Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kevin Wang | 2810 | 30.72% | 34 | 20.86% |
Huang Rui | 1457 | 15.93% | 23 | 14.11% |
Likun Gao | 1313 | 14.35% | 22 | 13.50% |
Evan Quan | 950 | 10.39% | 29 | 17.79% |
Kenneth Feng | 558 | 6.10% | 8 | 4.91% |
Chengming Gui | 466 | 5.09% | 8 | 4.91% |
Matt Coffin | 452 | 4.94% | 7 | 4.29% |
Alex Deucher | 300 | 3.28% | 8 | 4.91% |
Prike Liang | 271 | 2.96% | 2 | 1.23% |
Hersen Wu | 204 | 2.23% | 4 | 2.45% |
Monk Liu | 178 | 1.95% | 2 | 1.23% |
tianci yin | 57 | 0.62% | 2 | 1.23% |
Xiaojie Yuan | 56 | 0.61% | 4 | 2.45% |
Shaoyun Liu | 34 | 0.37% | 2 | 1.23% |
Jack Xiao | 12 | 0.13% | 2 | 1.23% |
Le Ma | 9 | 0.10% | 1 | 0.61% |
John Clements | 8 | 0.09% | 1 | 0.61% |
Hawking Zhang | 7 | 0.08% | 1 | 0.61% |
Nathan Chancellor | 2 | 0.02% | 1 | 0.61% |
Sam Ravnborg | 2 | 0.02% | 1 | 0.61% |
Colin Ian King | 1 | 0.01% | 1 | 0.61% |
Total | 9147 | 163 |
/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/firmware.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/reboot.h> #define SMU_11_0_PARTIAL_PPTABLE #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_internal.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "smu_v11_0_pptable.h" #include "soc15_common.h" #include "atom.h" #include "amd_pcie.h" #include "amdgpu_ras.h" #include "asic_reg/thm/thm_11_0_2_offset.h" #include "asic_reg/thm/thm_11_0_2_sh_mask.h" #include "asic_reg/mp/mp_11_0_offset.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #include "asic_reg/smuio/smuio_11_0_0_offset.h" #include "asic_reg/smuio/smuio_11_0_0_sh_mask.h" MODULE_FIRMWARE("amdgpu/vega20_smc.bin"); MODULE_FIRMWARE("amdgpu/arcturus_smc.bin"); MODULE_FIRMWARE("amdgpu/navi10_smc.bin"); MODULE_FIRMWARE("amdgpu/navi14_smc.bin"); MODULE_FIRMWARE("amdgpu/navi12_smc.bin"); #define SMU11_VOLTAGE_SCALE 4 static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu, uint16_t msg) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_66, msg); return 0; } static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg) { struct amdgpu_device *adev = smu->adev; *arg = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82); return 0; } static int smu_v11_0_wait_for_response(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t cur_value, i, timeout = adev->usec_timeout * 10; for (i = 0; i < timeout; i++) { cur_value = RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90); if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0) return cur_value == 0x1 ? 0 : -EIO; udelay(1); } /* timeout means wrong logic */ if (i == timeout) return -ETIME; return RREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO; } int smu_v11_0_send_msg_with_param(struct smu_context *smu, enum smu_message_type msg, uint32_t param, uint32_t *read_arg) { struct amdgpu_device *adev = smu->adev; int ret = 0, index = 0; index = smu_msg_get_index(smu, msg); if (index < 0) return index; mutex_lock(&smu->message_lock); ret = smu_v11_0_wait_for_response(smu); if (ret) { pr_err("Msg issuing pre-check failed and " "SMU may be not in the right state!\n"); goto out; } WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); WREG32_SOC15_NO_KIQ(MP1, 0, mmMP1_SMN_C2PMSG_82, param); smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index); ret = smu_v11_0_wait_for_response(smu); if (ret) { pr_err("failed send message: %10s (%d) \tparam: 0x%08x response %#x\n", smu_get_message_name(smu, msg), index, param, ret); goto out; } if (read_arg) { ret = smu_v11_0_read_arg(smu, read_arg); if (ret) { pr_err("failed to read message arg: %10s (%d) \tparam: 0x%08x response %#x\n", smu_get_message_name(smu, msg), index, param, ret); goto out; } } out: mutex_unlock(&smu->message_lock); return ret; } int smu_v11_0_init_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const char *chip_name; char fw_name[30]; int err = 0; const struct smc_firmware_header_v1_0 *hdr; const struct common_firmware_header *header; struct amdgpu_firmware_info *ucode = NULL; switch (adev->asic_type) { case CHIP_VEGA20: chip_name = "vega20"; break; case CHIP_ARCTURUS: chip_name = "arcturus"; break; case CHIP_NAVI10: chip_name = "navi10"; break; case CHIP_NAVI14: chip_name = "navi14"; break; case CHIP_NAVI12: chip_name = "navi12"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name); err = request_firmware(&adev->pm.