Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 3554 | 40.32% | 14 | 17.72% |
Oded Gabbay | 1954 | 22.17% | 10 | 12.66% |
Yair Shachar | 1186 | 13.46% | 5 | 6.33% |
Andrew Lewycky | 479 | 5.43% | 4 | 5.06% |
Oak Zeng | 397 | 4.50% | 4 | 5.06% |
Yong Zhao | 251 | 2.85% | 7 | 8.86% |
Alexey Skidanov | 246 | 2.79% | 1 | 1.27% |
Moses Reuben | 172 | 1.95% | 1 | 1.27% |
Ben Goz | 127 | 1.44% | 2 | 2.53% |
Jay Cornwall | 89 | 1.01% | 1 | 1.27% |
Harish Kasiviswanathan | 74 | 0.84% | 1 | 1.27% |
Kent Russell | 62 | 0.70% | 4 | 5.06% |
Mukul Joshi | 47 | 0.53% | 1 | 1.27% |
Evgeny Pinchuk | 45 | 0.51% | 1 | 1.27% |
Dan Carpenter | 23 | 0.26% | 2 | 2.53% |
Joseph Greathouse | 23 | 0.26% | 2 | 2.53% |
Al Viro | 13 | 0.15% | 1 | 1.27% |
Colin Ian King | 12 | 0.14% | 2 | 2.53% |
Amber Lin | 12 | 0.14% | 2 | 2.53% |
Rajneesh Bhardwaj | 12 | 0.14% | 1 | 1.27% |
Shaoyun Liu | 9 | 0.10% | 1 | 1.27% |
Andres Rodriguez | 8 | 0.09% | 1 | 1.27% |
Philip Yang | 6 | 0.07% | 2 | 2.53% |
Arnd Bergmann | 4 | 0.05% | 2 | 2.53% |
Wei Yongjun | 2 | 0.02% | 1 | 1.27% |
Dave Airlie | 2 | 0.02% | 1 | 1.27% |
Christoph Hellwig | 1 | 0.01% | 1 | 1.27% |
Jason A. Donenfeld | 1 | 0.01% | 1 | 1.27% |
Borislav Petkov | 1 | 0.01% | 1 | 1.27% |
Edward O'Callaghan | 1 | 0.01% | 1 | 1.27% |
Andrew Lutomirski | 1 | 0.01% | 1 | 1.27% |
Total | 8814 | 79 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/device.h> #include <linux/export.h> #include <linux/err.h> #include <linux/fs.h> #include <linux/file.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/compat.h> #include <uapi/linux/kfd_ioctl.h> #include <linux/time.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/dma-buf.h> #include <asm/processor.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_dbgmgr.h" #include "amdgpu_amdkfd.h" static long kfd_ioctl(struct file *, unsigned int, unsigned long); static int kfd_open(struct inode *, struct file *); static int kfd_release(struct inode *, struct file *); static int kfd_mmap(struct file *, struct vm_area_struct *); static const char kfd_dev_name[] = "kfd"; static const struct file_operations kfd_fops = { .owner = THIS_MODULE, .unlocked_ioctl = kfd_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = kfd_open, .release = kfd_release, .mmap = kfd_mmap, }; static int kfd_char_dev_major = -1; static struct class *kfd_class; struct device *kfd_device; int kfd_chardev_init(void) { int err = 0; kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops); err = kfd_char_dev_major; if (err < 0) goto err_register_chrdev; kfd_class = class_create(THIS_MODULE, kfd_dev_name); err = PTR_ERR(kfd_class); if (IS_ERR(kfd_class)) goto err_class_create; kfd_device = device_create(kfd_class, NULL, MKDEV(kfd_char_dev_major, 0), NULL, kfd_dev_name); err = PTR_ERR(kfd_device); if (IS_ERR(kfd_device)) goto err_device_create; return 0; err_device_create: class_destroy(kfd_class); err_class_create: unregister_chrdev(kfd_char_dev_major, kfd_dev_name); err_register_chrdev: return err; } void kfd_chardev_exit(void) { device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0)); class_destroy(kfd_class); unregister_chrdev(kfd_char_dev_major, kfd_dev_name); } struct device *kfd_chardev(void) { return kfd_device; } static int kfd_open(struct inode *inode, struct file *filep) { struct kfd_process *process; bool is_32bit_user_mode; if (iminor(inode) != 0) return -ENODEV; is_32bit_user_mode = in_compat_syscall(); if (is_32bit_user_mode) { dev_warn(kfd_device, "Process %d (32-bit) failed to open /dev/kfd\n" "32-bit processes are not supported by amdkfd\n", current->pid); return -EPERM; } process = kfd_create_process(filep); if (IS_ERR(process)) return PTR_ERR(process); if (kfd_is_locked()) { dev_dbg(kfd_device, "kfd is locked!\n" "process %d unreferenced", process->pasid); kfd_unref_process(process); return -EAGAIN; } /* filep now owns the reference returned by kfd_create_process */ filep->private_data = process; dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n", process->pasid, process->is_32bit_user_mode); return 0; } static int kfd_release(struct inode *inode, struct file *filep) { struct kfd_process *process = filep->private_data; if (process) kfd_unref_process(process); return 0; } static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_version_args *args = data; args->major_version = KFD_IOCTL_MAJOR_VERSION; args->minor_version = KFD_IOCTL_MINOR_VERSION; return 0; } static int set_queue_properties_from_user(struct queue_properties *q_properties, struct kfd_ioctl_create_queue_args *args) { if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok((const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } if (!access_ok((const void __user *) args->read_pointer_address, sizeof(uint32_t))) { pr_err("Can't access read pointer\n"); return -EFAULT; } if (!access_ok((const void __user *) args->write_pointer_address, sizeof(uint32_t))) { pr_err("Can't access write pointer\n"); return -EFAULT; } if (args->eop_buffer_address && !access_ok((const void __user *) args->eop_buffer_address, sizeof(uint32_t))) { pr_debug("Can't access eop buffer"); return -EFAULT; } if (args->ctx_save_restore_address && !access_ok((const void __user *) args->ctx_save_restore_address, sizeof(uint32_t))) { pr_debug("Can't access ctx save restore buffer"); return -EFAULT; } q_properties->is_interop = false; q_properties->is_gws = false; q_properties->queue_percent = args->queue_percentage; q_properties->priority = args->queue_priority; q_properties->queue_address = args->ring_base_address; q_properties->queue_size = args->ring_size; q_properties->read_ptr = (uint32_t *) args->read_pointer_address; q_properties->write_ptr = (uint32_t *) args->write_pointer_address; q_properties->eop_ring_buffer_address = args->eop_buffer_address; q_properties->eop_ring_buffer_size = args->eop_buffer_size; q_properties->ctx_save_restore_area_address = args->ctx_save_restore_address; q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; q_properties->ctl_stack_size = args->ctl_stack_size; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->type = KFD_QUEUE_TYPE_COMPUTE; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA) q_properties->type = KFD_QUEUE_TYPE_SDMA; else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI) q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI; else return -ENOTSUPP; if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) q_properties->format = KFD_QUEUE_FORMAT_AQL; else q_properties->format = KFD_QUEUE_FORMAT_PM4; pr_debug("Queue Percentage: %d, %d\n", q_properties->queue_percent, args->queue_percentage); pr_debug("Queue Priority: %d, %d\n", q_properties->priority, args->queue_priority); pr_debug("Queue Address: 0x%llX, 0x%llX\n", q_properties->queue_address, args->ring_base_address); pr_debug("Queue Size: 0x%llX, %u\n", q_properties->queue_size, args->ring_size); pr_debug("Queue r/w Pointers: %px, %px\n", q_properties->read_ptr, q_properties->write_ptr); pr_debug("Queue Format: %d\n", q_properties->format); pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address); pr_debug("Queue CTX save area: 0x%llX\n", q_properties->ctx_save_restore_area_address); return 0; } static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_create_queue_args *args = data; struct kfd_dev *dev; int err = 0; unsigned int queue_id; struct kfd_process_device *pdd; struct queue_properties q_properties; uint32_t doorbell_offset_in_process = 0; memset(&q_properties, 0, sizeof(struct queue_properties)); pr_debug("Creating queue ioctl\n"); err = set_queue_properties_from_user(&q_properties, args); if (err) return err; pr_debug("Looking for gpu id 0x%x\n", args->gpu_id); dev = kfd_device_by_id(args->gpu_id); if (!dev) { pr_debug("Could not find gpu id 0x%x\n", args->gpu_id); return -EINVAL; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto err_bind_process; } pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n", p->pasid, dev->id); err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, &doorbell_offset_in_process); if (err != 0) goto err_create_queue; args->queue_id = queue_id; /* Return gpu_id as doorbell offset for mmap usage */ args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL; args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id); if (KFD_IS_SOC15(dev->device_info->asic_family)) /* On SOC15 ASICs, include the doorbell offset within the * process doorbell frame, which is 2 pages. */ args->doorbell_offset |= doorbell_offset_in_process; mutex_unlock(&p->mutex); pr_debug("Queue id %d was created successfully\n", args->queue_id); pr_debug("Ring buffer address == 0x%016llX\n", args->ring_base_address); pr_debug("Read ptr address == 0x%016llX\n", args->read_pointer_address); pr_debug("Write ptr address == 0x%016llX\n", args->write_pointer_address); return 0; err_create_queue: err_bind_process: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_destroy_queue_args *args = data; pr_debug("Destroying queue id %d for pasid 0x%x\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_destroy_queue(&p->pqm, args->queue_id); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_update_queue_args *args = data; struct queue_properties properties; if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) { pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n"); return -EINVAL; } if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) { pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n"); return -EINVAL; } if ((args->ring_base_address) && (!access_ok((const void __user *) args->ring_base_address, sizeof(uint64_t)))) { pr_err("Can't access ring base address\n"); return -EFAULT; } if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) { pr_err("Ring size must be a power of 2 or 0\n"); return -EINVAL; } properties.queue_address = args->ring_base_address; properties.queue_size = args->ring_size; properties.queue_percent = args->queue_percentage; properties.priority = args->queue_priority; pr_debug("Updating queue id %d for pasid 0x%x\n", args->queue_id, p->pasid); mutex_lock(&p->mutex); retval = pqm_update_queue(&p->pqm, args->queue_id, &properties); mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p, void *data) { int retval; const int max_num_cus = 1024; struct kfd_ioctl_set_cu_mask_args *args = data; struct queue_properties properties; uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr; size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32); if ((args->num_cu_mask % 32) != 0) { pr_debug("num_cu_mask 0x%x must be a multiple of 32", args->num_cu_mask); return -EINVAL; } properties.cu_mask_count = args->num_cu_mask; if (properties.cu_mask_count == 0) { pr_debug("CU mask cannot be 0"); return -EINVAL; } /* To prevent an unreasonably large CU mask size, set an arbitrary * limit of max_num_cus bits. We can then just drop any CU mask bits * past max_num_cus bits and just use the first max_num_cus bits. */ if (properties.cu_mask_count > max_num_cus) { pr_debug("CU mask cannot be greater than 1024 bits"); properties.cu_mask_count = max_num_cus; cu_mask_size = sizeof(uint32_t) * (max_num_cus/32); } properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL); if (!properties.cu_mask) return -ENOMEM; retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size); if (retval) { pr_debug("Could not copy CU mask from userspace"); kfree(properties.cu_mask); return -EFAULT; } mutex_lock(&p->mutex); retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties); mutex_unlock(&p->mutex); if (retval) kfree(properties.cu_mask); return retval; } static int kfd_ioctl_get_queue_wave_state(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_queue_wave_state_args *args = data; int r; mutex_lock(&p->mutex); r = pqm_get_wave_state(&p->pqm, args->queue_id, (void __user *)args->ctl_stack_address, &args->ctl_stack_used_size, &args->save_area_used_size); mutex_unlock(&p->mutex); return r; } static int kfd_ioctl_set_memory_policy(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_memory_policy_args *args = data; struct kfd_dev *dev; int err = 0; struct kfd_process_device *pdd; enum cache_policy default_policy, alternate_policy; if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) { return -EINVAL; } dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto out; } default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; alternate_policy = (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT) ? cache_policy_coherent : cache_policy_noncoherent; if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm, &pdd->qpd, default_policy, alternate_policy, (void __user *)args->alternate_aperture_base, args->alternate_aperture_size)) err = -EINVAL; out: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_set_trap_handler(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_trap_handler_args *args = data; struct kfd_dev *dev; int err = 0; struct kfd_process_device *pdd; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = -ESRCH; goto out; } if (dev->dqm->ops.set_trap_handler(dev->dqm, &pdd->qpd, args->tba_addr, args->tma_addr)) err = -EINVAL; out: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_dbg_register(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_register_args *args = data; struct kfd_dev *dev; struct kfd_dbgmgr *dbgmgr_ptr; struct kfd_process_device *pdd; bool create_ok; long status = 0; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_register not supported on CZ\n"); return -EINVAL; } mutex_lock(&p->mutex); mutex_lock(kfd_get_dbgmgr_mutex()); /* * make sure that we have pdd, if this the first queue created for * this process */ pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { status = PTR_ERR(pdd); goto out; } if (!dev->dbgmgr) { /* In case of a legal call, we have no dbgmgr yet */ create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev); if (create_ok) { status = kfd_dbgmgr_register(dbgmgr_ptr, p); if (status != 0) kfd_dbgmgr_destroy(dbgmgr_ptr); else dev->dbgmgr = dbgmgr_ptr; } } else { pr_debug("debugger already registered\n"); status = -EINVAL; } out: mutex_unlock(kfd_get_dbgmgr_mutex()); mutex_unlock(&p->mutex); return status; } static int kfd_ioctl_dbg_unregister(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_unregister_args *args = data; struct kfd_dev *dev; long status; dev = kfd_device_by_id(args->gpu_id); if (!dev || !dev->dbgmgr) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n"); return -EINVAL; } mutex_lock(kfd_get_dbgmgr_mutex()); status = kfd_dbgmgr_unregister(dev->dbgmgr, p); if (!status) { kfd_dbgmgr_destroy(dev->dbgmgr); dev->dbgmgr = NULL; } mutex_unlock(kfd_get_dbgmgr_mutex()); return status; } /* * Parse and generate variable size data structure for address watch. * Total size of the buffer and # watch points is limited in order * to prevent kernel abuse. (no bearing to the much smaller HW limitation * which is enforced by dbgdev module) * please also note that the watch address itself are not "copied from user", * since it be set into the HW in user mode values. * */ static int kfd_ioctl_dbg_address_watch(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_address_watch_args *args = data; struct kfd_dev *dev; struct dbg_address_watch_info aw_info; unsigned char *args_buff; long status; void __user *cmd_from_user; uint64_t watch_mask_value = 0; unsigned int args_idx = 0; memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info)); dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n"); return -EINVAL; } cmd_from_user = (void __user *) args->content_ptr; /* Validate arguments */ if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) || (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) || (cmd_from_user == NULL)) return -EINVAL; /* this is the actual buffer to work with */ args_buff = memdup_user(cmd_from_user, args->buf_size_in_bytes - sizeof(*args)); if (IS_ERR(args_buff)) return PTR_ERR(args_buff); aw_info.process = p; aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx])); args_idx += sizeof(aw_info.num_watch_points); aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx]; args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points; /* * set watch address base pointer to point on the array base * within args_buff */ aw_info.watch_address = (uint64_t *) &args_buff[args_idx]; /* skip over the addresses buffer */ args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points; if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) { status = -EINVAL; goto out; } watch_mask_value = (uint64_t) args_buff[args_idx]; if (watch_mask_value > 0) { /* * There is an array of masks. * set watch mask