Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bhawanpreet Lakha | 2255 | 60.44% | 2 | 6.90% |
Eric Yang | 770 | 20.64% | 6 | 20.69% |
Joseph Gravenor | 455 | 12.20% | 6 | 20.69% |
Yongqiang Sun | 116 | 3.11% | 3 | 10.34% |
Sung Lee | 54 | 1.45% | 5 | 17.24% |
Dmytro Laktyushkin | 30 | 0.80% | 2 | 6.90% |
Michael Strauss | 29 | 0.78% | 3 | 10.34% |
Noah Abradjian | 18 | 0.48% | 1 | 3.45% |
Anthony Koo | 4 | 0.11% | 1 | 3.45% |
Total | 3731 | 29 |
/* * Copyright 2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dccg.h" #include "clk_mgr_internal.h" #include "dcn20/dcn20_clk_mgr.h" #include "rn_clk_mgr.h" #include "dce100/dce_clk_mgr.h" #include "rn_clk_mgr_vbios_smu.h" #include "reg_helper.h" #include "core_types.h" #include "dm_helpers.h" #include "atomfirmware.h" #include "clk/clk_10_0_2_offset.h" #include "clk/clk_10_0_2_sh_mask.h" #include "renoir_ip_offset.h" /* Constants */ #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */ #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */ /* Macros */ #define REG(reg_name) \ (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */ int rn_get_active_display_cnt_wa( struct dc *dc, struct dc_state *context) { int i, display_count; bool tmds_present = false; display_count = 0; for (i = 0; i < context->stream_count; i++) { const struct dc_stream_state *stream = context->streams[i]; if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A || stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK || stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK) tmds_present = true; } for (i = 0; i < dc->link_count; i++) { const struct dc_link *link = dc->links[i]; /* * Only notify active stream or virtual stream. * Need to notify virtual stream to work around * headless case. HPD does not fire when system is in * S0i2. */ /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */ if (link->connector_signal == SIGNAL_TYPE_VIRTUAL || link->link_enc->funcs->is_dig_enabled(link->link_enc)) display_count++; } /* WA for hang on HDMI after display off back back on*/ if (display_count == 0 && tmds_present) display_count = 1; return display_count; } void rn_update_clocks(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool safe_to_lower) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk; struct dc *dc = clk_mgr_base->ctx->dc; int display_count; bool update_dppclk = false; bool update_dispclk = false; bool dpp_clock_lowered = false; struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu; if (dc->work_arounds.skip_clock_update) return; /* * if it is safe to lower, but we are already in the lower state, we don't have to do anything * also if safe to lower is false, we just go in the higher state */ if (safe_to_lower) { /* check that we're not already in lower */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) { display_count = rn_get_active_display_cnt_wa(dc, context); /* if we can go lower, go lower */ if (display_count == 0) { rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER); /* update power state */ clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER; } } } else { /* check that we're not already in D0 */ if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) { rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE); /* update power state */ clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE; } } if (should_set_clock(safe_to_lower, new_clocks->phyclk_khz, clk_mgr_base->clks.phyclk_khz)) { clk_mgr_base->clks.phyclk_khz = new_clocks->phyclk_khz; rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) { clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz; rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz); } if (should_set_clock(safe_to_lower, new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) { clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz; rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz); } // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow. if (!IS_DIAG_DC(dc->ctx->dce_environment)) { if (new_clocks->dppclk_khz < 100000) new_clocks->dppclk_khz = 100000; } if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) { if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz) dpp_clock_lowered = true; clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz; update_dppclk = true; } if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) { clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz; rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz); update_dispclk = true; } if (dpp_clock_lowered) { // increase per DPP DTO before lowering global dppclk dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); } else { // increase global DPPCLK before lowering per DPP DTO if (update_dppclk || update_dispclk) rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz); // always update dtos unless clock is lowered and not safe to lower if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz) dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower); } if (update_dispclk && dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) { /*update dmcu for wait_loop count*/ dmcu->funcs->set_psr_wait_loop(dmcu, clk_mgr_base->clks.dispclk_khz / 1000 / 7); } } static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr) { /* get FbMult value */ struct fixed31_32 pll_req; unsigned int fbmult_frac_val = 0; unsigned int fbmult_int_val = 0; /* * Register value of fbmult is in 8.16 format, we are converting to 31.32 * to leverage the fix point operations available in driver */ REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/ REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */ pll_req = dc_fixpt_from_int(fbmult_int_val); /* * since fractional part is only 16 bit in register definition but is 32 bit * in our fix point definiton, need to shift left by 16 to obtain correct value */ pll_req.value |= fbmult_frac_val << 16; /* multiply by REFCLK period */ pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz); /* integer part is now VCO frequency in kHz */ return dc_fixpt_floor(pll_req); } static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT); internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL); internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL); //dcf deep sleep divider internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS); internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT); internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL); internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT); internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL); internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT); internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL); } /* This function collect raw clk register values */ static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass, struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info) { struct rn_clk_internal internal = {0}; char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"}; unsigned int chars_printed = 0; unsigned int remaining_buffer = log_info->bufSize; rn_dump_clk_registers_internal(&internal, clk_mgr_base); regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10; regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10; regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS; regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10; regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10; regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10; regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007; if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4) regs_and_bypass->dppclk_bypass = 0; regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007; if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4) regs_and_bypass->dcfclk_bypass = 0; regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007; if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4) regs_and_bypass->dispclk_bypass = 0; regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007; if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4) regs_and_bypass->dprefclk_bypass = 0; if (log_info->enabled) { chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n"); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n", regs_and_bypass->dcfclk, regs_and_bypass->dcf_deep_sleep_divider, regs_and_bypass->dcf_deep_sleep_allow, bypass_clks[(int) regs_and_bypass->dcfclk_bypass]); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n", regs_and_bypass->dprefclk, bypass_clks[(int) regs_and_bypass->dprefclk_bypass]); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n", regs_and_bypass->dispclk, bypass_clks[(int) regs_and_bypass->dispclk_bypass]); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; //split chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n"); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; // REGISTER VALUES chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n"); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n", internal.CLK1_CLK3_CURRENT_CNT); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n", internal.CLK1_CLK3_DS_CNTL); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n", internal.CLK1_CLK3_ALLOW_DS); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n", internal.CLK1_CLK2_CURRENT_CNT); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n", internal.CLK1_CLK0_CURRENT_CNT); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n", internal.CLK1_CLK1_CURRENT_CNT); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n", internal.CLK1_CLK3_BYPASS_CNTL); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n", internal.CLK1_CLK2_BYPASS_CNTL); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n", internal.CLK1_CLK0_BYPASS_CNTL); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n", internal.CLK1_CLK1_BYPASS_CNTL); remaining_buffer -= chars_printed; *log_info->sum_chars_printed += chars_printed; log_info->pBuf += chars_printed; } } /* This function produce translated logical clk state values*/ void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s) { struct clk_state_registers_and_bypass sb = { 0 }; struct clk_log_info log_info = { 0 }; rn_dump_clk_registers(&sb, clk_mgr_base, &log_info); s->dprefclk_khz = sb.dprefclk * 1000; } void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base) { struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); rn_vbios_smu_enable_pme_wa(clk_mgr); } void rn_init_clocks(struct clk_mgr *clk_mgr) { memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks)); // Assumption is that boot state always supports pstate clk_mgr->clks.p_state_change_support = true; clk_mgr->clks.prev_p_state_change_support = true; clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN; } static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges) { int i, num_valid_sets; num_valid_sets = 0; for (i = 0; i < WM_SET_COUNT; i++) { /* skip empty entries, the smu array has no holes*/ if (!bw_params->wm_table.entries[i].valid) continue; ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst; ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type; /* We will not select WM based on fclk, so leave it as unconstrained */ ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; /* dcfclk wil be used to select WM*/ if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) { if (i == 0) ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0; else { /* add 1 to make it non-overlapping with next lvl */ ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1; } ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; } else { /* unconstrained for memory retraining */ ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; /* Modify previous watermark range to cover up to max */ ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; } num_valid_sets++; } ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */ ranges->num_reader_wm_sets = num_valid_sets; /* modify the min and max to make sure we cover the whole range*/ ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; /* This is for writeback only, does not matter currently as no writeback support*/ ranges->num_writer_wm_sets = 1; ranges->writer_wm_sets[0].wm_inst = WM_A; ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN; ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX; } static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base) { struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug; struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base); struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu; if (!debug->disable_pplib_wm_range) { build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges); /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */ if (pp_smu && pp_smu->rn_funcs.set_wm_ranges) pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges); } } static bool rn_are_clock_states_equal(struct dc_clocks *a, struct dc_clocks *b) { if (a->dispclk_khz != b->dispclk_khz) return false; else if (a->dppclk_khz != b->dppclk_khz) return false; else if (a->dcfclk_khz != b->dcfclk_khz) return false; else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz) return false; return true; } static struct clk_mgr_funcs dcn21_funcs = { .