Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 205 | 28.12% | 2 | 6.25% |
Felix Kuhling | 128 | 17.56% | 7 | 21.88% |
Yair Shachar | 75 | 10.29% | 1 | 3.12% |
Ben Goz | 53 | 7.27% | 2 | 6.25% |
Flora Cui | 44 | 6.04% | 1 | 3.12% |
Yong Zhao | 43 | 5.90% | 7 | 21.88% |
Shaoyun Liu | 42 | 5.76% | 3 | 9.38% |
Aaron Liu | 25 | 3.43% | 1 | 3.12% |
Andres Rodriguez | 21 | 2.88% | 2 | 6.25% |
Moses Reuben | 18 | 2.47% | 1 | 3.12% |
Harish Kasiviswanathan | 18 | 2.47% | 1 | 3.12% |
Amber Lin | 17 | 2.33% | 1 | 3.12% |
Alexey Skidanov | 16 | 2.19% | 1 | 3.12% |
Divya Shikre | 12 | 1.65% | 1 | 3.12% |
Lan Xiao | 12 | 1.65% | 1 | 3.12% |
Total | 729 | 32 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * This file defines the private interface between the * AMD kernel graphics drivers and the AMD KFD. */ #ifndef KGD_KFD_INTERFACE_H_INCLUDED #define KGD_KFD_INTERFACE_H_INCLUDED #include <linux/types.h> #include <linux/bitmap.h> #include <linux/dma-fence.h> struct pci_dev; #define KGD_MAX_QUEUES 128 struct kfd_dev; struct kgd_dev; struct kgd_mem; enum kfd_preempt_type { KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN = 0, KFD_PREEMPT_TYPE_WAVEFRONT_RESET, }; struct kfd_vm_fault_info { uint64_t page_addr; uint32_t vmid; uint32_t mc_id; uint32_t status; bool prot_valid; bool prot_read; bool prot_write; bool prot_exec; }; struct kfd_cu_info { uint32_t num_shader_engines; uint32_t num_shader_arrays_per_engine; uint32_t num_cu_per_sh; uint32_t cu_active_number; uint32_t cu_ao_mask; uint32_t simd_per_cu; uint32_t max_waves_per_simd; uint32_t wave_front_size; uint32_t max_scratch_slots_per_cu; uint32_t lds_size; uint32_t cu_bitmap[4][4]; }; /* For getting GPU local memory information from KGD */ struct kfd_local_mem_info { uint64_t local_mem_size_private; uint64_t local_mem_size_public; uint32_t vram_width; uint32_t mem_clk_max; }; enum kgd_memory_pool { KGD_POOL_SYSTEM_CACHEABLE = 1, KGD_POOL_SYSTEM_WRITECOMBINE = 2, KGD_POOL_FRAMEBUFFER = 3, }; /** * enum kfd_sched_policy * * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp) * scheduling. In this scheduling mode we're using the firmware code to * schedule the user mode queues and kernel queues such as HIQ and DIQ. * the HIQ queue is used as a special queue that dispatches the configuration * to the cp and the user mode queues list that are currently running. * the DIQ queue is a debugging queue that dispatches debugging commands to the * firmware. * in this scheduling mode user mode queues over subscription feature is * enabled. * * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over * subscription feature disabled. * * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly * set the command processor registers and sets the queues "manually". This * mode is used *ONLY* for debugging proposes. * */ enum kfd_sched_policy { KFD_SCHED_POLICY_HWS = 0, KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION, KFD_SCHED_POLICY_NO_HWS }; struct kgd2kfd_shared_resources { /* Bit n == 1 means VMID n is available for KFD. */ unsigned int compute_vmid_bitmap; /* number of pipes per mec */ uint32_t num_pipe_per_mec; /* number of queues per pipe */ uint32_t num_queue_per_pipe; /* Bit n == 1 means Queue n is available for KFD */ DECLARE_BITMAP(cp_queue_bitmap, KGD_MAX_QUEUES); /* SDMA doorbell assignments (SOC15 and later chips only). Only * specific doorbells are routed to each SDMA engine. Others * are routed to IH and VCN. They are not usable by the CP. */ uint32_t *sdma_doorbell_idx; /* From SOC15 onward, the doorbell index range not usable for CP * queues. */ uint32_t non_cp_doorbells_start; uint32_t non_cp_doorbells_end; /* Base address of doorbell aperture. */ phys_addr_t doorbell_physical_address; /* Size in bytes of doorbell aperture. */ size_t doorbell_aperture_size; /* Number of bytes at start of aperture reserved for KGD. */ size_t doorbell_start_offset; /* GPUVM address space size in bytes */ uint64_t gpuvm_size; /* Minor device number of the render node */ int drm_render_minor; }; struct tile_config { uint32_t *tile_config_ptr; uint32_t *macro_tile_config_ptr; uint32_t num_tile_configs; uint32_t num_macro_tile_configs; uint32_t