL); if (render) tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 0); else tmp = REG_SET_FIELD(tmp, VGA_HDP_CONTROL, VGA_MEMORY_DISABLE, 1); WREG32(mmVGA_HDP_CONTROL, tmp); /* disable VGA render */ tmp = RREG32(mmVGA_RENDER_CONTROL); if (render) tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 1); else tmp = REG_SET_FIELD(tmp, VGA_RENDER_CONTROL, VGA_VSTATUS_CNTL, 0); WREG32(mmVGA_RENDER_CONTROL, tmp); } static int dce_v8_0_get_num_crtc(struct amdgpu_device *adev) { int num_crtc = 0; switch (adev->asic_type) { case CHIP_BONAIRE: case CHIP_HAWAII: num_crtc = 6; break; case CHIP_KAVERI: num_crtc = 4; break; case CHIP_KABINI: case CHIP_MULLINS: num_crtc = 2; break; default: num_crtc = 0; } return num_crtc; } void dce_v8_0_disable_dce(struct amdgpu_device *adev) { /*Disable VGA render and enabled crtc, if has DCE engine*/ if (amdgpu_atombios_has_dce_engine_info(adev)) { u32 tmp; int crtc_enabled, i; dce_v8_0_set_vga_render_state(adev, false); /*Disable crtc*/ for (i = 0; i < dce_v8_0_get_num_crtc(adev); i++) { crtc_enabled = REG_GET_FIELD(RREG32(mmCRTC_CONTROL + crtc_offsets[i]), CRTC_CONTROL, CRTC_MASTER_EN); if (crtc_enabled) { WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 1); tmp = RREG32(mmCRTC_CONTROL + crtc_offsets[i]); tmp = REG_SET_FIELD(tmp, CRTC_CONTROL, CRTC_MASTER_EN, 0); WREG32(mmCRTC_CONTROL + crtc_offsets[i], tmp); WREG32(mmCRTC_UPDATE_LOCK + crtc_offsets[i], 0); } } } } static void dce_v8_0_program_fmt(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); int bpc = 0; u32 tmp = 0; enum amdgpu_connector_dither dither = AMDGPU_FMT_DITHER_DISABLE; if (connector) { struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); bpc = amdgpu_connector_get_monitor_bpc(connector); dither = amdgpu_connector->dither; } /* LVDS/eDP FMT is set up by atom */ if (amdgpu_encoder->devices & ATOM_DEVICE_LCD_SUPPORT) return; /* not needed for analog */ if ((amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1) || (amdgpu_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2)) return; if (bpc == 0) return; switch (bpc) { case 6: if (dither == AMDGPU_FMT_DITHER_ENABLE) /* XXX sort out optimal dither settings */ tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | (0 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); else tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | (0 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); break; case 8: if (dither == AMDGPU_FMT_DITHER_ENABLE) /* XXX sort out optimal dither settings */ tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | (1 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); else tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | (1 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); break; case 10: if (dither == AMDGPU_FMT_DITHER_ENABLE) /* XXX sort out optimal dither settings */ tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_FRAME_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_HIGHPASS_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_RGB_RANDOM_ENABLE_MASK | FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_EN_MASK | (2 << FMT_BIT_DEPTH_CONTROL__FMT_SPATIAL_DITHER_DEPTH__SHIFT)); else tmp |= (FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_EN_MASK | (2 << FMT_BIT_DEPTH_CONTROL__FMT_TRUNCATE_DEPTH__SHIFT)); break; default: /* not needed */ break; } WREG32(mmFMT_BIT_DEPTH_CONTROL + amdgpu_crtc->crtc_offset, tmp); } /* display watermark setup */ /** * dce_v8_0_line_buffer_adjust - Set up the line buffer * * @adev: amdgpu_device pointer * @amdgpu_crtc: the selected display controller * @mode: the current display mode on the selected display * controller * * Setup up the line buffer allocation for * the selected display controller (CIK). * Returns the line buffer size in pixels. */ static u32 dce_v8_0_line_buffer_adjust(struct amdgpu_device *adev, struct amdgpu_crtc *amdgpu_crtc, struct drm_display_mode *mode) { u32 tmp, buffer_alloc, i; u32 pipe_offset = amdgpu_crtc->crtc_id * 0x8; /* * Line Buffer Setup * There are 6 line buffers, one for each display controllers. * There are 3 partitions per LB. Select the number of partitions * to enable based on the display width. For display widths larger * than 4096, you need use to use 2 display controllers and combine * them using the stereo blender. */ if (amdgpu_crtc->base.enabled && mode) { if (mode->crtc_hdisplay < 1920) { tmp = 1; buffer_alloc = 2; } else if (mode->crtc_hdisplay < 2560) { tmp = 2; buffer_alloc = 2; } else if (mode->crtc_hdisplay < 4096) { tmp = 0; buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; } else { DRM_DEBUG_KMS("Mode too big for LB!\n"); tmp = 0; buffer_alloc = (adev->flags & AMD_IS_APU) ? 2 : 4; } } else { tmp = 1; buffer_alloc = 0; } WREG32(mmLB_MEMORY_CTRL + amdgpu_crtc->crtc_offset, (tmp << LB_MEMORY_CTRL__LB_MEMORY_CONFIG__SHIFT) | (0x6B0 << LB_MEMORY_CTRL__LB_MEMORY_SIZE__SHIFT)); WREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset, (buffer_alloc << PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATED__SHIFT)); for (i = 0; i < adev->usec_timeout; i++) { if (RREG32(mmPIPE0_DMIF_BUFFER_CONTROL + pipe_offset) & PIPE0_DMIF_BUFFER_CONTROL__DMIF_BUFFERS_ALLOCATION_COMPLETED_MASK) break; udelay(1); } if (amdgpu_crtc->base.enabled && mode) { switch (tmp) { case 0: default: return 4096 * 2; case 1: return 1920 * 2; case 2: return 2560 * 2; } } /* controller not enabled, so no lb used */ return 0; } /** * cik_get_number_of_dram_channels - get the number of dram channels * * @adev: amdgpu_device pointer * * Look up the number of video ram channels (CIK). * Used for display watermark bandwidth calculations * Returns the number of dram channels */ static u32 cik_get_number_of_dram_channels(struct amdgpu_device *adev) { u32 tmp = RREG32(mmMC_SHARED_CHMAP); switch ((tmp & MC_SHARED_CHMAP__NOOFCHAN_MASK) >> MC_SHARED_CHMAP__NOOFCHAN__SHIFT) { case 0: default: return 1; case 1: return 2; case 2: return 4; case 3: return 8; case 4: return 3; case 5: return 6; case 6: return 10; case 7: return 12; case 8: return 16; } } struct dce8_wm_params { u32 dram_channels; /* number of dram channels */ u32 yclk; /* bandwidth per dram data pin in kHz */ u32 sclk; /* engine clock in kHz */ u32 disp_clk; /* display clock in kHz */ u32 src_width; /* viewport width */ u32 active_time; /* active display time in ns */ u32 blank_time; /* blank time in ns */ bool interlaced; /* mode is interlaced */ fixed20_12 vsc; /* vertical scale ratio */ u32 num_heads; /* number of active crtcs */ u32 bytes_per_pixel; /* bytes per pixel display + overlay */ u32 lb_size; /* line buffer allocated to pipe */ u32 vtaps; /* vertical scaler taps */ }; /** * dce_v8_0_dram_bandwidth - get the dram bandwidth * * @wm: watermark calculation data * * Calculate the raw dram bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns the dram bandwidth in MBytes/s */ static u32 dce_v8_0_dram_bandwidth(struct dce8_wm_params *wm) { /* Calculate raw DRAM Bandwidth */ fixed20_12 dram_efficiency; /* 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); dram_efficiency.full = dfixed_const(7); dram_efficiency.full = dfixed_div(dram_efficiency, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); return dfixed_trunc(bandwidth); } /** * dce_v8_0_dram_bandwidth_for_display - get the dram bandwidth for display * * @wm: watermark calculation data * * Calculate the dram bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the dram bandwidth for display in MBytes/s */ static u32 dce_v8_0_dram_bandwidth_for_display(struct dce8_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); return dfixed_trunc(bandwidth); } /** * dce_v8_0_data_return_bandwidth - get the data return bandwidth * * @wm: watermark calculation data * * Calculate the data return bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the data return bandwidth in MBytes/s */ static u32 dce_v8_0_data_return_bandwidth(struct dce8_wm_params *wm) { /* Calculate the display Data return Bandwidth */ fixed20_12 return_efficiency; /* 0.8 */ fixed20_12 sclk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(10); return_efficiency.full = dfixed_const(8); return_efficiency.full = dfixed_div(return_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, sclk); bandwidth.full = dfixed_mul(bandwidth, return_efficiency); return dfixed_trunc(bandwidth); } /** * dce_v8_0_dmif_request_bandwidth - get the dmif bandwidth * * @wm: watermark calculation data * * Calculate the dmif bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the dmif bandwidth in MBytes/s */ static u32 dce_v8_0_dmif_request_bandwidth(struct dce8_wm_params *wm) { /* Calculate the DMIF Request Bandwidth */ fixed20_12 disp_clk_request_efficiency; /* 0.8 */ fixed20_12 disp_clk, bandwidth; fixed20_12 a, b; a.full = dfixed_const(1000); disp_clk.full = dfixed_const(wm->disp_clk); disp_clk.full = dfixed_div(disp_clk, a); a.full = dfixed_const(32); b.full = dfixed_mul(a, disp_clk); a.full = dfixed_const(10); disp_clk_request_efficiency.full = dfixed_const(8); disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency); return dfixed_trunc(bandwidth); } /** * dce_v8_0_available_bandwidth - get the min available bandwidth * * @wm: watermark calculation data * * Calculate the min available bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the min available bandwidth in MBytes/s */ static u32 dce_v8_0_available_bandwidth(struct dce8_wm_params *wm) { /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ u32 dram_bandwidth = dce_v8_0_dram_bandwidth(wm); u32 data_return_bandwidth = dce_v8_0_data_return_bandwidth(wm); u32 dmif_req_bandwidth = dce_v8_0_dmif_request_bandwidth(wm); return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); } /** * dce_v8_0_average_bandwidth - get the average available bandwidth * * @wm: watermark calculation data * * Calculate the average available bandwidth used for display (CIK). * Used for display watermark bandwidth calculations * Returns the average available bandwidth in MBytes/s */ static u32 dce_v8_0_average_bandwidth(struct dce8_wm_params *wm) { /* Calculate the display mode Average Bandwidth * DisplayMode should contain the source and destination dimensions, * timing, etc. */ fixed20_12 bpp; fixed20_12 line_time; fixed20_12 src_width; fixed20_12 bandwidth; fixed20_12 a; a.full = dfixed_const(1000); line_time.full = dfixed_const(wm->active_time + wm->blank_time); line_time.full = dfixed_div(line_time, a); bpp.full = dfixed_const(wm->bytes_per_pixel); src_width.full = dfixed_const(wm->src_width); bandwidth.full = dfixed_mul(src_width, bpp); bandwidth.full = dfixed_mul(bandwidth, wm->vsc); bandwidth.full = dfixed_div(bandwidth, line_time); return dfixed_trunc(bandwidth); } /** * dce_v8_0_latency_watermark - get the latency watermark * * @wm: watermark calculation data * * Calculate the latency watermark (CIK). * Used for display watermark bandwidth calculations * Returns the latency watermark in ns */ static u32 dce_v8_0_latency_watermark(struct dce8_wm_params *wm) { /* First calculate the latency in ns */ u32 mc_latency = 2000; /* 2000 ns. */ u32 available_bandwidth = dce_v8_0_available_bandwidth(wm); u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + (wm->num_heads * cursor_line_pair_return_time); u32 latency = mc_latency + other_heads_data_return_time + dc_latency; u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; u32 tmp, dmif_size = 12288; fixed20_12 a, b, c; if (wm->num_heads == 0) return 0; a.full = dfixed_const(2); b.full = dfixed_const(1); if ((wm->vsc.full > a.full) || ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || (wm->vtaps >= 5) || ((wm->vsc.full >= a.full) && wm->interlaced)) max_src_lines_per_dst_line = 4; else max_src_lines_per_dst_line = 2; a.full = dfixed_const(available_bandwidth); b.full = dfixed_const(wm->num_heads); a.full = dfixed_div(a, b); tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512); tmp = min(dfixed_trunc(a), tmp); lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000); a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); b.full = dfixed_const(1000); c.full = dfixed_const(lb_fill_bw); b.full = dfixed_div(c, b); a.full = dfixed_div(a, b); line_fill_time = dfixed_trunc(a); if (line_fill_time < wm->active_time) return latency; else return latency + (line_fill_time - wm->active_time); } /** * dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display - check * average and available dram bandwidth * * @wm: watermark calculation data * * Check if the display average bandwidth fits in the display * dram bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm) { if (dce_v8_0_average_bandwidth(wm) <= (dce_v8_0_dram_bandwidth_for_display(wm) / wm->num_heads)) return true; else return false; } /** * dce_v8_0_average_bandwidth_vs_available_bandwidth - check * average and available bandwidth * * @wm: watermark calculation data * * Check if the display average bandwidth fits in the display * available bandwidth (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce_v8_0_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm) { if (dce_v8_0_average_bandwidth(wm) <= (dce_v8_0_available_bandwidth(wm) / wm->num_heads)) return true; else return false; } /** * dce_v8_0_check_latency_hiding - check latency hiding * * @wm: watermark calculation data * * Check latency hiding (CIK). * Used for display watermark bandwidth calculations * Returns true if the display fits, false if not. */ static bool dce_v8_0_check_latency_hiding(struct dce8_wm_params *wm) { u32 lb_partitions = wm->lb_size / wm->src_width; u32 line_time = wm->active_time + wm->blank_time; u32 latency_tolerant_lines; u32 latency_hiding; fixed20_12 a; a.full = dfixed_const(1); if (wm->vsc.full > a.full) latency_tolerant_lines = 1; else { if (lb_partitions <= (wm->vtaps + 1)) latency_tolerant_lines = 1; else latency_tolerant_lines = 2; } latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); if (dce_v8_0_latency_watermark(wm) <= latency_hiding) return true; else return false; } /** * dce_v8_0_program_watermarks - program display watermarks * * @adev: amdgpu_device pointer * @amdgpu_crtc: the selected display controller * @lb_size: line buffer size * @num_heads: number of display controllers in use * * Calculate and program the display watermarks for the * selected display controller (CIK). */ static void dce_v8_0_program_watermarks(struct amdgpu_device *adev, struct amdgpu_crtc *amdgpu_crtc, u32 lb_size, u32 num_heads) { struct drm_display_mode *mode = &amdgpu_crtc->base.mode; struct dce8_wm_params wm_low, wm_high; u32 active_time; u32 line_time = 0; u32 latency_watermark_a = 0, latency_watermark_b = 0; u32 tmp, wm_mask, lb_vblank_lead_lines = 0; if (amdgpu_crtc->base.enabled && num_heads && mode) { active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000, (u32)mode->clock); line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000, (u32)mode->clock); line_time = min(line_time, (u32)65535); /* watermark for high clocks */ if (adev->pm.dpm_enabled) { wm_high.yclk = amdgpu_dpm_get_mclk(adev, false) * 10; wm_high.sclk = amdgpu_dpm_get_sclk(adev, false) * 10; } else { wm_high.yclk = adev->pm.current_mclk * 10; wm_high.sclk = adev->pm.current_sclk * 10; } wm_high.disp_clk = mode->clock; wm_high.src_width = mode->crtc_hdisplay; wm_high.active_time = active_time; wm_high.blank_time = line_time - wm_high.active_time; wm_high.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_high.interlaced = true; wm_high.vsc = amdgpu_crtc->vsc; wm_high.vtaps = 1; if (amdgpu_crtc->rmx_type != RMX_OFF) wm_high.vtaps = 2; wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_high.lb_size = lb_size; wm_high.dram_channels = cik_get_number_of_dram_channels(adev); wm_high.num_heads = num_heads; /* set for high clocks */ latency_watermark_a = min(dce_v8_0_latency_watermark(&wm_high), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_high) || !dce_v8_0_check_latency_hiding(&wm_high) || (adev->mode_info.disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); } /* watermark for low clocks */ if (adev->pm.dpm_enabled) { wm_low.yclk = amdgpu_dpm_get_mclk(adev, true) * 10; wm_low.sclk = amdgpu_dpm_get_sclk(adev, true) * 10; } else { wm_low.yclk = adev->pm.current_mclk * 10; wm_low.sclk = adev->pm.current_sclk * 10; } wm_low.disp_clk = mode->clock; wm_low.src_width = mode->crtc_hdisplay; wm_low.active_time = active_time; wm_low.blank_time = line_time - wm_low.active_time; wm_low.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_low.interlaced = true; wm_low.vsc = amdgpu_crtc->vsc; wm_low.vtaps = 1; if (amdgpu_crtc->rmx_type != RMX_OFF) wm_low.vtaps = 2; wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_low.lb_size = lb_size; wm_low.dram_channels = cik_get_number_of_dram_channels(adev); wm_low.num_heads = num_heads; /* set for low clocks */ latency_watermark_b = min(dce_v8_0_latency_watermark(&wm_low), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce_v8_0_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || !dce_v8_0_average_bandwidth_vs_available_bandwidth(&wm_low) || !dce_v8_0_check_latency_hiding(&wm_low) || (adev->mode_info.disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); } lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay); } /* select wm A */ wm_mask = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); tmp = wm_mask; tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); tmp |= (1 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, ((latency_watermark_a << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); /* select wm B */ tmp = RREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset); tmp &= ~(3 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); tmp |= (2 << DPG_WATERMARK_MASK_CONTROL__URGENCY_WATERMARK_MASK__SHIFT); WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, tmp); WREG32(mmDPG_PIPE_URGENCY_CONTROL + amdgpu_crtc->crtc_offset, ((latency_watermark_b << DPG_PIPE_URGENCY_CONTROL__URGENCY_LOW_WATERMARK__SHIFT) | (line_time << DPG_PIPE_URGENCY_CONTROL__URGENCY_HIGH_WATERMARK__SHIFT))); /* restore original selection */ WREG32(mmDPG_WATERMARK_MASK_CONTROL + amdgpu_crtc->crtc_offset, wm_mask); /* save values for DPM */ amdgpu_crtc->line_time = line_time; amdgpu_crtc->wm_high = latency_watermark_a; amdgpu_crtc->wm_low = latency_watermark_b; /* Save number of lines the linebuffer leads before the scanout */ amdgpu_crtc->lb_vblank_lead_lines = lb_vblank_lead_lines; } /** * dce_v8_0_bandwidth_update - program display watermarks * * @adev: amdgpu_device pointer * * Calculate and program the display watermarks and line * buffer allocation (CIK). */ static void dce_v8_0_bandwidth_update(struct amdgpu_device *adev) { struct drm_display_mode *mode = NULL; u32 num_heads = 0, lb_size; int i; amdgpu_display_update_priority(adev); for (i = 0; i < adev->mode_info.num_crtc; i++) { if (adev->mode_info.crtcs[i]->base.enabled) num_heads++; } for (i = 0; i < adev->mode_info.num_crtc; i++) { mode = &adev->mode_info.crtcs[i]->base.mode; lb_size = dce_v8_0_line_buffer_adjust(adev, adev->mode_info.crtcs[i], mode); dce_v8_0_program_watermarks(adev, adev->mode_info.crtcs[i], lb_size, num_heads); } } static void dce_v8_0_audio_get_connected_pins(struct amdgpu_device *adev) { int i; u32 offset, tmp; for (i = 0; i < adev->mode_info.audio.num_pins; i++) { offset = adev->mode_info.audio.pin[i].offset; tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT); if (((tmp & AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY_MASK) >> AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT__PORT_CONNECTIVITY__SHIFT) == 1) adev->mode_info.audio.pin[i].connected = false; else adev->mode_info.audio.pin[i].connected = true; } } static struct amdgpu_audio_pin *dce_v8_0_audio_get_pin(struct amdgpu_device *adev) { int i; dce_v8_0_audio_get_connected_pins(adev); for (i = 0; i < adev->mode_info.audio.num_pins; i++) { if (adev->mode_info.audio.pin[i].connected) return &adev->mode_info.audio.pin[i]; } DRM_ERROR("No connected audio pins found!