base pointer to point on the array base * within args_buff */ aw_info.watch_mask = (uint64_t *) &args_buff[args_idx]; /* skip over the masks buffer */ args_idx += sizeof(aw_info.watch_mask) * aw_info.num_watch_points; } else { /* just the NULL mask, set to NULL and skip over it */ aw_info.watch_mask = NULL; args_idx += sizeof(aw_info.watch_mask); } if (args_idx >= args->buf_size_in_bytes - sizeof(args)) { status = -EINVAL; goto out; } /* Currently HSA Event is not supported for DBG */ aw_info.watch_event = NULL; mutex_lock(kfd_get_dbgmgr_mutex()); status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info); mutex_unlock(kfd_get_dbgmgr_mutex()); out: kfree(args_buff); return status; } /* Parse and generate fixed size data structure for wave control */ static int kfd_ioctl_dbg_wave_control(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_dbg_wave_control_args *args = data; struct kfd_dev *dev; struct dbg_wave_control_info wac_info; unsigned char *args_buff; uint32_t computed_buff_size; long status; void __user *cmd_from_user; unsigned int args_idx = 0; memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info)); /* we use compact form, independent of the packing attribute value */ computed_buff_size = sizeof(*args) + sizeof(wac_info.mode) + sizeof(wac_info.operand) + sizeof(wac_info.dbgWave_msg.DbgWaveMsg) + sizeof(wac_info.dbgWave_msg.MemoryVA) + sizeof(wac_info.trapId); dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if (dev->device_info->asic_family == CHIP_CARRIZO) { pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n"); return -EINVAL; } /* input size must match the computed "compact" size */ if (args->buf_size_in_bytes != computed_buff_size) { pr_debug("size mismatch, computed : actual %u : %u\n", args->buf_size_in_bytes, computed_buff_size); return -EINVAL; } cmd_from_user = (void __user *) args->content_ptr; if (cmd_from_user == NULL) return -EINVAL; /* copy the entire buffer from user */ args_buff = memdup_user(cmd_from_user, args->buf_size_in_bytes - sizeof(*args)); if (IS_ERR(args_buff)) return PTR_ERR(args_buff); /* move ptr to the start of the "pay-load" area */ wac_info.process = p; wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.operand); wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.mode); wac_info.trapId = *((uint32_t *)(&args_buff[args_idx])); args_idx += sizeof(wac_info.trapId); wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value = *((uint32_t *)(&args_buff[args_idx])); wac_info.dbgWave_msg.MemoryVA = NULL; mutex_lock(kfd_get_dbgmgr_mutex()); pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n", wac_info.process, wac_info.operand, wac_info.mode, wac_info.trapId, wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value); status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info); pr_debug("Returned status of dbg manager is %ld\n", status); mutex_unlock(kfd_get_dbgmgr_mutex()); kfree(args_buff); return status; } static int kfd_ioctl_get_clock_counters(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_clock_counters_args *args = data; struct kfd_dev *dev; dev = kfd_device_by_id(args->gpu_id); if (dev) /* Reading GPU clock counter from KGD */ args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd); else /* Node without GPU resource */ args->gpu_clock_counter = 0; /* No access to rdtsc. Using raw monotonic time */ args->cpu_clock_counter = ktime_get_raw_ns(); args->system_clock_counter = ktime_get_boottime_ns(); /* Since the counter is in nano-seconds we use 1GHz frequency */ args->system_clock_freq = 1000000000; return 0; } static int kfd_ioctl_get_process_apertures(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_get_process_apertures_args *args = data; struct kfd_process_device_apertures *pAperture; struct kfd_process_device *pdd; dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); args->num_of_nodes = 0; mutex_lock(&p->mutex); /*if the process-device list isn't empty*/ if (kfd_has_process_device_data(p)) { /* Run over all pdd of the process */ pdd = kfd_get_first_process_device_data(p); do { pAperture = &args->process_apertures[args->num_of_nodes]; pAperture->gpu_id = pdd->dev->id; pAperture->lds_base = pdd->lds_base; pAperture->lds_limit = pdd->lds_limit; pAperture->gpuvm_base = pdd->gpuvm_base; pAperture->gpuvm_limit = pdd->gpuvm_limit; pAperture->scratch_base = pdd->scratch_base; pAperture->scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "node id %u\n", args->num_of_nodes); dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); args->num_of_nodes++; pdd = kfd_get_next_process_device_data(p, pdd); } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS)); } mutex_unlock(&p->mutex); return 0; } static int kfd_ioctl_get_process_apertures_new(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_get_process_apertures_new_args *args = data; struct kfd_process_device_apertures *pa; struct kfd_process_device *pdd; uint32_t nodes = 0; int ret; dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid); if (args->num_of_nodes == 0) { /* Return number of nodes, so that user space can alloacate * sufficient memory */ mutex_lock(&p->mutex); if (!kfd_has_process_device_data(p)) goto out_unlock; /* Run over all pdd of the process */ pdd = kfd_get_first_process_device_data(p); do { args->num_of_nodes++; pdd = kfd_get_next_process_device_data(p, pdd); } while (pdd); goto out_unlock; } /* Fill in process-aperture information for all available * nodes, but not more than args->num_of_nodes as that is * the amount of memory