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz, .update_clocks = rn_update_clocks, .init_clocks = rn_init_clocks, .enable_pme_wa = rn_enable_pme_wa, .are_clock_states_equal = rn_are_clock_states_equal, .notify_wm_ranges = rn_notify_wm_ranges }; static struct clk_bw_params rn_bw_params = { .vram_type = Ddr4MemType, .num_channels = 1, .clk_table = { .entries = { { .voltage = 0, .dcfclk_mhz = 400, .fclk_mhz = 400, .memclk_mhz = 800, .socclk_mhz = 0, }, { .voltage = 0, .dcfclk_mhz = 483, .fclk_mhz = 800, .memclk_mhz = 1600, .socclk_mhz = 0, }, { .voltage = 0, .dcfclk_mhz = 602, .fclk_mhz = 1067, .memclk_mhz = 1067, .socclk_mhz = 0, }, { .voltage = 0, .dcfclk_mhz = 738, .fclk_mhz = 1333, .memclk_mhz = 1600, .socclk_mhz = 0, }, }, .num_entries = 4, }, }; static struct wm_table ddr4_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 6.09, .sr_enter_plus_exit_time_us = 7.14, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 10.12, .sr_enter_plus_exit_time_us = 11.48, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 10.12, .sr_enter_plus_exit_time_us = 11.48, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.72, .sr_exit_time_us = 10.12, .sr_enter_plus_exit_time_us = 11.48, .valid = true, }, } }; static struct wm_table lpddr4_wm_table = { .entries = { { .wm_inst = WM_A, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 5.32, .sr_enter_plus_exit_time_us = 6.38, .valid = true, }, { .wm_inst = WM_B, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 9.82, .sr_enter_plus_exit_time_us = 11.196, .valid = true, }, { .wm_inst = WM_C, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 9.89, .sr_enter_plus_exit_time_us = 11.24, .valid = true, }, { .wm_inst = WM_D, .wm_type = WM_TYPE_PSTATE_CHG, .pstate_latency_us = 11.65333, .sr_exit_time_us = 9.748, .sr_enter_plus_exit_time_us = 11.102, .valid = true, }, } }; static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage) { int i; for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) { if (clock_table->DcfClocks[i].Vol == voltage) return clock_table->DcfClocks[i].Freq; } ASSERT(0); return 0; } static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info) { int i, j = 0; j = -1; ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL); /* Find lowest DPM, FCLK is filled in reverse order*/ for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) { if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) { j = i; break; } } if (j == -1) { /* clock table is all 0s, just use our own hardcode */ ASSERT(0); return; } bw_params->clk_table.num_entries = j + 1; for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) { bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq; bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq; bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol; bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol); } bw_params->vram_type = bios_info->memory_type; bw_params->num_channels = bios_info->ma_channel_number; for (i = 0; i < WM_SET_COUNT; i++) { bw_params->wm_table.entries[i].wm_inst = i; if (i >= bw_params->clk_table.num_entries) { bw_params->wm_table.entries[i].valid = false; continue; } bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG; bw_params->wm_table.entries[i].valid = true; } if (bw_params->vram_type == LpDdr4MemType) { /* * WM set D will be re-purposed for memory retraining */ bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY; bw_params->wm_table.entries[WM_D].wm_inst = WM_D; bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING; bw_params->wm_table.entries[WM_D].valid = true; } } void rn_clk_mgr_construct( struct dc_context *ctx, struct clk_mgr_internal *clk_mgr, struct pp_smu_funcs *pp_smu, struct dccg *dccg) { struct dc_debug_options *debug = &ctx->dc->debug; struct dpm_clocks clock_table = { 0 }; clk_mgr->base.ctx = ctx; clk_mgr->base.funcs = &dcn21_funcs; clk_mgr->pp_smu = pp_smu; clk_mgr->dccg = dccg; clk_mgr->dfs_bypass_disp_clk = 0; clk_mgr->dprefclk_ss_percentage = 0; clk_mgr->dprefclk_ss_divider = 1000; clk_mgr->ss_on_dprefclk = false; clk_mgr->dfs_ref_freq_khz = 48000; clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr); if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) { dcn21_funcs.update_clocks = dcn2_update_clocks_fpga; clk_mgr->base.dentist_vco_freq_khz = 3600000; } else { struct clk_log_info log_info = {0}; clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr); /* SMU Version 55.51.0 and up no longer have an issue * that needs to limit minimum dispclk */ if (clk_mgr->smu_ver >= SMU_VER_55_51_0) debug->min_disp_clk_khz = 0; /* TODO: Check we get what we expect during bringup */ clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr); /* in case we don't get a value from the register, use default */ if (clk_mgr->base.dentist_vco_freq_khz == 0) clk_mgr->base.dentist_vco_freq_khz = 3600000; if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) { rn_bw_params.wm_table = lpddr4_wm_table; } else { rn_bw_params.wm_table = ddr4_wm_table; } /* Saved clocks configured at boot for debug purposes */ rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info); } clk_mgr->base.dprefclk_khz = 600000; dce_clock_read_ss_info(clk_mgr); clk_mgr->base.bw_params = &rn_bw_params; if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) { pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table); if (ctx->dc_bios && ctx->dc_bios->integrated_info) { rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info); } } if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) { /* enable powerfeatures when displaycount goes to 0 */ rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1