\n"); return NULL; } static void dce_v8_0_afmt_audio_select_pin(struct drm_encoder *encoder) { struct amdgpu_device *adev = encoder->dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; u32 offset; if (!dig || !dig->afmt || !dig->afmt->pin) return; offset = dig->afmt->offset; WREG32(mmAFMT_AUDIO_SRC_CONTROL + offset, (dig->afmt->pin->id << AFMT_AUDIO_SRC_CONTROL__AFMT_AUDIO_SRC_SELECT__SHIFT)); } static void dce_v8_0_audio_write_latency_fields(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; struct drm_connector *connector; struct drm_connector_list_iter iter; struct amdgpu_connector *amdgpu_connector = NULL; u32 tmp = 0, offset; if (!dig || !dig->afmt || !dig->afmt->pin) return; offset = dig->afmt->pin->offset; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { if (connector->encoder == encoder) { amdgpu_connector = to_amdgpu_connector(connector); break; } } drm_connector_list_iter_end(&iter); if (!amdgpu_connector) { DRM_ERROR("Couldn't find encoder's connector\n"); return; } if (mode->flags & DRM_MODE_FLAG_INTERLACE) { if (connector->latency_present[1]) tmp = (connector->video_latency[1] << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | (connector->audio_latency[1] << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); else tmp = (0 << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | (0 << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); } else { if (connector->latency_present[0]) tmp = (connector->video_latency[0] << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | (connector->audio_latency[0] << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); else tmp = (0 << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__VIDEO_LIPSYNC__SHIFT) | (0 << AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC__AUDIO_LIPSYNC__SHIFT); } WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_LIPSYNC, tmp); } static void dce_v8_0_audio_write_speaker_allocation(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; struct drm_connector *connector; struct drm_connector_list_iter iter; struct amdgpu_connector *amdgpu_connector = NULL; u32 offset, tmp; u8 *sadb = NULL; int sad_count; if (!dig || !dig->afmt || !dig->afmt->pin) return; offset = dig->afmt->pin->offset; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { if (connector->encoder == encoder) { amdgpu_connector = to_amdgpu_connector(connector); break; } } drm_connector_list_iter_end(&iter); if (!amdgpu_connector) { DRM_ERROR("Couldn't find encoder's connector\n"); return; } sad_count = drm_edid_to_speaker_allocation(amdgpu_connector_edid(connector), &sadb); if (sad_count < 0) { DRM_ERROR("Couldn't read Speaker Allocation Data Block: %d\n", sad_count); sad_count = 0; } /* program the speaker allocation */ tmp = RREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER); tmp &= ~(AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__DP_CONNECTION_MASK | AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION_MASK); /* set HDMI mode */ tmp |= AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__HDMI_CONNECTION_MASK; if (sad_count) tmp |= (sadb[0] << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); else tmp |= (5 << AZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER__SPEAKER_ALLOCATION__SHIFT); /* stereo */ WREG32_AUDIO_ENDPT(offset, ixAZALIA_F0_CODEC_PIN_CONTROL_CHANNEL_SPEAKER, tmp); kfree(sadb); } static void dce_v8_0_audio_write_sad_regs(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; u32 offset; struct drm_connector *connector; struct drm_connector_list_iter iter; struct amdgpu_connector *amdgpu_connector = NULL; struct cea_sad *sads; int i, sad_count; static const u16 eld_reg_to_type[][2] = { { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0, HDMI_AUDIO_CODING_TYPE_PCM }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR1, HDMI_AUDIO_CODING_TYPE_AC3 }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR2, HDMI_AUDIO_CODING_TYPE_MPEG1 }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR3, HDMI_AUDIO_CODING_TYPE_MP3 }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR4, HDMI_AUDIO_CODING_TYPE_MPEG2 }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR5, HDMI_AUDIO_CODING_TYPE_AAC_LC }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR6, HDMI_AUDIO_CODING_TYPE_DTS }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR7, HDMI_AUDIO_CODING_TYPE_ATRAC }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR9, HDMI_AUDIO_CODING_TYPE_EAC3 }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR10, HDMI_AUDIO_CODING_TYPE_DTS_HD }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR11, HDMI_AUDIO_CODING_TYPE_MLP }, { ixAZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR13, HDMI_AUDIO_CODING_TYPE_WMA_PRO }, }; if (!dig || !dig->afmt || !dig->afmt->pin) return; offset = dig->afmt->pin->offset; drm_connector_list_iter_begin(dev, &iter); drm_for_each_connector_iter(connector, &iter) { if (connector->encoder == encoder) { amdgpu_connector = to_amdgpu_connector(connector); break; } } drm_connector_list_iter_end(&iter); if (!amdgpu_connector) { DRM_ERROR("Couldn't find encoder's connector\n"); return; } sad_count = drm_edid_to_sad(amdgpu_connector_edid(connector), &sads); if (sad_count < 0) DRM_ERROR("Couldn't read SADs: %d\n", sad_count); if (sad_count <= 0) return; BUG_ON(!sads); for (i = 0; i < ARRAY_SIZE(eld_reg_to_type); i++) { u32 value = 0; u8 stereo_freqs = 0; int max_channels = -1; int j; for (j = 0; j < sad_count; j++) { struct cea_sad *sad = &sads[j]; if (sad->format == eld_reg_to_type[i][1]) { if (sad->channels > max_channels) { value = (sad->channels << AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__MAX_CHANNELS__SHIFT) | (sad->byte2 << AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__DESCRIPTOR_BYTE_2__SHIFT) | (sad->freq << AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES__SHIFT); max_channels = sad->channels; } if (sad->format == HDMI_AUDIO_CODING_TYPE_PCM) stereo_freqs |= sad->freq; else break; } } value |= (stereo_freqs << AZALIA_F0_CODEC_PIN_CONTROL_AUDIO_DESCRIPTOR0__SUPPORTED_FREQUENCIES_STEREO__SHIFT); WREG32_AUDIO_ENDPT(offset, eld_reg_to_type[i][0], value); } kfree(sads); } static void dce_v8_0_audio_enable(struct amdgpu_device *adev, struct amdgpu_audio_pin *pin, bool enable) { if (!pin) return; WREG32_AUDIO_ENDPT(pin->offset, ixAZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, enable ? AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL__AUDIO_ENABLED_MASK : 0); } static const u32 pin_offsets[7] = { (0x1780 - 0x1780), (0x1786 - 0x1780), (0x178c - 0x1780), (0x1792 - 0x1780), (0x1798 - 0x1780), (0x179d - 0x1780), (0x17a4 - 0x1780), }; static int dce_v8_0_audio_init(struct amdgpu_device *adev) { int i; if (!amdgpu_audio) return 0; adev->mode_info.audio.enabled = true; if (adev->asic_type == CHIP_KAVERI) /* KV: 4 streams, 7 endpoints */ adev->mode_info.audio.num_pins = 7; else if ((adev->asic_type == CHIP_KABINI) || (adev->asic_type == CHIP_MULLINS)) /* KB/ML: 2 streams, 3 endpoints */ adev->mode_info.audio.num_pins = 3; else if ((adev->asic_type == CHIP_BONAIRE) || (adev->asic_type == CHIP_HAWAII))/* BN/HW: 6 streams, 7 endpoints */ adev->mode_info.audio.num_pins = 7; else adev->mode_info.audio.num_pins = 3; for (i = 0; i < adev->mode_info.audio.num_pins; i++) { adev->mode_info.audio.pin[i].channels = -1; adev->mode_info.audio.pin[i].rate = -1; adev->mode_info.audio.pin[i].bits_per_sample = -1; adev->mode_info.audio.pin[i].status_bits = 0; adev->mode_info.audio.pin[i].category_code = 0; adev->mode_info.audio.pin[i].connected = false; adev->mode_info.audio.pin[i].offset = pin_offsets[i]; adev->mode_info.audio.pin[i].id = i; /* disable audio. it will be set up later */ /* XXX remove once we switch to ip funcs */ dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); } return 0; } static void dce_v8_0_audio_fini(struct amdgpu_device *adev) { int i; if (!amdgpu_audio) return; if (!adev->mode_info.audio.enabled) return; for (i = 0; i < adev->mode_info.audio.num_pins; i++) dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); adev->mode_info.audio.enabled = false; } /* * update the N and CTS parameters for a given pixel clock rate */ static void dce_v8_0_afmt_update_ACR(struct drm_encoder *encoder, uint32_t clock) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_afmt_acr acr = amdgpu_afmt_acr(clock); struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; uint32_t offset = dig->afmt->offset; WREG32(mmHDMI_ACR_32_0 + offset, (acr.cts_32khz << HDMI_ACR_32_0__HDMI_ACR_CTS_32__SHIFT)); WREG32(mmHDMI_ACR_32_1 + offset, acr.n_32khz); WREG32(mmHDMI_ACR_44_0 + offset, (acr.cts_44_1khz << HDMI_ACR_44_0__HDMI_ACR_CTS_44__SHIFT)); WREG32(mmHDMI_ACR_44_1 + offset, acr.n_44_1khz); WREG32(mmHDMI_ACR_48_0 + offset, (acr.cts_48khz << HDMI_ACR_48_0__HDMI_ACR_CTS_48__SHIFT)); WREG32(mmHDMI_ACR_48_1 + offset, acr.n_48khz); } /* * build a HDMI Video Info Frame */ static void dce_v8_0_afmt_update_avi_infoframe(struct drm_encoder *encoder, void *buffer, size_t size) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; uint32_t offset = dig->afmt->offset; uint8_t *frame = buffer + 3; uint8_t *header = buffer; WREG32(mmAFMT_AVI_INFO0 + offset, frame[0x0] | (frame[0x1] << 8) | (frame[0x2] << 16) | (frame[0x3] << 24)); WREG32(mmAFMT_AVI_INFO1 + offset, frame[0x4] | (frame[0x5] << 8) | (frame[0x6] << 16) | (frame[0x7] << 24)); WREG32(mmAFMT_AVI_INFO2 + offset, frame[0x8] | (frame[0x9] << 8) | (frame[0xA] << 16) | (frame[0xB] << 24)); WREG32(mmAFMT_AVI_INFO3 + offset, frame[0xC] | (frame[0xD] << 8) | (header[1] << 24)); } static void dce_v8_0_audio_set_dto(struct drm_encoder *encoder, u32 clock) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); u32 dto_phase = 24 * 1000; u32 dto_modulo = clock; if (!dig || !dig->afmt) return; /* XXX two dtos; generally use dto0 for hdmi */ /* Express [24MHz / target pixel clock] as an exact rational * number (coefficient of two integer numbers. DCCG_AUDIO_DTOx_PHASE * is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator */ WREG32(mmDCCG_AUDIO_DTO_SOURCE, (amdgpu_crtc->crtc_id << DCCG_AUDIO_DTO_SOURCE__DCCG_AUDIO_DTO0_SOURCE_SEL__SHIFT)); WREG32(mmDCCG_AUDIO_DTO0_PHASE, dto_phase); WREG32(mmDCCG_AUDIO_DTO0_MODULE, dto_modulo); } /* * update the info frames with the data from the current display mode */ static void dce_v8_0_afmt_setmode(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); u8 buffer[HDMI_INFOFRAME_HEADER_SIZE + HDMI_AVI_INFOFRAME_SIZE]; struct hdmi_avi_infoframe frame; uint32_t offset, val; ssize_t err; int bpc = 8; if (!dig || !dig->afmt) return; /* Silent, r600_hdmi_enable will raise WARN for us */ if (!dig->afmt->enabled) return; offset = dig->afmt->offset; /* hdmi deep color mode general control packets setup, if bpc > 8 */ if (encoder->crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(encoder->crtc); bpc = amdgpu_crtc->bpc; } /* disable audio prior to setting up hw */ dig->afmt->pin = dce_v8_0_audio_get_pin(adev); dce_v8_0_audio_enable(adev, dig->afmt->pin, false); dce_v8_0_audio_set_dto(encoder, mode->clock); WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK); /* send null packets when required */ WREG32(mmAFMT_AUDIO_CRC_CONTROL + offset, 0x1000); val = RREG32(mmHDMI_CONTROL + offset); val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; val &= ~HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH_MASK; switch (bpc) { case 0: case 6: case 8: case 16: default: DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n", connector->name, bpc); break; case 