allocated by user */ pa = kzalloc((sizeof(struct kfd_process_device_apertures) * args->num_of_nodes), GFP_KERNEL); if (!pa) return -ENOMEM; mutex_lock(&p->mutex); if (!kfd_has_process_device_data(p)) { args->num_of_nodes = 0; kfree(pa); goto out_unlock; } /* Run over all pdd of the process */ pdd = kfd_get_first_process_device_data(p); do { pa[nodes].gpu_id = pdd->dev->id; pa[nodes].lds_base = pdd->lds_base; pa[nodes].lds_limit = pdd->lds_limit; pa[nodes].gpuvm_base = pdd->gpuvm_base; pa[nodes].gpuvm_limit = pdd->gpuvm_limit; pa[nodes].scratch_base = pdd->scratch_base; pa[nodes].scratch_limit = pdd->scratch_limit; dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id); dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base); dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit); dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base); dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit); dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base); dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit); nodes++; pdd = kfd_get_next_process_device_data(p, pdd); } while (pdd && (nodes < args->num_of_nodes)); mutex_unlock(&p->mutex); args->num_of_nodes = nodes; ret = copy_to_user( (void __user *)args->kfd_process_device_apertures_ptr, pa, (nodes * sizeof(struct kfd_process_device_apertures))); kfree(pa); return ret ? -EFAULT : 0; out_unlock: mutex_unlock(&p->mutex); return 0; } static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_create_event_args *args = data; int err; /* For dGPUs the event page is allocated in user mode. The * handle is passed to KFD with the first call to this IOCTL * through the event_page_offset field. */ if (args->event_page_offset) { struct kfd_dev *kfd; struct kfd_process_device *pdd; void *mem, *kern_addr; uint64_t size; if (p->signal_page) { pr_err("Event page is already set\n"); return -EINVAL; } kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset)); if (!kfd) { pr_err("Getting device by id failed in %s\n", __func__); return -EINVAL; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(kfd, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto out_unlock; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->event_page_offset)); if (!mem) { pr_err("Can't find BO, offset is 0x%llx\n", args->event_page_offset); err = -EINVAL; goto out_unlock; } mutex_unlock(&p->mutex); err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd, mem, &kern_addr, &size); if (err) { pr_err("Failed to map event page to kernel\n"); return err; } err = kfd_event_page_set(p, kern_addr, size); if (err) { pr_err("Failed to set event page\n"); return err; } } err = kfd_event_create(filp, p, args->event_type, args->auto_reset != 0, args->node_id, &args->event_id, &args->event_trigger_data, &args->event_page_offset, &args->event_slot_index); return err; out_unlock: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_destroy_event_args *args = data; return kfd_event_destroy(p, args->event_id); } static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_set_event_args *args = data; return kfd_set_event(p, args->event_id); } static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_reset_event_args *args = data; return kfd_reset_event(p, args->event_id); } static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p, void *data) { struct kfd_ioctl_wait_events_args *args = data; int err; err = kfd_wait_on_events(p, args->num_events, (void __user *)args->events_ptr, (args->wait_for_all != 0), args->timeout, &args->wait_result); return err; } static int kfd_ioctl_set_scratch_backing_va(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_set_scratch_backing_va_args *args = data; struct kfd_process_device *pdd; struct kfd_dev *dev; long err; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto bind_process_to_device_fail; } pdd->qpd.sh_hidden_private_base = args->va_addr; mutex_unlock(&p->mutex); if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS && pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va) dev->kfd2kgd->set_scratch_backing_va( dev->kgd, args->va_addr, pdd->qpd.vmid); return 0; bind_process_to_device_fail: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_get_tile_config(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_tile_config_args *args = data; struct kfd_dev *dev; struct tile_config config; int err = 0; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; amdgpu_amdkfd_get_tile_config(dev->kgd, &config); args->gb_addr_config = config.gb_addr_config; args->num_banks = config.num_banks; args->num_ranks = config.num_ranks; if (args->num_tile_configs > config.num_tile_configs) args->num_tile_configs = config.num_tile_configs; err = copy_to_user((void __user *)args->tile_config_ptr, config.tile_config_ptr, args->num_tile_configs * sizeof(uint32_t)); if (err) { args->num_tile_configs = 0; return -EFAULT; } if (args->num_macro_tile_configs > config.num_macro_tile_configs) args->num_macro_tile_configs = config.num_macro_tile_configs; err = copy_to_user((void __user *)args->macro_tile_config_ptr, config.macro_tile_config_ptr, args->num_macro_tile_configs * sizeof(uint32_t)); if (err) { args->num_macro_tile_configs = 0; return -EFAULT; } return 0; } static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_acquire_vm_args *args = data; struct kfd_process_device *pdd; struct kfd_dev *dev; struct file *drm_file; int ret; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; drm_file = fget(args->drm_fd); if (!drm_file) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_get_process_device_data(dev, p); if (!pdd) { ret = -EINVAL; goto err_unlock; } if (pdd->drm_file) { ret = pdd->drm_file == drm_file ? 