Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 1445 | 78.36% | 6 | 28.57% |
Chunming Zhou | 169 | 9.16% | 1 | 4.76% |
yanyang1 | 141 | 7.65% | 1 | 4.76% |
Christian König | 75 | 4.07% | 7 | 33.33% |
Oak Zeng | 5 | 0.27% | 1 | 4.76% |
Tom St Denis | 5 | 0.27% | 1 | 4.76% |
Sam Ravnborg | 1 | 0.05% | 1 | 4.76% |
Junwei (Martin) Zhang | 1 | 0.05% | 1 | 4.76% |
Roger He | 1 | 0.05% | 1 | 4.76% |
Muhammad Falak R Wani | 1 | 0.05% | 1 | 4.76% |
Total | 1844 | 21 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/pci.h> #include "amdgpu.h" #include "amdgpu_ih.h" #include "vid.h" #include "oss/oss_3_0_d.h" #include "oss/oss_3_0_sh_mask.h" #include "bif/bif_5_1_d.h" #include "bif/bif_5_1_sh_mask.h" /* * Interrupts * Starting with r6xx, interrupts are handled via a ring buffer. * Ring buffers are areas of GPU accessible memory that the GPU * writes interrupt vectors into and the host reads vectors out of. * There is a rptr (read pointer) that determines where the * host is currently reading, and a wptr (write pointer) * which determines where the GPU has written. When the * pointers are equal, the ring is idle. When the GPU * writes vectors to the ring buffer, it increments the * wptr. When there is an interrupt, the host then starts * fetching commands and processing them until the pointers are * equal again at which point it updates the rptr. */ static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev); /** * tonga_ih_enable_interrupts - Enable the interrupt ring buffer * * @adev: amdgpu_device pointer * * Enable the interrupt ring buffer (VI). */ static void tonga_ih_enable_interrupts(struct amdgpu_device *adev) { u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 1); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 1); WREG32(mmIH_RB_CNTL, ih_rb_cntl); adev->irq.ih.enabled = true; } /** * tonga_ih_disable_interrupts - Disable the interrupt ring buffer * * @adev: amdgpu_device pointer * * Disable the interrupt ring buffer (VI). */ static void tonga_ih_disable_interrupts(struct amdgpu_device *adev) { u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_ENABLE, 0); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, ENABLE_INTR, 0); WREG32(mmIH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(mmIH_RB_RPTR, 0); WREG32(mmIH_RB_WPTR, 0); adev->irq.ih.enabled = false; adev->irq.ih.rptr = 0; } /** * tonga_ih_irq_init - init and enable the interrupt ring * * @adev: amdgpu_device pointer * * Allocate a ring buffer for the interrupt controller, * enable the RLC, disable interrupts, enable the IH * ring buffer and enable it (VI). * Called at device load and reume. * Returns 0 for success, errors for failure. */ static int tonga_ih_irq_init(struct amdgpu_device *adev) { u32 interrupt_cntl, ih_rb_cntl, ih_doorbell_rtpr; struct amdgpu_ih_ring *ih = &adev->irq.ih; int rb_bufsz; /* disable irqs */ tonga_ih_disable_interrupts(adev); /* setup interrupt control */ WREG32(mmINTERRUPT_CNTL2, adev->dummy_page_addr >> 8); interrupt_cntl = RREG32(mmINTERRUPT_CNTL); /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_DUMMY_RD_OVERRIDE, 0); /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl = REG_SET_FIELD(interrupt_cntl, INTERRUPT_CNTL, IH_REQ_NONSNOOP_EN, 0); WREG32(mmINTERRUPT_CNTL, interrupt_cntl); /* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/ WREG32(mmIH_RB_BASE, ih->gpu_addr >> 8); rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4); ih_rb_cntl = REG_SET_FIELD(0, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RB_SIZE, rb_bufsz); /* Ring