10: val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; val |= 1 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n", connector->name); break; case 12: val |= HDMI_CONTROL__HDMI_DEEP_COLOR_ENABLE_MASK; val |= 2 << HDMI_CONTROL__HDMI_DEEP_COLOR_DEPTH__SHIFT; DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n", connector->name); break; } WREG32(mmHDMI_CONTROL + offset, val); WREG32(mmHDMI_VBI_PACKET_CONTROL + offset, HDMI_VBI_PACKET_CONTROL__HDMI_NULL_SEND_MASK | /* send null packets when required */ HDMI_VBI_PACKET_CONTROL__HDMI_GC_SEND_MASK | /* send general control packets */ HDMI_VBI_PACKET_CONTROL__HDMI_GC_CONT_MASK); /* send general control packets every frame */ WREG32(mmHDMI_INFOFRAME_CONTROL0 + offset, HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_SEND_MASK | /* enable audio info frames (frames won't be set until audio is enabled) */ HDMI_INFOFRAME_CONTROL0__HDMI_AUDIO_INFO_CONT_MASK); /* required for audio info values to be updated */ WREG32(mmAFMT_INFOFRAME_CONTROL0 + offset, AFMT_INFOFRAME_CONTROL0__AFMT_AUDIO_INFO_UPDATE_MASK); /* required for audio info values to be updated */ WREG32(mmHDMI_INFOFRAME_CONTROL1 + offset, (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AUDIO_INFO_LINE__SHIFT)); /* anything other than 0 */ WREG32(mmHDMI_GC + offset, 0); /* unset HDMI_GC_AVMUTE */ WREG32(mmHDMI_AUDIO_PACKET_CONTROL + offset, (1 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_DELAY_EN__SHIFT) | /* set the default audio delay */ (3 << HDMI_AUDIO_PACKET_CONTROL__HDMI_AUDIO_PACKETS_PER_LINE__SHIFT)); /* should be suffient for all audio modes and small enough for all hblanks */ WREG32(mmAFMT_AUDIO_PACKET_CONTROL + offset, AFMT_AUDIO_PACKET_CONTROL__AFMT_60958_CS_UPDATE_MASK); /* allow 60958 channel status fields to be updated */ /* fglrx clears sth in AFMT_AUDIO_PACKET_CONTROL2 here */ if (bpc > 8) WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ else WREG32(mmHDMI_ACR_PACKET_CONTROL + offset, HDMI_ACR_PACKET_CONTROL__HDMI_ACR_SOURCE_MASK | /* select SW CTS value */ HDMI_ACR_PACKET_CONTROL__HDMI_ACR_AUTO_SEND_MASK); /* allow hw to sent ACR packets when required */ dce_v8_0_afmt_update_ACR(encoder, mode->clock); WREG32(mmAFMT_60958_0 + offset, (1 << AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L__SHIFT)); WREG32(mmAFMT_60958_1 + offset, (2 << AFMT_60958_1__AFMT_60958_CS_CHANNEL_NUMBER_R__SHIFT)); WREG32(mmAFMT_60958_2 + offset, (3 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_2__SHIFT) | (4 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_3__SHIFT) | (5 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_4__SHIFT) | (6 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_5__SHIFT) | (7 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_6__SHIFT) | (8 << AFMT_60958_2__AFMT_60958_CS_CHANNEL_NUMBER_7__SHIFT)); dce_v8_0_audio_write_speaker_allocation(encoder); WREG32(mmAFMT_AUDIO_PACKET_CONTROL2 + offset, (0xff << AFMT_AUDIO_PACKET_CONTROL2__AFMT_AUDIO_CHANNEL_ENABLE__SHIFT)); dce_v8_0_afmt_audio_select_pin(encoder); dce_v8_0_audio_write_sad_regs(encoder); dce_v8_0_audio_write_latency_fields(encoder, mode); err = drm_hdmi_avi_infoframe_from_display_mode(&frame, connector, mode); if (err < 0) { DRM_ERROR("failed to setup AVI infoframe: %zd\n", err); return; } err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { DRM_ERROR("failed to pack AVI infoframe: %zd\n", err); return; } dce_v8_0_afmt_update_avi_infoframe(encoder, buffer, sizeof(buffer)); WREG32_OR(mmHDMI_INFOFRAME_CONTROL0 + offset, HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_SEND_MASK | /* enable AVI info frames */ HDMI_INFOFRAME_CONTROL0__HDMI_AVI_INFO_CONT_MASK); /* required for audio info values to be updated */ WREG32_P(mmHDMI_INFOFRAME_CONTROL1 + offset, (2 << HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE__SHIFT), /* anything other than 0 */ ~HDMI_INFOFRAME_CONTROL1__HDMI_AVI_INFO_LINE_MASK); WREG32_OR(mmAFMT_AUDIO_PACKET_CONTROL + offset, AFMT_AUDIO_PACKET_CONTROL__AFMT_AUDIO_SAMPLE_SEND_MASK); /* send audio packets */ WREG32(mmAFMT_RAMP_CONTROL0 + offset, 0x00FFFFFF); WREG32(mmAFMT_RAMP_CONTROL1 + offset, 0x007FFFFF); WREG32(mmAFMT_RAMP_CONTROL2 + offset, 0x00000001); WREG32(mmAFMT_RAMP_CONTROL3 + offset, 0x00000001); /* enable audio after setting up hw */ dce_v8_0_audio_enable(adev, dig->afmt->pin, true); } static void dce_v8_0_afmt_enable(struct drm_encoder *encoder, bool enable) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; if (!dig || !dig->afmt) return; /* Silent, r600_hdmi_enable will raise WARN for us */ if (enable && dig->afmt->enabled) return; if (!enable && !dig->afmt->enabled) return; if (!enable && dig->afmt->pin) { dce_v8_0_audio_enable(adev, dig->afmt->pin, false); dig->afmt->pin = NULL; } dig->afmt->enabled = enable; DRM_DEBUG("%sabling AFMT interface @ 0x%04X for encoder 0x%x\n", enable ? "En" : "Dis", dig->afmt->offset, amdgpu_encoder->encoder_id); } static int dce_v8_0_afmt_init(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->mode_info.num_dig; i++) adev->mode_info.afmt[i] = NULL; /* DCE8 has audio blocks tied to DIG encoders */ for (i = 0; i < adev->mode_info.num_dig; i++) { adev->mode_info.afmt[i] = kzalloc(sizeof(struct amdgpu_afmt), GFP_KERNEL); if (adev->mode_info.afmt[i]) { adev->mode_info.afmt[i]->offset = dig_offsets[i]; adev->mode_info.afmt[i]->id = i; } else { int j; for (j = 0; j < i; j++) { kfree(adev->mode_info.afmt[j]); adev->mode_info.afmt[j] = NULL; } return -ENOMEM; } } return 0; } static void dce_v8_0_afmt_fini(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->mode_info.num_dig; i++) { kfree(adev->mode_info.afmt[i]); adev->mode_info.afmt[i] = NULL; } } static const u32 vga_control_regs[6] = { mmD1VGA_CONTROL, mmD2VGA_CONTROL, mmD3VGA_CONTROL, mmD4VGA_CONTROL, mmD5VGA_CONTROL, mmD6VGA_CONTROL, }; static void dce_v8_0_vga_enable(struct drm_crtc *crtc, bool enable) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; u32 vga_control; vga_control = RREG32(vga_control_regs[amdgpu_crtc->crtc_id]) & ~1; if (enable) WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control | 1); else WREG32(vga_control_regs[amdgpu_crtc->crtc_id], vga_control); } static void dce_v8_0_grph_enable(struct drm_crtc *crtc, bool enable) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; if (enable) WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 1); else WREG32(mmGRPH_ENABLE + amdgpu_crtc->crtc_offset, 0); } static int dce_v8_0_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; struct drm_framebuffer *target_fb; struct drm_gem_object *obj; struct amdgpu_bo *abo; uint64_t fb_location, tiling_flags; uint32_t fb_format, fb_pitch_pixels; u32 fb_swap = (GRPH_ENDIAN_NONE << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); u32 pipe_config; u32 viewport_w, viewport_h; int r; bool bypass_lut = false; struct drm_format_name_buf format_name; /* no fb bound */ if (!atomic && !crtc->primary->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } if (atomic) target_fb = fb; else target_fb = crtc->primary->fb; /* If atomic, assume fb object is pinned & idle & fenced and * just update base pointers */ obj = target_fb->obj[0]; abo = gem_to_amdgpu_bo(obj); r = amdgpu_bo_reserve(abo, false); if (unlikely(r != 0)) return r; if (!atomic) { r = amdgpu_bo_pin(abo, AMDGPU_GEM_DOMAIN_VRAM); if (unlikely(r != 0)) { amdgpu_bo_unreserve(abo); return -EINVAL; } } fb_location = amdgpu_bo_gpu_offset(abo); amdgpu_bo_get_tiling_flags(abo, &tiling_flags); amdgpu_bo_unreserve(abo); pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG); switch (target_fb->format->format) { case DRM_FORMAT_C8: fb_format = ((GRPH_DEPTH_8BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_INDEXED << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); break; case DRM_FORMAT_XRGB4444: case DRM_FORMAT_ARGB4444: fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB4444 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB1555 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; case DRM_FORMAT_BGRX5551: case DRM_FORMAT_BGRA5551: fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_BGRA5551 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; case DRM_FORMAT_RGB565: fb_format = ((GRPH_DEPTH_16BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB565 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN16 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB2101010 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ bypass_lut = true; break; case DRM_FORMAT_BGRX1010102: case DRM_FORMAT_BGRA1010102: fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_BGRA1010102 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); #ifdef __BIG_ENDIAN fb_swap = (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif /* Greater 8 bpc fb needs to bypass hw-lut to retain precision */ bypass_lut = true; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: fb_format = ((GRPH_DEPTH_32BPP << GRPH_CONTROL__GRPH_DEPTH__SHIFT) | (GRPH_FORMAT_ARGB8888 << GRPH_CONTROL__GRPH_FORMAT__SHIFT)); fb_swap = ((GRPH_RED_SEL_B << GRPH_SWAP_CNTL__GRPH_RED_CROSSBAR__SHIFT) | (GRPH_BLUE_SEL_R << GRPH_SWAP_CNTL__GRPH_BLUE_CROSSBAR__SHIFT)); #ifdef __BIG_ENDIAN fb_swap |= (GRPH_ENDIAN_8IN32 << GRPH_SWAP_CNTL__GRPH_ENDIAN_SWAP__SHIFT); #endif break; default: DRM_ERROR("Unsupported screen format %s\n", drm_get_format_name(target_fb->format->format, &format_name)); return -EINVAL; } if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_2D_TILED_THIN1) { unsigned bankw, bankh, mtaspect, tile_split, num_banks; bankw = AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH); bankh = AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT); mtaspect = AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT); tile_split = AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT); num_banks = AMDGPU_TILING_GET(tiling_flags, NUM_BANKS); fb_format |= (num_banks << GRPH_CONTROL__GRPH_NUM_BANKS__SHIFT); fb_format |= (GRPH_ARRAY_2D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); fb_format |= (tile_split << GRPH_CONTROL__GRPH_TILE_SPLIT__SHIFT); fb_format |= (bankw << GRPH_CONTROL__GRPH_BANK_WIDTH__SHIFT); fb_format |= (bankh << GRPH_CONTROL__GRPH_BANK_HEIGHT__SHIFT); fb_format |= (mtaspect << GRPH_CONTROL__GRPH_MACRO_TILE_ASPECT__SHIFT); fb_format |= (DISPLAY_MICRO_TILING << GRPH_CONTROL__GRPH_MICRO_TILE_MODE__SHIFT); } else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == ARRAY_1D_TILED_THIN1) { fb_format |= (GRPH_ARRAY_1D_TILED_THIN1 << GRPH_CONTROL__GRPH_ARRAY_MODE__SHIFT); } fb_format |= (pipe_config << GRPH_CONTROL__GRPH_PIPE_CONFIG__SHIFT); dce_v8_0_vga_enable(crtc, false); /* Make sure surface address is updated at vertical blank rather than * horizontal blank */ WREG32(mmGRPH_FLIP_CONTROL + amdgpu_crtc->crtc_offset, 0); WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(mmGRPH_PRIMARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, (u32)fb_location & GRPH_PRIMARY_SURFACE_ADDRESS__GRPH_PRIMARY_SURFACE_ADDRESS_MASK); WREG32(mmGRPH_SECONDARY_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, (u32) fb_location & GRPH_SECONDARY_SURFACE_ADDRESS__GRPH_SECONDARY_SURFACE_ADDRESS_MASK); WREG32(mmGRPH_CONTROL + amdgpu_crtc->crtc_offset, fb_format); WREG32(mmGRPH_SWAP_CNTL + amdgpu_crtc->crtc_offset, fb_swap); /* * The LUT only has 256 slots for indexing by a 8 bpc fb. Bypass the LUT * for > 8 bpc scanout to avoid truncation of fb indices to 8 msb's, to * retain the full precision throughout the pipeline. */ WREG32_P(mmGRPH_LUT_10BIT_BYPASS_CONTROL + amdgpu_crtc->crtc_offset, (bypass_lut ? LUT_10BIT_BYPASS_EN : 0), ~LUT_10BIT_BYPASS_EN); if (bypass_lut) DRM_DEBUG_KMS("Bypassing hardware LUT due to 10 bit fb scanout.