gb_addr_config; uint32_t num_banks; uint32_t num_ranks; }; #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096 /** * struct kfd2kgd_calls * * @program_sh_mem_settings: A function that should initiate the memory * properties such as main aperture memory type (cache / non cached) and * secondary aperture base address, size and memory type. * This function is used only for no cp scheduling mode. * * @set_pasid_vmid_mapping: Exposes pasid/vmid pair to the H/W for no cp * scheduling mode. Only used for no cp scheduling mode. * * @hqd_load: Loads the mqd structure to a H/W hqd slot. used only for no cp * sceduling mode. * * @hqd_sdma_load: Loads the SDMA mqd structure to a H/W SDMA hqd slot. * used only for no HWS mode. * * @hqd_dump: Dumps CPC HQD registers to an array of address-value pairs. * Array is allocated with kmalloc, needs to be freed with kfree by caller. * * @hqd_sdma_dump: Dumps SDMA HQD registers to an array of address-value pairs. * Array is allocated with kmalloc, needs to be freed with kfree by caller. * * @hqd_is_occupies: Checks if a hqd slot is occupied. * * @hqd_destroy: Destructs and preempts the queue assigned to that hqd slot. * * @hqd_sdma_is_occupied: Checks if an SDMA hqd slot is occupied. * * @hqd_sdma_destroy: Destructs and preempts the SDMA queue assigned to that * SDMA hqd slot. * * @set_scratch_backing_va: Sets VA for scratch backing memory of a VMID. * Only used for no cp scheduling mode * * @set_vm_context_page_table_base: Program page table base for a VMID * * @invalidate_tlbs: Invalidate TLBs for a specific PASID * * @invalidate_tlbs_vmid: Invalidate TLBs for a specific VMID * * @read_vmid_from_vmfault_reg: On Hawaii the VMID is not set in the * IH ring entry. This function allows the KFD ISR to get the VMID * from the fault status register as early as possible. * * @get_hive_id: Returns hive id of current device, 0 if xgmi is not enabled * * @get_unique_id: Returns uuid id of current device * * This structure contains function pointers to services that the kgd driver * provides to amdkfd driver. * */ struct kfd2kgd_calls { /* Register access functions */ void (*program_sh_mem_settings)(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); int (*set_pasid_vmid_mapping)(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid); int (*init_interrupts)(struct kgd_dev *kgd, uint32_t pipe_id); int (*hqd_load)(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm); int (*hiq_mqd_load)(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t doorbell_off); int (*hqd_sdma_load)(struct kgd_dev *kgd, void *mqd, uint32_t __user *wptr, struct mm_struct *mm); int (*hqd_dump)(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); int (*hqd_sdma_dump)(struct kgd_dev *kgd, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs); bool (*hqd_is_occupied)(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id); int (*hqd_destroy)(struct kgd_dev *kgd, void *mqd, uint32_t reset_type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id); bool (*hqd_sdma_is_occupied)(struct kgd_dev *kgd, void *mqd); int (*hqd_sdma_destroy)(struct kgd_dev *kgd, void *mqd, unsigned int timeout); int (*address_watch_disable)(struct kgd_dev *kgd); int (*address_watch_execute)(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo); int (*wave_control_execute)(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd); uint32_t (*address_watch_get_offset)(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset); bool (*get_atc_vmid_pasid_mapping_info)( struct kgd_dev *kgd, uint8_t vmid, uint16_t *p_pasid); /* No longer needed from GFXv9 onward. The scratch base address is * passed to the shader by the CP. It's the user mode driver's * responsibility. */ void (*set_scratch_backing_va)(struct kgd_dev *kgd, uint64_t va, uint32_t vmid); void (*set_vm_context_page_table_base)(struct kgd_dev *kgd, uint32_t vmid, uint64_t page_table_base); uint32_t (*read_vmid_from_vmfault_reg)(struct kgd_dev *kgd); uint64_t (*get_hive_id)(struct kgd_dev *kgd); uint64_t (*get_unique_id)(struct kgd_dev *kgd); }; #endif /* KGD_KFD_INTERFACE_H_INCLUDED */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1