Buffer write pointer writeback. If enabled, IH_RB_WPTR register value is written to memory */ ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, WPTR_WRITEBACK_ENABLE, 1); ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_VMID, 0); if (adev->irq.msi_enabled) ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, RPTR_REARM, 1); WREG32(mmIH_RB_CNTL, ih_rb_cntl); /* set the writeback address whether it's enabled or not */ WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(ih->wptr_addr)); WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(ih->wptr_addr) & 0xFF); /* set rptr, wptr to 0 */ WREG32(mmIH_RB_RPTR, 0); WREG32(mmIH_RB_WPTR, 0); ih_doorbell_rtpr = RREG32(mmIH_DOORBELL_RPTR); if (adev->irq.ih.use_doorbell) { ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR, OFFSET, adev->irq.ih.doorbell_index); ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR, ENABLE, 1); } else { ih_doorbell_rtpr = REG_SET_FIELD(ih_doorbell_rtpr, IH_DOORBELL_RPTR, ENABLE, 0); } WREG32(mmIH_DOORBELL_RPTR, ih_doorbell_rtpr); pci_set_master(adev->pdev); /* enable interrupts */ tonga_ih_enable_interrupts(adev); return 0; } /** * tonga_ih_irq_disable - disable interrupts * * @adev: amdgpu_device pointer * * Disable interrupts on the hw (VI). */ static void tonga_ih_irq_disable(struct amdgpu_device *adev) { tonga_ih_disable_interrupts(adev); /* Wait and acknowledge irq */ mdelay(1); } /** * tonga_ih_get_wptr - get the IH ring buffer wptr * * @adev: amdgpu_device pointer * * Get the IH ring buffer wptr from either the register * or the writeback memory buffer (VI). Also check for * ring buffer overflow and deal with it. * Used by cz_irq_process(VI). * Returns the value of the wptr. */ static u32 tonga_ih_get_wptr(struct amdgpu_device *adev, struct amdgpu_ih_ring *ih) { u32 wptr, tmp; wptr = le32_to_cpu(*ih->wptr_cpu); if (REG_GET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW)) { wptr = REG_SET_FIELD(wptr, IH_RB_WPTR, RB_OVERFLOW, 0); /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n", wptr, ih->rptr, (wptr + 16) & ih->ptr_mask); ih->rptr = (wptr + 16) & ih->ptr_mask; tmp = RREG32(mmIH_RB_CNTL); tmp = REG_SET_FIELD(tmp, IH_RB_CNTL, WPTR_OVERFLOW_CLEAR, 1); WREG32(mmIH_RB_CNTL, tmp); } return (wptr & ih->ptr_mask); } /** * tonga_ih_decode_iv - decode an interrupt vector * * @adev: amdgpu_device pointer * * Decodes the interrupt vector at the current rptr * position and also advance the position. */ static void tonga_ih_decode_iv(struct amdgpu_device *adev, struct amdgpu_ih_ring *ih, struct amdgpu_iv_entry *entry) { /* wptr/rptr are in bytes! */ u32 ring_index = ih->rptr >> 2; uint32_t dw[4]; dw[0] = le32_to_cpu(ih->ring[ring_index + 0]); dw[1] = le32_to_cpu(ih->ring[ring_index + 1]); dw[2] = le32_to_cpu(ih->ring[ring_index + 2]); dw[3] = le32_to_cpu(ih->ring[ring_index + 3]); entry->client_id = AMDGPU_IRQ_CLIENTID_LEGACY; entry->src_id = dw[0] & 0xff; entry->src_data[0] = dw[1] & 0xfffffff; entry->ring_id = dw[2] & 0xff; entry->vmid = (dw[2] >> 8) & 0xff; entry->pasid = (dw[2] >> 16) & 0xffff; /* wptr/rptr are in bytes! */ ih->rptr += 16; } /** * tonga_ih_set_rptr - set the IH ring buffer rptr * * @adev: amdgpu_device pointer * * Set the IH ring buffer rptr. */ static void tonga_ih_set_rptr(struct amdgpu_device *adev, struct amdgpu_ih_ring *ih) { if (ih->use_doorbell) { /* XXX check if swapping is necessary on BE */ *ih->rptr_cpu = ih->rptr; WDOORBELL32(ih->doorbell_index, ih->rptr); } else { WREG32(mmIH_RB_RPTR, ih->rptr); } } static int