\n"); WREG32(mmGRPH_SURFACE_OFFSET_X + amdgpu_crtc->crtc_offset, 0); WREG32(mmGRPH_SURFACE_OFFSET_Y + amdgpu_crtc->crtc_offset, 0); WREG32(mmGRPH_X_START + amdgpu_crtc->crtc_offset, 0); WREG32(mmGRPH_Y_START + amdgpu_crtc->crtc_offset, 0); WREG32(mmGRPH_X_END + amdgpu_crtc->crtc_offset, target_fb->width); WREG32(mmGRPH_Y_END + amdgpu_crtc->crtc_offset, target_fb->height); fb_pitch_pixels = target_fb->pitches[0] / target_fb->format->cpp[0]; WREG32(mmGRPH_PITCH + amdgpu_crtc->crtc_offset, fb_pitch_pixels); dce_v8_0_grph_enable(crtc, true); WREG32(mmLB_DESKTOP_HEIGHT + amdgpu_crtc->crtc_offset, target_fb->height); x &= ~3; y &= ~1; WREG32(mmVIEWPORT_START + amdgpu_crtc->crtc_offset, (x << 16) | y); viewport_w = crtc->mode.hdisplay; viewport_h = (crtc->mode.vdisplay + 1) & ~1; WREG32(mmVIEWPORT_SIZE + amdgpu_crtc->crtc_offset, (viewport_w << 16) | viewport_h); /* set pageflip to happen anywhere in vblank interval */ WREG32(mmMASTER_UPDATE_MODE + amdgpu_crtc->crtc_offset, 0); if (!atomic && fb && fb != crtc->primary->fb) { abo = gem_to_amdgpu_bo(fb->obj[0]); r = amdgpu_bo_reserve(abo, true); if (unlikely(r != 0)) return r; amdgpu_bo_unpin(abo); amdgpu_bo_unreserve(abo); } /* Bytes per pixel may have changed */ dce_v8_0_bandwidth_update(adev); return 0; } static void dce_v8_0_set_interleave(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); if (mode->flags & DRM_MODE_FLAG_INTERLACE) WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, LB_DATA_FORMAT__INTERLEAVE_EN__SHIFT); else WREG32(mmLB_DATA_FORMAT + amdgpu_crtc->crtc_offset, 0); } static void dce_v8_0_crtc_load_lut(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; u16 *r, *g, *b; int i; DRM_DEBUG_KMS("%d\n", amdgpu_crtc->crtc_id); WREG32(mmINPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, ((INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_GRPH_MODE__SHIFT) | (INPUT_CSC_BYPASS << INPUT_CSC_CONTROL__INPUT_CSC_OVL_MODE__SHIFT))); WREG32(mmPRESCALE_GRPH_CONTROL + amdgpu_crtc->crtc_offset, PRESCALE_GRPH_CONTROL__GRPH_PRESCALE_BYPASS_MASK); WREG32(mmPRESCALE_OVL_CONTROL + amdgpu_crtc->crtc_offset, PRESCALE_OVL_CONTROL__OVL_PRESCALE_BYPASS_MASK); WREG32(mmINPUT_GAMMA_CONTROL + amdgpu_crtc->crtc_offset, ((INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__GRPH_INPUT_GAMMA_MODE__SHIFT) | (INPUT_GAMMA_USE_LUT << INPUT_GAMMA_CONTROL__OVL_INPUT_GAMMA_MODE__SHIFT))); WREG32(mmDC_LUT_CONTROL + amdgpu_crtc->crtc_offset, 0); WREG32(mmDC_LUT_BLACK_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0); WREG32(mmDC_LUT_BLACK_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0); WREG32(mmDC_LUT_BLACK_OFFSET_RED + amdgpu_crtc->crtc_offset, 0); WREG32(mmDC_LUT_WHITE_OFFSET_BLUE + amdgpu_crtc->crtc_offset, 0xffff); WREG32(mmDC_LUT_WHITE_OFFSET_GREEN + amdgpu_crtc->crtc_offset, 0xffff); WREG32(mmDC_LUT_WHITE_OFFSET_RED + amdgpu_crtc->crtc_offset, 0xffff); WREG32(mmDC_LUT_RW_MODE + amdgpu_crtc->crtc_offset, 0); WREG32(mmDC_LUT_WRITE_EN_MASK + amdgpu_crtc->crtc_offset, 0x00000007); WREG32(mmDC_LUT_RW_INDEX + amdgpu_crtc->crtc_offset, 0); r = crtc->gamma_store; g = r + crtc->gamma_size; b = g + crtc->gamma_size; for (i = 0; i < 256; i++) { WREG32(mmDC_LUT_30_COLOR + amdgpu_crtc->crtc_offset, ((*r++ & 0xffc0) << 14) | ((*g++ & 0xffc0) << 4) | (*b++ >> 6)); } WREG32(mmDEGAMMA_CONTROL + amdgpu_crtc->crtc_offset, ((DEGAMMA_BYPASS << DEGAMMA_CONTROL__GRPH_DEGAMMA_MODE__SHIFT) | (DEGAMMA_BYPASS << DEGAMMA_CONTROL__OVL_DEGAMMA_MODE__SHIFT) | (DEGAMMA_BYPASS << DEGAMMA_CONTROL__CURSOR_DEGAMMA_MODE__SHIFT))); WREG32(mmGAMUT_REMAP_CONTROL + amdgpu_crtc->crtc_offset, ((GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__GRPH_GAMUT_REMAP_MODE__SHIFT) | (GAMUT_REMAP_BYPASS << GAMUT_REMAP_CONTROL__OVL_GAMUT_REMAP_MODE__SHIFT))); WREG32(mmREGAMMA_CONTROL + amdgpu_crtc->crtc_offset, ((REGAMMA_BYPASS << REGAMMA_CONTROL__GRPH_REGAMMA_MODE__SHIFT) | (REGAMMA_BYPASS << REGAMMA_CONTROL__OVL_REGAMMA_MODE__SHIFT))); WREG32(mmOUTPUT_CSC_CONTROL + amdgpu_crtc->crtc_offset, ((OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_GRPH_MODE__SHIFT) | (OUTPUT_CSC_BYPASS << OUTPUT_CSC_CONTROL__OUTPUT_CSC_OVL_MODE__SHIFT))); /* XXX match this to the depth of the crtc fmt block, move to modeset? */ WREG32(0x1a50 + amdgpu_crtc->crtc_offset, 0); /* XXX this only needs to be programmed once per crtc at startup, * not sure where the best place for it is */ WREG32(mmALPHA_CONTROL + amdgpu_crtc->crtc_offset, ALPHA_CONTROL__CURSOR_ALPHA_BLND_ENA_MASK); } static int dce_v8_0_pick_dig_encoder(struct drm_encoder *encoder) { struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; switch (amdgpu_encoder->encoder_id) { case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: if (dig->linkb) return 1; else return 0; break; case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: if (dig->linkb) return 3; else return 2; break; case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: if (dig->linkb) return 5; else return 4; break; case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: return 6; break; default: DRM_ERROR("invalid encoder_id: 0x%x\n", amdgpu_encoder->encoder_id); return 0; } } /** * dce_v8_0_pick_pll - Allocate a PPLL for use by the crtc. * * @crtc: drm crtc * * Returns the PPLL (Pixel PLL) to be used by the crtc. For DP monitors * a single PPLL can be used for all DP crtcs/encoders. For non-DP * monitors a dedicated PPLL must be used. If a particular board has * an external DP PLL, return ATOM_PPLL_INVALID to skip PLL programming * as there is no need to program the PLL itself. If we are not able to * allocate a PLL, return ATOM_PPLL_INVALID to skip PLL programming to * avoid messing up an existing monitor. * * Asic specific PLL information * * DCE 8.x * KB/KV * - PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) * CI * - PPLL0, PPLL1, PPLL2 are available for all UNIPHY (both DP and non-DP) and DAC * */ static u32 dce_v8_0_pick_pll(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; u32 pll_in_use; int pll; if (ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) { if (adev->clock.dp_extclk) /* skip PPLL programming if using ext clock */ return ATOM_PPLL_INVALID; else { /* use the same PPLL for all DP monitors */ pll = amdgpu_pll_get_shared_dp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } } else { /* use the same PPLL for all monitors with the same clock */ pll = amdgpu_pll_get_shared_nondp_ppll(crtc); if (pll != ATOM_PPLL_INVALID) return pll; } /* otherwise, pick one of the plls */ if ((adev->asic_type == CHIP_KABINI) || (adev->asic_type == CHIP_MULLINS)) { /* KB/ML has PPLL1 and PPLL2 */ pll_in_use = amdgpu_pll_get_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } else { /* CI/KV has PPLL0, PPLL1, and PPLL2 */ pll_in_use = amdgpu_pll_get_use_mask(crtc); if (!(pll_in_use & (1 << ATOM_PPLL2))) return ATOM_PPLL2; if (!(pll_in_use & (1 << ATOM_PPLL1))) return ATOM_PPLL1; if (!(pll_in_use & (1 << ATOM_PPLL0))) return ATOM_PPLL0; DRM_ERROR("unable to allocate a PPLL\n"); return ATOM_PPLL_INVALID; } return ATOM_PPLL_INVALID; } static void dce_v8_0_lock_cursor(struct drm_crtc *crtc, bool lock) { struct amdgpu_device *adev = crtc->dev->dev_private; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); uint32_t cur_lock; cur_lock = RREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset); if (lock) cur_lock |= CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; else cur_lock &= ~CUR_UPDATE__CURSOR_UPDATE_LOCK_MASK; WREG32(mmCUR_UPDATE + amdgpu_crtc->crtc_offset, cur_lock); } static void dce_v8_0_hide_cursor(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = crtc->dev->dev_private; WREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); } static void dce_v8_0_show_cursor(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = crtc->dev->dev_private; WREG32(mmCUR_SURFACE_ADDRESS_HIGH + amdgpu_crtc->crtc_offset, upper_32_bits(amdgpu_crtc->cursor_addr)); WREG32(mmCUR_SURFACE_ADDRESS + amdgpu_crtc->crtc_offset, lower_32_bits(amdgpu_crtc->cursor_addr)); WREG32(mmCUR_CONTROL + amdgpu_crtc->crtc_offset, CUR_CONTROL__CURSOR_EN_MASK | (CURSOR_24_8_PRE_MULT << CUR_CONTROL__CURSOR_MODE__SHIFT) | (CURSOR_URGENT_1_2 << CUR_CONTROL__CURSOR_URGENT_CONTROL__SHIFT)); } static int dce_v8_0_cursor_move_locked(struct drm_crtc *crtc, int x, int y) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct amdgpu_device *adev = crtc->dev->dev_private; int xorigin = 0, yorigin = 0; amdgpu_crtc->cursor_x = x; amdgpu_crtc->cursor_y = y; /* avivo cursor are offset into the total surface */ x += crtc->x; y += crtc->y; DRM_DEBUG("x %d y %d c->x %d c->y %d\n", x, y, crtc->x, crtc->y); if (x < 0) { xorigin = min(-x, amdgpu_crtc->max_cursor_width - 1); x = 0; } if (y < 0) { yorigin = min(-y, amdgpu_crtc->max_cursor_height - 1); y = 0; } WREG32(mmCUR_POSITION + amdgpu_crtc->crtc_offset, (x << 16) | y); WREG32(mmCUR_HOT_SPOT + amdgpu_crtc->crtc_offset, (xorigin << 16) | yorigin); WREG32(mmCUR_SIZE + amdgpu_crtc->crtc_offset, ((amdgpu_crtc->cursor_width - 1) << 16) | (amdgpu_crtc->cursor_height - 1)); return 0; } static int dce_v8_0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { int ret; dce_v8_0_lock_cursor(crtc, true); ret = dce_v8_0_cursor_move_locked(crtc, x, y); dce_v8_0_lock_cursor(crtc, false); return ret; } static int