0 : -EBUSY; goto err_unlock; } ret = kfd_process_device_init_vm(pdd, drm_file); if (ret) goto err_unlock; /* On success, the PDD keeps the drm_file reference */ mutex_unlock(&p->mutex); return 0; err_unlock: mutex_unlock(&p->mutex); fput(drm_file); return ret; } bool kfd_dev_is_large_bar(struct kfd_dev *dev) { struct kfd_local_mem_info mem_info; if (debug_largebar) { pr_debug("Simulate large-bar allocation on non large-bar machine\n"); return true; } if (dev->device_info->needs_iommu_device) return false; amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info); if (mem_info.local_mem_size_private == 0 && mem_info.local_mem_size_public > 0) return true; return false; } static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_alloc_memory_of_gpu_args *args = data; struct kfd_process_device *pdd; void *mem; struct kfd_dev *dev; int idr_handle; long err; uint64_t offset = args->mmap_offset; uint32_t flags = args->flags; if (args->size == 0) return -EINVAL; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) && (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) && !kfd_dev_is_large_bar(dev)) { pr_err("Alloc host visible vram on small bar is not allowed\n"); return -EINVAL; } if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) { if (args->size != kfd_doorbell_process_slice(dev)) return -EINVAL; offset = kfd_get_process_doorbells(dev, p); } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) { if (args->size != PAGE_SIZE) return -EINVAL; offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd); if (!offset) return -ENOMEM; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto err_unlock; } err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( dev->kgd, args->va_addr, args->size, pdd->vm, (struct kgd_mem **) &mem, &offset, flags); if (err) goto err_unlock; idr_handle = kfd_process_device_create_obj_handle(pdd, mem); if (idr_handle < 0) { err = -EFAULT; goto err_free; } /* Update the VRAM usage count */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + args->size); mutex_unlock(&p->mutex); args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); args->mmap_offset = offset; /* MMIO is mapped through kfd device * Generate a kfd mmap offset */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id); return 0; err_free: amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem, NULL); err_unlock: mutex_unlock(&p->mutex); return err; } static int kfd_ioctl_free_memory_of_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_free_memory_of_gpu_args *args = data; struct kfd_process_device *pdd; void *mem; struct kfd_dev *dev; int ret; uint64_t size = 0; dev = kfd_device_by_id(GET_GPU_ID(args->handle)); if (!dev) return -EINVAL; mutex_lock(&p->mutex); pdd = kfd_get_process_device_data(dev, p); if (!pdd) { pr_err("Process device data doesn't exist\n"); ret = -EINVAL; goto err_unlock; } mem = kfd_process_device_translate_handle( pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { ret = -EINVAL; goto err_unlock; } ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem, &size); /* If freeing the buffer failed, leave the handle in place for * clean-up during process tear-down. */ if (!ret) kfd_process_device_remove_obj_handle( pdd, GET_IDR_HANDLE(args->handle)); WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size); err_unlock: mutex_unlock(&p->mutex); return ret; } static int kfd_ioctl_map_memory_to_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_map_memory_to_gpu_args *args = data; struct kfd_process_device *pdd, *peer_pdd; void *mem; struct kfd_dev *dev, *peer; long err = 0; int i; uint32_t *devices_arr = NULL; dev = kfd_device_by_id(GET_GPU_ID(args->handle)); if (!dev) return -EINVAL; if (!args->n_devices) { pr_debug("Device IDs array empty\n"); return -EINVAL; } if (args->n_success > args->n_devices) { pr_debug("n_success exceeds n_devices\n"); return -EINVAL; } devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), GFP_KERNEL); if (!devices_arr) return -ENOMEM; err = copy_from_user(devices_arr, (void __user *)args->device_ids_array_ptr, args->n_devices * sizeof(*devices_arr)); if (err != 0) { err = -EFAULT; goto copy_from_user_failed; } mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { err = PTR_ERR(pdd); goto bind_process_to_device_failed; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { err = -ENOMEM; goto get_mem_obj_from_handle_failed; } for (i = args->n_success; i < args->n_devices; i++) { peer = kfd_device_by_id(devices_arr[i]); if (!peer) { pr_debug("Getting device by id failed for 0x%x\n", devices_arr[i]); err = -EINVAL; goto get_mem_obj_from_handle_failed; } peer_pdd = kfd_bind_process_to_device(peer, p); if (IS_ERR(peer_pdd)) { err = PTR_ERR(peer_pdd); goto get_mem_obj_from_handle_failed; } err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu( peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm); if (err) { pr_err("Failed to map to gpu %d/%d\n", i, args->n_devices); goto map_memory_to_gpu_failed; } args->n_success = i+1; } mutex_unlock(&p->mutex); err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true); if (err) { pr_debug("Sync memory failed, wait interrupted by user signal\n"); goto sync_memory_failed; } /* Flush TLBs after waiting for the page table updates to complete */ for (i = 0; i < args->n_devices; i++) { peer = kfd_device_by_id(devices_arr[i]); if (WARN_ON_ONCE(!peer)) continue; peer_pdd = kfd_get_process_device_data(peer, p); if (WARN_ON_ONCE(!peer_pdd)) continue; kfd_flush_tlb(peer_pdd); } kfree(devices_arr); return err; bind_process_to_device_failed: get_mem_obj_from_handle_failed: map_memory_to_gpu_failed: mutex_unlock(&p->mutex); copy_from_user_failed: sync_memory_failed: kfree(devices_arr); return err; } static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_unmap_memory_from_gpu_args *args = data; struct kfd_process_device *pdd, *peer_pdd; void *mem; struct kfd_dev *dev, *peer; long err = 0; uint32_t *devices_arr = NULL, i; dev = kfd_device_by_id(GET_GPU_ID(args->handle)); if (!dev) return -EINVAL; if (!args->n_devices) { pr_debug("Device IDs array empty\n"); return -EINVAL; } if (args->n_success > args->n_devices) { pr_debug("n_success exceeds n_devices\n"); return -EINVAL; } devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr), GFP_KERNEL); if (!devices_arr) return -ENOMEM; err = copy_from_user(devices_arr, (void __user *)args->device_ids_array_ptr, args->n_devices * sizeof(*devices_arr)); if (err != 0) { err = -EFAULT; goto copy_from_user_failed; } mutex_lock(&p->mutex); pdd = kfd_get_process_device_data(dev, p); if (!pdd) { err = -EINVAL; goto bind_process_to_device_failed; } mem = kfd_process_device_translate_handle(pdd, GET_IDR_HANDLE(args->handle)); if (!mem) { err = -ENOMEM; goto get_mem_obj_from_handle_failed; } for (i = args->n_success; i < args->n_devices; i++) { peer = kfd_device_by_id(devices_arr[i]); if (!peer) { err = -EINVAL; goto get_mem_obj_from_handle_failed; } peer_pdd = kfd_get_process_device_data(peer, p); if (!peer_pdd) { err = -ENODEV; goto get_mem_obj_from_handle_failed; } err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm); if (err) { pr_err("Failed to unmap from gpu %d/%d\n", i, args->n_devices); goto unmap_memory_from_gpu_failed; } args->n_success = i+1; } kfree(devices_arr); mutex_unlock(&p->mutex); return 0; bind_process_to_device_failed: get_mem_obj_from_handle_failed: unmap_memory_from_gpu_failed: mutex_unlock(&p->mutex); copy_from_user_failed: kfree(devices_arr); return err; } static int kfd_ioctl_alloc_queue_gws(struct file *filep, struct kfd_process *p, void *data) { int retval; struct kfd_ioctl_alloc_queue_gws_args *args = data; struct queue *q; struct kfd_dev *dev; mutex_lock(&p->mutex); q = pqm_get_user_queue(&p->pqm, args->queue_id); if (q) { dev = q->device; } else { retval = -EINVAL; goto out_unlock; } if (!dev->gws) { retval = -ENODEV; goto out_unlock; } if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { retval = -ENODEV; goto out_unlock; } retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL); mutex_unlock(&p->mutex); args->first_gws = 0; return retval; out_unlock: mutex_unlock(&p->mutex); return retval; } static int kfd_ioctl_get_dmabuf_info(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_get_dmabuf_info_args *args = data; struct kfd_dev *dev = NULL; struct kgd_dev *dma_buf_kgd; void *metadata_buffer = NULL; uint32_t flags; unsigned int i; int r; /* Find a KFD GPU device that supports the get_dmabuf_info query */ for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++) if (dev) break; if (!dev) return -EINVAL; if (args->metadata_ptr) { metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL); if (!metadata_buffer) return -ENOMEM; } /* Get dmabuf info from KGD */ r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd, &dma_buf_kgd, &args->size, metadata_buffer, args->metadata_size, &args->metadata_size, &flags); if (r) goto exit; /* Reverse-lookup gpu_id from kgd pointer */ dev = kfd_device_by_kgd(dma_buf_kgd); if (!dev) { r = -EINVAL; goto exit; } args->gpu_id = dev->id; args->flags = flags; /* Copy metadata buffer to user mode */ if (metadata_buffer) { r = copy_to_user((void __user *)args->metadata_ptr, metadata_buffer, args->metadata_size); if (r != 0) r = -EFAULT; } exit: kfree(metadata_buffer); return r; } static int kfd_ioctl_import_dmabuf(struct file *filep, struct kfd_process *p, void *data) { struct kfd_ioctl_import_dmabuf_args *args = data; struct kfd_process_device *pdd; struct dma_buf *dmabuf; struct kfd_dev *dev; int idr_handle; uint64_t size; void *mem; int r; dev = kfd_device_by_id(args->gpu_id); if (!dev) return -EINVAL; dmabuf = dma_buf_get(args->dmabuf_fd); if (IS_ERR(dmabuf)) return PTR_ERR(dmabuf); mutex_lock(&p->mutex); pdd = kfd_bind_process_to_device(dev, p); if (IS_ERR(pdd)) { r = PTR_ERR(pdd); goto err_unlock; } r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf, args->va_addr, pdd->vm, (struct kgd_mem **)&mem, &size, NULL); if (r) goto err_unlock; idr_handle = kfd_process_device_create_obj_handle(pdd, mem); if (idr_handle < 0) { r = -EFAULT; goto err_free; } mutex_unlock(&p->mutex); args->handle = MAKE_HANDLE(args->gpu_id, idr_handle); return 0; err_free: amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem, NULL); err_unlock: mutex_unlock(&p->mutex); return r; } #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \ [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \ .cmd_drv = 0, .name = #ioctl} /** Ioctl table */ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION, kfd_ioctl_get_version, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE, kfd_ioctl_create_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE, kfd_ioctl_destroy_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY, kfd_ioctl_set_memory_policy, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS, kfd_ioctl_get_clock_counters, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES, kfd_ioctl_get_process_apertures, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE, kfd_ioctl_update_queue, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT, kfd_ioctl_create_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT, kfd_ioctl_destroy_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT, kfd_ioctl_set_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT, kfd_ioctl_reset_event, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS, kfd_ioctl_wait_events, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER, kfd_ioctl_dbg_register, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER, kfd_ioctl_dbg_unregister, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH, kfd_ioctl_dbg_address_watch, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL, kfd_ioctl_dbg_wave_control, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA, kfd_ioctl_set_scratch_backing_va, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, kfd_ioctl_get_tile_config, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER, kfd_ioctl_set_trap_handler, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW, kfd_ioctl_get_process_apertures_new, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM, kfd_ioctl_acquire_vm, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU, kfd_ioctl_alloc_memory_of_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU, kfd_ioctl_free_memory_of_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU, kfd_ioctl_map_memory_to_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU, kfd_ioctl_unmap_memory_from_gpu, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK, kfd_ioctl_set_cu_mask, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE, kfd_ioctl_get_queue_wave_state, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO, kfd_ioctl_get_dmabuf_info, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF, kfd_ioctl_import_dmabuf, 0), AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS, kfd_ioctl_alloc_queue_gws, 0), }; #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) { struct kfd_process *process; amdkfd_ioctl_t *func; const struct amdkfd_ioctl_desc *ioctl = NULL; unsigned int nr = _IOC_NR(cmd); char stack_kdata[128]; char *kdata = NULL; unsigned int usize, asize; int retcode = -EINVAL; if (nr >= AMDKFD_CORE_IOCTL_COUNT) goto err_i1; if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) { u32 amdkfd_size; ioctl = &amdkfd_ioctls[nr]; amdkfd_size = _IOC_SIZE(ioctl->cmd); usize = asize = _IOC_SIZE(cmd); if (amdkfd_size > asize) asize = amdkfd_size; cmd = ioctl->cmd; } else goto err_i1; dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg); /* Get the process struct from the filep. Only the process * that opened /dev/kfd can use the file descriptor. Child * processes need to create their own KFD device context. */ process = filep->private_data; if (process->lead_thread != current->group_leader) { dev_dbg(kfd_device, "Using KFD FD in wrong process\n"); retcode = -EBADF; goto err_i1; } /* Do not trust userspace, use our own definition */ func = ioctl->func; if (unlikely(!func)) { dev_dbg(kfd_device, "no function\n"); retcode = -EINVAL; goto err_i1; } if (cmd & (IOC_IN | IOC_OUT)) { if (asize <= sizeof(stack_kdata)) { kdata = stack_kdata; } else { kdata = kmalloc(asize, GFP_KERNEL); if (!kdata) { retcode = -ENOMEM; goto err_i1; } } if (asize > usize) memset(kdata + usize, 0, asize - usize); } if (cmd & IOC_IN) { if (copy_from_user(kdata, (void __user *)arg, usize) != 0) { retcode = -EFAULT; goto err_i1; } } else if (cmd & IOC_OUT) { memset(kdata, 0, usize); } retcode = func(filep, process, kdata); if (cmd & IOC_OUT) if (copy_to_user((void __user *)arg, kdata, usize) != 0) retcode = -EFAULT; err_i1: if (!ioctl) dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n", task_pid_nr(current), cmd, nr); if (kdata != stack_kdata) kfree(kdata); if (retcode) dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n", nr, arg, retcode); return retcode; } static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process, struct vm_area_struct *vma) { phys_addr_t address; int ret; if (vma->vm_end - vma->vm_start != PAGE_SIZE) return -EINVAL; address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd); vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); pr_debug("pasid 0x%x mapping mmio page\n" " target user address == 0x%08llX\n" " physical address == 0x%08llX\n" " vm_flags == 0x%04lX\n" " size == 0x%04lX\n", process->pasid, (unsigned long long) vma->vm_start, address, vma->vm_flags, PAGE_SIZE); ret = io_remap_pfn_range(vma, vma->vm_start, address >> PAGE_SHIFT, PAGE_SIZE, vma->vm_page_prot); return ret; } static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) { struct kfd_process *process; struct kfd_dev *dev = NULL; unsigned long mmap_offset; unsigned int gpu_id; process = kfd_get_process(current); if (IS_ERR(process)) return PTR_ERR(process); mmap_offset = vma->vm_pgoff << PAGE_SHIFT; gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset); if (gpu_id) dev = kfd_device_by_id(gpu_id); switch (mmap_offset & KFD_MMAP_TYPE_MASK) { case KFD_MMAP_TYPE_DOORBELL: if (!dev) return -ENODEV; return kfd_doorbell_mmap(dev, process, vma); case KFD_MMAP_TYPE_EVENTS: return kfd_event_mmap(process, vma); case KFD_MMAP_TYPE_RESERVED_MEM: if (!dev) return -ENODEV; return kfd_reserved_mem_mmap(dev, process, vma); case KFD_MMAP_TYPE_MMIO: if (!dev) return -ENODEV; return kfd_mmio_mmap(dev, process, vma); } return -EFAULT; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1