tonga_ih_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int ret; ret = amdgpu_irq_add_domain(adev); if (ret) return ret; tonga_ih_set_interrupt_funcs(adev); return 0; } static int tonga_ih_sw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_ih_ring_init(adev, &adev->irq.ih, 64 * 1024, true); if (r) return r; adev->irq.ih.use_doorbell = true; adev->irq.ih.doorbell_index = adev->doorbell_index.ih; r = amdgpu_irq_init(adev); return r; } static int tonga_ih_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_fini(adev); amdgpu_ih_ring_fini(adev, &adev->irq.ih); amdgpu_irq_remove_domain(adev); return 0; } static int tonga_ih_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = tonga_ih_irq_init(adev); if (r) return r; return 0; } static int tonga_ih_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; tonga_ih_irq_disable(adev); return 0; } static int tonga_ih_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return tonga_ih_hw_fini(adev); } static int tonga_ih_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return tonga_ih_hw_init(adev); } static bool tonga_ih_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS); if (REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY)) return false; return true; } static int tonga_ih_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(mmSRBM_STATUS); if (!REG_GET_FIELD(tmp, SRBM_STATUS, IH_BUSY)) return 0; udelay(1); } return -ETIMEDOUT; } static bool tonga_ih_check_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; u32 tmp = RREG32(mmSRBM_STATUS); if (tmp & SRBM_STATUS__IH_BUSY_MASK) srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_IH, 1); if (srbm_soft_reset) { adev->irq.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->irq.srbm_soft_reset = 0; return false; } } static int tonga_ih_pre_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->irq.srbm_soft_reset) return 0; return tonga_ih_hw_fini(adev); } static int tonga_ih_post_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!adev->irq.srbm_soft_reset) return 0; return tonga_ih_hw_init(adev); } static int tonga_ih_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset; if (!adev->irq.srbm_soft_reset) return 0; srbm_soft_reset = adev->irq.srbm_soft_reset; if (srbm_soft_reset) { u32 tmp; tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int tonga_ih_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int tonga_ih_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static const struct amd_ip_funcs tonga_ih_ip_funcs = { .name = "tonga_ih", .early_init = tonga_ih_early_init, .late_init = NULL, .sw_init = tonga_ih_sw_init, .sw_fini = tonga_ih_sw_fini, .hw_init = tonga_ih_hw_init, .hw_fini = tonga_ih_hw_fini, .suspend = tonga_ih_suspend, .resume = tonga_ih_resume, .is_idle = tonga_ih_is_idle, .wait_for_idle = tonga_ih_wait_for_idle, .check_soft_reset = tonga_ih_check_soft_reset, .pre_soft_reset = tonga_ih_pre_soft_reset, .soft_reset = tonga_ih_soft_reset, .post_soft_reset = tonga_ih_post_soft_reset, .set_clockgating_state = tonga_ih_set_clockgating_state, .set_powergating_state = tonga_ih_set_powergating_state, }; static const struct amdgpu_ih_funcs tonga_ih_funcs = { .get_wptr = tonga_ih_get_wptr, .decode_iv = tonga_ih_decode_iv, .set_rptr = tonga_ih_set_rptr }; static void tonga_ih_set_interrupt_funcs(struct amdgpu_device *adev) { adev->irq.ih_funcs = &tonga_ih_funcs; } const struct amdgpu_ip_block_version tonga_ih_ip_block = { .type = AMD_IP_BLOCK_TYPE_IH, .major = 3, .minor = 0, .rev = 0, .funcs = &tonga_ih_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1