dce_v8_0_crtc_cursor_set2(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height, int32_t hot_x, int32_t hot_y) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_gem_object *obj; struct amdgpu_bo *aobj; int ret; if (!handle) { /* turn off cursor */ dce_v8_0_hide_cursor(crtc); obj = NULL; goto unpin; } if ((width > amdgpu_crtc->max_cursor_width) || (height > amdgpu_crtc->max_cursor_height)) { DRM_ERROR("bad cursor width or height %d x %d\n", width, height); return -EINVAL; } obj = drm_gem_object_lookup(file_priv, handle); if (!obj) { DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, amdgpu_crtc->crtc_id); return -ENOENT; } aobj = gem_to_amdgpu_bo(obj); ret = amdgpu_bo_reserve(aobj, false); if (ret != 0) { drm_gem_object_put_unlocked(obj); return ret; } ret = amdgpu_bo_pin(aobj, AMDGPU_GEM_DOMAIN_VRAM); amdgpu_bo_unreserve(aobj); if (ret) { DRM_ERROR("Failed to pin new cursor BO (%d)\n", ret); drm_gem_object_put_unlocked(obj); return ret; } amdgpu_crtc->cursor_addr = amdgpu_bo_gpu_offset(aobj); dce_v8_0_lock_cursor(crtc, true); if (width != amdgpu_crtc->cursor_width || height != amdgpu_crtc->cursor_height || hot_x != amdgpu_crtc->cursor_hot_x || hot_y != amdgpu_crtc->cursor_hot_y) { int x, y; x = amdgpu_crtc->cursor_x + amdgpu_crtc->cursor_hot_x - hot_x; y = amdgpu_crtc->cursor_y + amdgpu_crtc->cursor_hot_y - hot_y; dce_v8_0_cursor_move_locked(crtc, x, y); amdgpu_crtc->cursor_width = width; amdgpu_crtc->cursor_height = height; amdgpu_crtc->cursor_hot_x = hot_x; amdgpu_crtc->cursor_hot_y = hot_y; } dce_v8_0_show_cursor(crtc); dce_v8_0_lock_cursor(crtc, false); unpin: if (amdgpu_crtc->cursor_bo) { struct amdgpu_bo *aobj = gem_to_amdgpu_bo(amdgpu_crtc->cursor_bo); ret = amdgpu_bo_reserve(aobj, true); if (likely(ret == 0)) { amdgpu_bo_unpin(aobj); amdgpu_bo_unreserve(aobj); } drm_gem_object_put_unlocked(amdgpu_crtc->cursor_bo); } amdgpu_crtc->cursor_bo = obj; return 0; } static void dce_v8_0_cursor_reset(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); if (amdgpu_crtc->cursor_bo) { dce_v8_0_lock_cursor(crtc, true); dce_v8_0_cursor_move_locked(crtc, amdgpu_crtc->cursor_x, amdgpu_crtc->cursor_y); dce_v8_0_show_cursor(crtc); dce_v8_0_lock_cursor(crtc, false); } } static int dce_v8_0_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t size, struct drm_modeset_acquire_ctx *ctx) { dce_v8_0_crtc_load_lut(crtc); return 0; } static void dce_v8_0_crtc_destroy(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); drm_crtc_cleanup(crtc); kfree(amdgpu_crtc); } static const struct drm_crtc_funcs dce_v8_0_crtc_funcs = { .cursor_set2 = dce_v8_0_crtc_cursor_set2, .cursor_move = dce_v8_0_crtc_cursor_move, .gamma_set = dce_v8_0_crtc_gamma_set, .set_config = amdgpu_display_crtc_set_config, .destroy = dce_v8_0_crtc_destroy, .page_flip_target = amdgpu_display_crtc_page_flip_target, .get_vblank_counter = amdgpu_get_vblank_counter_kms, .enable_vblank = amdgpu_enable_vblank_kms, .disable_vblank = amdgpu_disable_vblank_kms, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, }; static void dce_v8_0_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); unsigned type; switch (mode) { case DRM_MODE_DPMS_ON: amdgpu_crtc->enabled = true; amdgpu_atombios_crtc_enable(crtc, ATOM_ENABLE); dce_v8_0_vga_enable(crtc, true); amdgpu_atombios_crtc_blank(crtc, ATOM_DISABLE); dce_v8_0_vga_enable(crtc, false); /* Make sure VBLANK and PFLIP interrupts are still enabled */ type = amdgpu_display_crtc_idx_to_irq_type(adev, amdgpu_crtc->crtc_id); amdgpu_irq_update(adev, &adev->crtc_irq, type); amdgpu_irq_update(adev, &adev->pageflip_irq, type); drm_crtc_vblank_on(crtc); dce_v8_0_crtc_load_lut(crtc); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: drm_crtc_vblank_off(crtc); if (amdgpu_crtc->enabled) { dce_v8_0_vga_enable(crtc, true); amdgpu_atombios_crtc_blank(crtc, ATOM_ENABLE); dce_v8_0_vga_enable(crtc, false); } amdgpu_atombios_crtc_enable(crtc, ATOM_DISABLE); amdgpu_crtc->enabled = false; break; } /* adjust pm to dpms */ amdgpu_pm_compute_clocks(adev); } static void dce_v8_0_crtc_prepare(struct drm_crtc *crtc) { /* disable crtc pair power gating before programming */ amdgpu_atombios_crtc_powergate(crtc, ATOM_DISABLE); amdgpu_atombios_crtc_lock(crtc, ATOM_ENABLE); dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static void dce_v8_0_crtc_commit(struct drm_crtc *crtc) { dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_ON); amdgpu_atombios_crtc_lock(crtc, ATOM_DISABLE); } static void dce_v8_0_crtc_disable(struct drm_crtc *crtc) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_atom_ss ss; int i; dce_v8_0_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); if (crtc->primary->fb) { int r; struct amdgpu_bo *abo; abo = gem_to_amdgpu_bo(crtc->primary->fb->obj[0]); r = amdgpu_bo_reserve(abo, true); if (unlikely(r)) DRM_ERROR("failed to reserve abo before unpin\n"); else { amdgpu_bo_unpin(abo); amdgpu_bo_unreserve(abo); } } /* disable the GRPH */ dce_v8_0_grph_enable(crtc, false); amdgpu_atombios_crtc_powergate(crtc, ATOM_ENABLE); for (i = 0; i < adev->mode_info.num_crtc; i++) { if (adev->mode_info.crtcs[i] && adev->mode_info.crtcs[i]->enabled && i != amdgpu_crtc->crtc_id && amdgpu_crtc->pll_id == adev->mode_info.crtcs[i]->pll_id) { /* one other crtc is using this pll don't turn * off the pll */ goto done; } } switch (amdgpu_crtc->pll_id) { case ATOM_PPLL1: case ATOM_PPLL2: /* disable the ppll */ amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); break; case ATOM_PPLL0: /* disable the ppll */ if ((adev->asic_type == CHIP_KAVERI) || (adev->asic_type == CHIP_BONAIRE) || (adev->asic_type == CHIP_HAWAII)) amdgpu_atombios_crtc_program_pll(crtc, amdgpu_crtc->crtc_id, amdgpu_crtc->pll_id, 0, 0, ATOM_DISABLE, 0, 0, 0, 0, 0, false, &ss); break; default: break; } done: amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; amdgpu_crtc->adjusted_clock = 0; amdgpu_crtc->encoder = NULL; amdgpu_crtc->connector = NULL; } static int dce_v8_0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); if (!amdgpu_crtc->adjusted_clock) return -EINVAL; amdgpu_atombios_crtc_set_pll(crtc, adjusted_mode); amdgpu_atombios_crtc_set_dtd_timing(crtc, adjusted_mode); dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); amdgpu_atombios_crtc_overscan_setup(crtc, mode, adjusted_mode); amdgpu_atombios_crtc_scaler_setup(crtc); dce_v8_0_cursor_reset(crtc); /* update the hw version fpr dpm */ amdgpu_crtc->hw_mode = *adjusted_mode; return 0; } static bool dce_v8_0_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct amdgpu_crtc *amdgpu_crtc = to_amdgpu_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_encoder *encoder; /* assign the encoder to the amdgpu crtc to avoid repeated lookups later */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) { amdgpu_crtc->encoder = encoder; amdgpu_crtc->connector = amdgpu_get_connector_for_encoder(encoder); break; } } if ((amdgpu_crtc->encoder == NULL) || (amdgpu_crtc->connector == NULL)) { amdgpu_crtc->encoder = NULL; amdgpu_crtc->connector = NULL; return false; } if (!amdgpu_display_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode)) return false; if (amdgpu_atombios_crtc_prepare_pll(crtc, adjusted_mode)) return false; /* pick pll */ amdgpu_crtc->pll_id = dce_v8_0_pick_pll(crtc); /* if we can't get a PPLL for a non-DP encoder, fail */ if ((amdgpu_crtc->pll_id == ATOM_PPLL_INVALID) && !ENCODER_MODE_IS_DP(amdgpu_atombios_encoder_get_encoder_mode(amdgpu_crtc->encoder))) return false; return true; } static int dce_v8_0_crtc_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { return dce_v8_0_crtc_do_set_base(crtc, old_fb, x, y, 0); } static int dce_v8_0_crtc_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { return dce_v8_0_crtc_do_set_base(crtc, fb, x, y, 1); } static const struct drm_crtc_helper_funcs dce_v8_0_crtc_helper_funcs = { .dpms = dce_v8_0_crtc_dpms, .mode_fixup = dce_v8_0_crtc_mode_fixup, .mode_set = dce_v8_0_crtc_mode_set, .mode_set_base = dce_v8_0_crtc_set_base, .mode_set_base_atomic = dce_v8_0_crtc_set_base_atomic, .prepare = dce_v8_0_crtc_prepare, .commit = dce_v8_0_crtc_commit, .disable = dce_v8_0_crtc_disable, .get_scanout_position = amdgpu_crtc_get_scanout_position, }; static int dce_v8_0_crtc_init(struct amdgpu_device *adev, int index) { struct amdgpu_crtc *amdgpu_crtc; amdgpu_crtc = kzalloc(sizeof(struct amdgpu_crtc) + (AMDGPUFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL); if (amdgpu_crtc == NULL) return -ENOMEM; drm_crtc_init(adev->ddev, &amdgpu_crtc->base, &dce_v8_0_crtc_funcs); drm_mode_crtc_set_gamma_size(&amdgpu_crtc->base, 256); amdgpu_crtc->crtc_id = index; adev->mode_info.crtcs[index] = amdgpu_crtc; amdgpu_crtc->max_cursor_width = CIK_CURSOR_WIDTH; amdgpu_crtc->max_cursor_height = CIK_CURSOR_HEIGHT; adev->ddev->mode_config.cursor_width = amdgpu_crtc->max_cursor_width; adev->ddev->mode_config.cursor_height = amdgpu_crtc->max_cursor_height; amdgpu_crtc->crtc_offset = crtc_offsets[amdgpu_crtc->crtc_id]; amdgpu_crtc->pll_id = ATOM_PPLL_INVALID; amdgpu_crtc->adjusted_clock = 0; amdgpu_crtc->encoder = NULL; amdgpu_crtc->connector = NULL; drm_crtc_helper_add(&amdgpu_crtc->base, &dce_v8_0_crtc_helper_funcs); return 0; } static int dce_v8_0_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->audio_endpt_rreg = &dce_v8_0_audio_endpt_rreg; adev->audio_endpt_wreg = &dce_v8_0_audio_endpt_wreg; dce_v8_0_set_display_funcs(adev); adev->mode_info.num_crtc = dce_v8_0_get_num_crtc(adev); switch (adev->asic_type) { case CHIP_BONAIRE: case CHIP_HAWAII: adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; break; case CHIP_KAVERI: adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 7; break; case CHIP_KABINI: case CHIP_MULLINS: adev->mode_info.num_hpd = 6; adev->mode_info.num_dig = 6; /* ? */ break; default: /* FIXME: not supported yet */ return -EINVAL; } dce_v8_0_set_irq_funcs(adev); return 0; } static int dce_v8_0_sw_init(void *handle) { int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->mode_info.num_crtc; i++) { r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i + 1, &adev->crtc_irq); if (r) return r; } for (i = 8; i < 20; i += 2) { r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, i, &adev->pageflip_irq); if (r) return r; } /* HPD hotplug */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 42, &adev->hpd_irq); if (r) return r; adev->ddev->mode_config.funcs = &amdgpu_mode_funcs; adev->ddev->mode_config.async_page_flip = true; adev->ddev->mode_config.max_width = 16384; adev->ddev->mode_config.max_height = 16384; adev->ddev->mode_config.preferred_depth = 24; adev->ddev->mode_config.prefer_shadow = 1; adev->ddev->mode_config.fb_base = adev->gmc.aper_base; r = amdgpu_display_modeset_create_props(adev); if (r) return r; adev->ddev->mode_config.max_width = 16384; adev->ddev->mode_config.max_height = 16384; /* allocate crtcs */ for (i = 0; i < adev->mode_info.num_crtc; i++) { r = dce_v8_0_crtc_init(adev, i); if (r) return r; } if (amdgpu_atombios_get_connector_info_from_object_table(adev)) amdgpu_display_print_display_setup(adev->ddev); else return -EINVAL; /* setup afmt */ r = dce_v8_0_afmt_init(adev); if (r) return r; r = dce_v8_0_audio_init(adev); if (r) return r; drm_kms_helper_poll_init(adev->ddev); adev->mode_info.mode_config_initialized = true; return 0; } static int dce_v8_0_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; kfree(adev->mode_info.bios_hardcoded_edid); drm_kms_helper_poll_fini(adev->ddev); dce_v8_0_audio_fini(adev); dce_v8_0_afmt_fini(adev); drm_mode_config_cleanup(adev->ddev); adev->mode_info.mode_config_initialized = false; return 0; } static int dce_v8_0_hw_init(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* disable vga render */ dce_v8_0_set_vga_render_state(adev, false); /* init dig PHYs, disp eng pll */ amdgpu_atombios_encoder_init_dig(adev); amdgpu_atombios_crtc_set_disp_eng_pll(adev, adev->clock.default_dispclk); /* initialize hpd */ dce_v8_0_hpd_init(adev); for (i = 0; i < adev->mode_info.audio.num_pins; i++) { dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); } dce_v8_0_pageflip_interrupt_init(adev); return 0; } static int dce_v8_0_hw_fini(void *handle) { int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; dce_v8_0_hpd_fini(adev); for (i = 0; i < adev->mode_info.audio.num_pins; i++) { dce_v8_0_audio_enable(adev, &adev->mode_info.audio.pin[i], false); } dce_v8_0_pageflip_interrupt_fini(adev); return 0; } static int dce_v8_0_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->mode_info.bl_level = amdgpu_atombios_encoder_get_backlight_level_from_reg(adev); return dce_v8_0_hw_fini(handle); } static int dce_v8_0_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int ret; amdgpu_atombios_encoder_set_backlight_level_to_reg(adev, adev->mode_info.bl_level); ret = dce_v8_0_hw_init(handle); /* turn on the BL */ if (adev->mode_info.bl_encoder) { u8 bl_level = amdgpu_display_backlight_get_level(adev, adev->mode_info.bl_encoder); amdgpu_display_backlight_set_level(adev, adev->mode_info.bl_encoder, bl_level); } return ret; } static bool dce_v8_0_is_idle(void *handle) { return true; } static int dce_v8_0_wait_for_idle(void *handle) { return 0; } static int dce_v8_0_soft_reset(void *handle) { u32 srbm_soft_reset = 0, tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (dce_v8_0_is_display_hung(adev)) srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_DC_MASK; if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static void dce_v8_0_set_crtc_vblank_interrupt_state(struct amdgpu_device *adev, int crtc, enum amdgpu_interrupt_state state) { u32 reg_block, lb_interrupt_mask; if (crtc >= adev->mode_info.num_crtc) { DRM_DEBUG("invalid crtc %d\n", crtc); return; } switch (crtc) { case 0: reg_block = CRTC0_REGISTER_OFFSET; break; case 1: reg_block = CRTC1_REGISTER_OFFSET; break; case 2: reg_block = CRTC2_REGISTER_OFFSET; break; case 3: reg_block = CRTC3_REGISTER_OFFSET; break; case 4: reg_block = CRTC4_REGISTER_OFFSET; break; case 5: reg_block = CRTC5_REGISTER_OFFSET; break; default: DRM_DEBUG("invalid crtc %d\n", crtc); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); break; case AMDGPU_IRQ_STATE_ENABLE: lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); lb_interrupt_mask |= LB_INTERRUPT_MASK__VBLANK_INTERRUPT_MASK_MASK; WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); break; default: break; } } static void dce_v8_0_set_crtc_vline_interrupt_state(struct amdgpu_device *adev, int crtc, enum amdgpu_interrupt_state state) { u32 reg_block, lb_interrupt_mask; if (crtc >= adev->mode_info.num_crtc) { DRM_DEBUG("invalid crtc %d\n", crtc); return; } switch (crtc) { case 0: reg_block = CRTC0_REGISTER_OFFSET; break; case 1: reg_block = CRTC1_REGISTER_OFFSET; break; case 2: reg_block = CRTC2_REGISTER_OFFSET; break; case 3: reg_block = CRTC3_REGISTER_OFFSET; break; case 4: reg_block = CRTC4_REGISTER_OFFSET; break; case 5: reg_block = CRTC5_REGISTER_OFFSET; break; default: DRM_DEBUG("invalid crtc %d\n", crtc); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); lb_interrupt_mask &= ~LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); break; case AMDGPU_IRQ_STATE_ENABLE: lb_interrupt_mask = RREG32(mmLB_INTERRUPT_MASK + reg_block); lb_interrupt_mask |= LB_INTERRUPT_MASK__VLINE_INTERRUPT_MASK_MASK; WREG32(mmLB_INTERRUPT_MASK + reg_block, lb_interrupt_mask); break; default: break; } } static int dce_v8_0_set_hpd_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 dc_hpd_int_cntl; if (type >= adev->mode_info.num_hpd) { DRM_DEBUG("invalid hdp %d\n", type); return 0; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); dc_hpd_int_cntl &= ~DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: dc_hpd_int_cntl = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type]); dc_hpd_int_cntl |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_EN_MASK; WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[type], dc_hpd_int_cntl); break; default: break; } return 0; } static int dce_v8_0_set_crtc_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CRTC_IRQ_VBLANK1: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 0, state); break; case AMDGPU_CRTC_IRQ_VBLANK2: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 1, state); break; case AMDGPU_CRTC_IRQ_VBLANK3: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 2, state); break; case AMDGPU_CRTC_IRQ_VBLANK4: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 3, state); break; case AMDGPU_CRTC_IRQ_VBLANK5: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 4, state); break; case AMDGPU_CRTC_IRQ_VBLANK6: dce_v8_0_set_crtc_vblank_interrupt_state(adev, 5, state); break; case AMDGPU_CRTC_IRQ_VLINE1: dce_v8_0_set_crtc_vline_interrupt_state(adev, 0, state); break; case AMDGPU_CRTC_IRQ_VLINE2: dce_v8_0_set_crtc_vline_interrupt_state(adev, 1, state); break; case AMDGPU_CRTC_IRQ_VLINE3: dce_v8_0_set_crtc_vline_interrupt_state(adev, 2, state); break; case AMDGPU_CRTC_IRQ_VLINE4: dce_v8_0_set_crtc_vline_interrupt_state(adev, 3, state); break; case AMDGPU_CRTC_IRQ_VLINE5: dce_v8_0_set_crtc_vline_interrupt_state(adev, 4, state); break; case AMDGPU_CRTC_IRQ_VLINE6: dce_v8_0_set_crtc_vline_interrupt_state(adev, 5, state); break; default: break; } return 0; } static int dce_v8_0_crtc_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { unsigned crtc = entry->src_id - 1; uint32_t disp_int = RREG32(interrupt_status_offsets[crtc].reg); unsigned int irq_type = amdgpu_display_crtc_idx_to_irq_type(adev, crtc); switch (entry->src_data[0]) { case 0: /* vblank */ if (disp_int & interrupt_status_offsets[crtc].vblank) WREG32(mmLB_VBLANK_STATUS + crtc_offsets[crtc], LB_VBLANK_STATUS__VBLANK_ACK_MASK); else DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); if (amdgpu_irq_enabled(adev, source, irq_type)) { drm_handle_vblank(adev->ddev, crtc); } DRM_DEBUG("IH: D%d vblank\n", crtc + 1); break; case 1: /* vline */ if (disp_int & interrupt_status_offsets[crtc].vline) WREG32(mmLB_VLINE_STATUS + crtc_offsets[crtc], LB_VLINE_STATUS__VLINE_ACK_MASK); else DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); DRM_DEBUG("IH: D%d vline\n", crtc + 1); break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); break; } return 0; } static int dce_v8_0_set_pageflip_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 reg; if (type >= adev->mode_info.num_crtc) { DRM_ERROR("invalid pageflip crtc %d\n", type); return -EINVAL; } reg = RREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type]); if (state == AMDGPU_IRQ_STATE_DISABLE) WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], reg & ~GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); else WREG32(mmGRPH_INTERRUPT_CONTROL + crtc_offsets[type], reg | GRPH_INTERRUPT_CONTROL__GRPH_PFLIP_INT_MASK_MASK); return 0; } static int dce_v8_0_pageflip_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { unsigned long flags; unsigned crtc_id; struct amdgpu_crtc *amdgpu_crtc; struct amdgpu_flip_work *works; crtc_id = (entry->src_id - 8) >> 1; amdgpu_crtc = adev->mode_info.crtcs[crtc_id]; if (crtc_id >= adev->mode_info.num_crtc) { DRM_ERROR("invalid pageflip crtc %d\n", crtc_id); return -EINVAL; } if (RREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id]) & GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_OCCURRED_MASK) WREG32(mmGRPH_INTERRUPT_STATUS + crtc_offsets[crtc_id], GRPH_INTERRUPT_STATUS__GRPH_PFLIP_INT_CLEAR_MASK); /* IRQ could occur when in initial stage */ if (amdgpu_crtc == NULL) return 0; spin_lock_irqsave(&adev->ddev->event_lock, flags); works = amdgpu_crtc->pflip_works; if (amdgpu_crtc->pflip_status != AMDGPU_FLIP_SUBMITTED){ DRM_DEBUG_DRIVER("amdgpu_crtc->pflip_status = %d != " "AMDGPU_FLIP_SUBMITTED(%d)\n", amdgpu_crtc->pflip_status, AMDGPU_FLIP_SUBMITTED); spin_unlock_irqrestore(&adev->ddev->event_lock, flags); return 0; } /* page flip completed. clean up */ amdgpu_crtc->pflip_status = AMDGPU_FLIP_NONE; amdgpu_crtc->pflip_works = NULL; /* wakeup usersapce */ if (works->event) drm_crtc_send_vblank_event(&amdgpu_crtc->base, works->event); spin_unlock_irqrestore(&adev->ddev->event_lock, flags); drm_crtc_vblank_put(&amdgpu_crtc->base); schedule_work(&works->unpin_work); return 0; } static int dce_v8_0_hpd_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t disp_int, mask, tmp; unsigned hpd; if (entry->src_data[0] >= adev->mode_info.num_hpd) { DRM_DEBUG("Unhandled interrupt: %d %d\n", entry->src_id, entry->src_data[0]); return 0; } hpd = entry->src_data[0]; disp_int = RREG32(interrupt_status_offsets[hpd].reg); mask = interrupt_status_offsets[hpd].hpd; if (disp_int & mask) { tmp = RREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd]); tmp |= DC_HPD1_INT_CONTROL__DC_HPD1_INT_ACK_MASK; WREG32(mmDC_HPD1_INT_CONTROL + hpd_offsets[hpd], tmp); schedule_work(&adev->hotplug_work); DRM_DEBUG("IH: HPD%d\n", hpd + 1); } return 0; } static int dce_v8_0_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int dce_v8_0_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static const struct amd_ip_funcs dce_v8_0_ip_funcs = { .name = "dce_v8_0", .early_init = dce_v8_0_early_init, .late_init = NULL, .sw_init = dce_v8_0_sw_init, .sw_fini = dce_v8_0_sw_fini, .hw_init = dce_v8_0_hw_init, .hw_fini = dce_v8_0_hw_fini, .suspend = dce_v8_0_suspend, .resume = dce_v8_0_resume, .is_idle = dce_v8_0_is_idle, .wait_for_idle = dce_v8_0_wait_for_idle, .soft_reset = dce_v8_0_soft_reset, .set_clockgating_state = dce_v8_0_set_clockgating_state, .set_powergating_state = dce_v8_0_set_powergating_state, }; static void dce_v8_0_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); amdgpu_encoder->pixel_clock = adjusted_mode->clock; /* need to call this here rather than in prepare() since we need some crtc info */ amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); /* set scaler clears this on some chips */ dce_v8_0_set_interleave(encoder->crtc, mode); if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) { dce_v8_0_afmt_enable(encoder, true); dce_v8_0_afmt_setmode(encoder, adjusted_mode); } } static void dce_v8_0_encoder_prepare(struct drm_encoder *encoder) { struct amdgpu_device *adev = encoder->dev->dev_private; struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct drm_connector *connector = amdgpu_get_connector_for_encoder(encoder); if ((amdgpu_encoder->active_device & (ATOM_DEVICE_DFP_SUPPORT | ATOM_DEVICE_LCD_SUPPORT)) || (amdgpu_encoder_get_dp_bridge_encoder_id(encoder) != ENCODER_OBJECT_ID_NONE)) { struct amdgpu_encoder_atom_dig *dig = amdgpu_encoder->enc_priv; if (dig) { dig->dig_encoder = dce_v8_0_pick_dig_encoder(encoder); if (amdgpu_encoder->active_device & ATOM_DEVICE_DFP_SUPPORT) dig->afmt = adev->mode_info.afmt[dig->dig_encoder]; } } amdgpu_atombios_scratch_regs_lock(adev, true); if (connector) { struct amdgpu_connector *amdgpu_connector = to_amdgpu_connector(connector); /* select the clock/data port if it uses a router */ if (amdgpu_connector->router.cd_valid) amdgpu_i2c_router_select_cd_port(amdgpu_connector); /* turn eDP panel on for mode set */ if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) amdgpu_atombios_encoder_set_edp_panel_power(connector, ATOM_TRANSMITTER_ACTION_POWER_ON); } /* this is needed for the pll/ss setup to work correctly in some cases */ amdgpu_atombios_encoder_set_crtc_source(encoder); /* set up the FMT blocks */ dce_v8_0_program_fmt(encoder); } static void dce_v8_0_encoder_commit(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct amdgpu_device *adev = dev->dev_private; /* need to call this here as we need the crtc set up */ amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_ON); amdgpu_atombios_scratch_regs_lock(adev, false); } static void dce_v8_0_encoder_disable(struct drm_encoder *encoder) { struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); struct amdgpu_encoder_atom_dig *dig; amdgpu_atombios_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); if (amdgpu_atombios_encoder_is_digital(encoder)) { if (amdgpu_atombios_encoder_get_encoder_mode(encoder) == ATOM_ENCODER_MODE_HDMI) dce_v8_0_afmt_enable(encoder, false); dig = amdgpu_encoder->enc_priv; dig->dig_encoder = -1; } amdgpu_encoder->active_device = 0; } /* these are handled by the primary encoders */ static void dce_v8_0_ext_prepare(struct drm_encoder *encoder) { } static void dce_v8_0_ext_commit(struct drm_encoder *encoder) { } static void dce_v8_0_ext_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { } static void dce_v8_0_ext_disable(struct drm_encoder *encoder) { } static void dce_v8_0_ext_dpms(struct drm_encoder *encoder, int mode) { } static const struct drm_encoder_helper_funcs dce_v8_0_ext_helper_funcs = { .dpms = dce_v8_0_ext_dpms, .prepare = dce_v8_0_ext_prepare, .mode_set = dce_v8_0_ext_mode_set, .commit = dce_v8_0_ext_commit, .disable = dce_v8_0_ext_disable, /* no detect for TMDS/LVDS yet */ }; static const struct drm_encoder_helper_funcs dce_v8_0_dig_helper_funcs = { .dpms = amdgpu_atombios_encoder_dpms, .mode_fixup = amdgpu_atombios_encoder_mode_fixup, .prepare = dce_v8_0_encoder_prepare, .mode_set = dce_v8_0_encoder_mode_set, .commit = dce_v8_0_encoder_commit, .disable = dce_v8_0_encoder_disable, .detect = amdgpu_atombios_encoder_dig_detect, }; static const struct drm_encoder_helper_funcs dce_v8_0_dac_helper_funcs = { .dpms = amdgpu_atombios_encoder_dpms, .mode_fixup = amdgpu_atombios_encoder_mode_fixup, .prepare = dce_v8_0_encoder_prepare, .mode_set = dce_v8_0_encoder_mode_set, .commit = dce_v8_0_encoder_commit, .detect = amdgpu_atombios_encoder_dac_detect, }; static void dce_v8_0_encoder_destroy(struct drm_encoder *encoder) { struct amdgpu_encoder *amdgpu_encoder = to_amdgpu_encoder(encoder); if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) amdgpu_atombios_encoder_fini_backlight(amdgpu_encoder); kfree(amdgpu_encoder->enc_priv); drm_encoder_cleanup(encoder); kfree(amdgpu_encoder); } static const struct drm_encoder_funcs dce_v8_0_encoder_funcs = { .destroy = dce_v8_0_encoder_destroy, }; static void dce_v8_0_encoder_add(struct amdgpu_device *adev, uint32_t encoder_enum, uint32_t supported_device, u16 caps) { struct drm_device *dev = adev->ddev; struct drm_encoder *encoder; struct amdgpu_encoder *amdgpu_encoder; /* see if we already added it */ list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { amdgpu_encoder = to_amdgpu_encoder(encoder); if (amdgpu_encoder->encoder_enum == encoder_enum) { amdgpu_encoder->devices |= supported_device; return; } } /* add a new one */ amdgpu_encoder = kzalloc(sizeof(struct amdgpu_encoder), GFP_KERNEL); if (!amdgpu_encoder) return; encoder = &amdgpu_encoder->base; switch (adev->mode_info.num_crtc) { case 1: encoder->possible_crtcs = 0x1; break; case 2: default: encoder->possible_crtcs = 0x3; break; case 4: encoder->possible_crtcs = 0xf; break; case 6: encoder->possible_crtcs = 0x3f; break; } amdgpu_encoder->enc_priv = NULL; amdgpu_encoder->encoder_enum = encoder_enum; amdgpu_encoder->encoder_id = (encoder_enum & OBJECT_ID_MASK) >> OBJECT_ID_SHIFT; amdgpu_encoder->devices = supported_device; amdgpu_encoder->rmx_type = RMX_OFF; amdgpu_encoder->underscan_type = UNDERSCAN_OFF; amdgpu_encoder->is_ext_encoder = false; amdgpu_encoder->caps = caps; switch (amdgpu_encoder->encoder_id) { case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC1: case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DAC2: drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_DAC, NULL); drm_encoder_helper_add(encoder, &dce_v8_0_dac_helper_funcs); break; case ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1: case ENCODER_OBJECT_ID_INTERNAL_UNIPHY: case ENCODER_OBJECT_ID_INTERNAL_UNIPHY1: case ENCODER_OBJECT_ID_INTERNAL_UNIPHY2: case ENCODER_OBJECT_ID_INTERNAL_UNIPHY3: if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { amdgpu_encoder->rmx_type = RMX_FULL; drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_LVDS, NULL); amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_lcd_info(amdgpu_encoder); } else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) { drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_DAC, NULL); amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); } else { drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); amdgpu_encoder->enc_priv = amdgpu_atombios_encoder_get_dig_info(amdgpu_encoder); } drm_encoder_helper_add(encoder, &dce_v8_0_dig_helper_funcs); break; case ENCODER_OBJECT_ID_SI170B: case ENCODER_OBJECT_ID_CH7303: case ENCODER_OBJECT_ID_EXTERNAL_SDVOA: case ENCODER_OBJECT_ID_EXTERNAL_SDVOB: case ENCODER_OBJECT_ID_TITFP513: case ENCODER_OBJECT_ID_VT1623: case ENCODER_OBJECT_ID_HDMI_SI1930: case ENCODER_OBJECT_ID_TRAVIS: case ENCODER_OBJECT_ID_NUTMEG: /* these are handled by the primary encoders */ amdgpu_encoder->is_ext_encoder = true; if (amdgpu_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_LVDS, NULL); else if (amdgpu_encoder->devices & (ATOM_DEVICE_CRT_SUPPORT)) drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_DAC, NULL); else drm_encoder_init(dev, encoder, &dce_v8_0_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); drm_encoder_helper_add(encoder, &dce_v8_0_ext_helper_funcs); break; } } static const struct amdgpu_display_funcs dce_v8_0_display_funcs = { .bandwidth_update = &dce_v8_0_bandwidth_update, .vblank_get_counter = &dce_v8_0_vblank_get_counter, .backlight_set_level = &amdgpu_atombios_encoder_set_backlight_level, .backlight_get_level = &amdgpu_atombios_encoder_get_backlight_level, .hpd_sense = &dce_v8_0_hpd_sense, .hpd_set_polarity = &dce_v8_0_hpd_set_polarity, .hpd_get_gpio_reg = &dce_v8_0_hpd_get_gpio_reg, .page_flip = &dce_v8_0_page_flip, .page_flip_get_scanoutpos = &dce_v8_0_crtc_get_scanoutpos, .add_encoder = &dce_v8_0_encoder_add, .add_connector = &amdgpu_connector_add, }; static void dce_v8_0_set_display_funcs(struct amdgpu_device *adev) { adev->mode_info.funcs = &dce_v8_0_display_funcs; } static const struct amdgpu_irq_src_funcs dce_v8_0_crtc_irq_funcs = { .set = dce_v8_0_set_crtc_interrupt_state, .process = dce_v8_0_crtc_irq, }; static const struct amdgpu_irq_src_funcs dce_v8_0_pageflip_irq_funcs = { .set = dce_v8_0_set_pageflip_interrupt_state, .process = dce_v8_0_pageflip_irq, }; static const struct amdgpu_irq_src_funcs dce_v8_0_hpd_irq_funcs = { .set = dce_v8_0_set_hpd_interrupt_state, .process = dce_v8_0_hpd_irq, }; static void dce_v8_0_set_irq_funcs(struct amdgpu_device *adev) { if (adev->mode_info.num_crtc > 0) adev->crtc_irq.num_types = AMDGPU_CRTC_IRQ_VLINE1 + adev->mode_info.num_crtc; else adev->crtc_irq.num_types = 0; adev->crtc_irq.funcs = &dce_v8_0_crtc_irq_funcs; adev->pageflip_irq.num_types = adev->mode_info.num_crtc; adev->pageflip_irq.funcs = &dce_v8_0_pageflip_irq_funcs; adev->hpd_irq.num_types = adev->mode_info.num_hpd; adev->hpd_irq.funcs = &dce_v8_0_hpd_irq_funcs; } const struct amdgpu_ip_block_version dce_v8_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 8, .minor = 0, .rev = 0, .funcs = &dce_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version dce_v8_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 8, .minor = 1, .rev = 0, .funcs = &dce_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version dce_v8_2_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 8, .minor = 2, .rev = 0, .funcs = &dce_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version dce_v8_3_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 8, .minor = 3, .rev = 0, .funcs = &dce_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version dce_v8_5_ip_block = { .type = AMD_IP_BLOCK_TYPE_DCE, .major = 8, .minor = 5, .rev = 0, .funcs = &dce_v8_0_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1