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->pm.fw); if (err) goto out; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC]; ucode->ucode_id = AMDGPU_UCODE_ID_SMC; ucode->fw = adev->pm.fw; header = (const struct common_firmware_header *)ucode->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->pm.fw); adev->pm.fw = NULL; } return err; } int smu_v11_0_load_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const uint32_t *src; const struct smc_firmware_header_v1_0 *hdr; uint32_t addr_start = MP1_SRAM; uint32_t i; uint32_t smc_fw_size; uint32_t mp1_fw_flags; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; src = (const uint32_t *)(adev->pm.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); smc_fw_size = hdr->header.ucode_size_bytes; for (i = 1; i < smc_fw_size/4 - 1; i++) { WREG32_PCIE(addr_start, src[i]); addr_start += 4; } WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & MP1_SMN_PUB_CTRL__RESET_MASK); WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & ~MP1_SMN_PUB_CTRL__RESET_MASK); for (i = 0; i < adev->usec_timeout; i++) { mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) break; udelay(1); } if (i == adev->usec_timeout) return -ETIME; return 0; } int smu_v11_0_check_fw_status(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t mp1_fw_flags; mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) return 0; return -EIO; } int smu_v11_0_check_fw_version(struct smu_context *smu) { uint32_t if_version = 0xff, smu_version = 0xff; uint16_t smu_major; uint8_t smu_minor, smu_debug; int ret = 0; ret = smu_get_smc_version(smu, &if_version, &smu_version); if (ret) return ret; smu_major = (smu_version >> 16) & 0xffff; smu_minor = (smu_version >> 8) & 0xff; smu_debug = (smu_version >> 0) & 0xff; switch (smu->adev->asic_type) { case CHIP_VEGA20: smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_VG20; break; case CHIP_ARCTURUS: smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_ARCT; break; case CHIP_NAVI10: smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV10; break; case CHIP_NAVI12: smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV12; break; case CHIP_NAVI14: smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_NV14; break; default: pr_err("smu unsupported asic type:%d.\n", smu->adev->asic_type); smu->smc_driver_if_version = SMU11_DRIVER_IF_VERSION_INV; break; } /* * 1. if_version mismatch is not critical as our fw is designed * to be backward compatible. * 2. New fw usually brings some optimizations. But that's visible * only on the paired driver. * Considering above, we just leave user a warning message instead * of halt driver loading. */ if (if_version != smu->smc_driver_if_version) { pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, " "smu fw version = 0x%08x (%d.%d.%d)\n", smu->smc_driver_if_version, if_version, smu_version, smu_major, smu_minor, smu_debug); pr_warn("SMU driver if version not matched\n"); } return ret; } static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size) { struct amdgpu_device *adev = smu->adev; uint32_t ppt_offset_bytes; const struct smc_firmware_header_v2_0 *v2; v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data; ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes); *size = le32_to_cpu(v2->ppt_size_bytes); *table = (uint8_t *)v2 + ppt_offset_bytes; return 0; } static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v2_1 *v2_1; struct smc_soft_pptable_entry *entries; uint32_t pptable_count = 0; int i = 0; v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data; entries = (struct smc_soft_pptable_entry *) ((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset)); pptable_count = le32_to_cpu(v2_1->pptable_count); for (i = 0; i < pptable_count; i++) { if (le32_to_cpu(entries[i].id) == pptable_id) { *table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes)); *size = le32_to_cpu(entries[i].ppt_size_bytes); break; } } if (i == pptable_count) return -EINVAL; return 0; } int smu_v11_0_setup_pptable(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v1_0 *hdr; int ret, index; uint32_t size = 0; uint16_t atom_table_size; uint8_t frev, crev; void *table; uint16_t version_major, version_minor; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; version_major = le16_to_cpu(hdr->header.header_version_major); version_minor = le16_to_cpu(hdr->header.header_version_minor); if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) { pr_info("use driver provided pptable %d\n", smu->smu_table.boot_values.pp_table_id); switch (version_minor) { case 0: ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size); break; case 1: ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size, smu->smu_table.boot_values.pp_table_id); break; default: ret = -EINVAL; break; } if (ret) return ret; } else { pr_info("use vbios provided pptable\n"); index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, powerplayinfo); ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev, (uint8_t **)&table); if (ret) return ret; size = atom_table_size; } if (!smu->smu_table.power_play_table) smu->smu_table.power_play_table = table; if (!smu->smu_table.power_play_table_size) smu->smu_table.power_play_table_size = size; return 0; } static int smu_v11_0_init_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0) return -EINVAL; return smu_alloc_dpm_context(smu); } static int smu_v11_0_fini_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0) return -EINVAL; kfree(smu_dpm->dpm_context); kfree(smu_dpm->golden_dpm_context); kfree(smu_dpm->dpm_current_power_state); kfree(smu_dpm->dpm_request_power_state); smu_dpm->dpm_context = NULL; smu_dpm->golden_dpm_context = NULL; smu_dpm->dpm_context_size = 0; smu_dpm->dpm_current_power_state = NULL; smu_dpm->dpm_request_power_state = NULL; return 0; } int smu_v11_0_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = NULL; int ret = 0; if (smu_table->tables) return -EINVAL; tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table), GFP_KERNEL); if (!tables) return -ENOMEM; smu_table->tables = tables; ret = smu_tables_init(smu, tables); if (ret) return ret; ret = smu_v11_0_init_dpm_context(smu); if (ret) return ret; return 0; } int smu_v11_0_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; int ret = 0; if (!smu_table->tables) return -EINVAL; kfree(smu_table->tables); kfree(smu_table->metrics_table); kfree(smu_table->watermarks_table); smu_table->tables = NULL; smu_table->metrics_table = NULL; smu_table->watermarks_table = NULL; smu_table->metrics_time = 0; ret = smu_v11_0_fini_dpm_context(smu); if (ret) return ret; return 0; } int smu_v11_0_init_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (smu_power->power_context || smu_power->power_context_size != 0) return -EINVAL; smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_power->power_context) return -ENOMEM; smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } int smu_v11_0_fini_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu_power->power_context || smu_power->power_context_size == 0) return -EINVAL; kfree(smu_power->power_context); smu_power->power_context = NULL; smu_power->power_context_size = 0; return 0; } int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; struct atom_common_table_header *header; struct atom_firmware_info_v3_3 *v_3_3; struct atom_firmware_info_v3_1 *v_3_1; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev, (uint8_t **)&header); if (ret) return ret; if (header->format_revision != 3) { pr_err("unknown atom_firmware_info version! for smu11\n"); return -EINVAL; } switch (header->content_revision) { case 0: case 1: case 2: v_3_1 = (struct atom_firmware_info_v3_1 *)header; smu->smu_table.boot_values.revision = v_3_1->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = 0; break; case 3: default: v_3_3 = (struct atom_firmware_info_v3_3 *)header; smu->smu_table.boot_values.revision = v_3_3->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id; } smu->smu_table.boot_values.format_revision = header->format_revision; smu->smu_table.boot_values.content_revision = header->content_revision; return 0; } int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu) { int ret, index; struct amdgpu_device *adev = smu->adev; struct atom_get_smu_clock_info_parameters_v3_1 input = {0}; struct atom_get_smu_clock_info_output_parameters_v3_1 *output; input.clk_id = SMU11_SYSPLL0_SOCCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_ECLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_VCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; if ((smu->smu_table.boot_values.format_revision == 3) && (smu->smu_table.boot_values.content_revision >= 2)) { memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL1_0_FCLK_ID; input.syspll_id = SMU11_SYSPLL1_2_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.fclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; } return 0; } int smu_v11_0_notify_memory_pool_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; uint64_t address; uint32_t address_low, address_high; if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL) return ret; address = (uintptr_t)memory_pool->cpu_addr; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrHigh, address_high, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrLow, address_low, NULL); if (ret) return ret; address = memory_pool->mc_address; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh, address_high, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow, address_low, NULL); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize, (uint32_t)memory_pool->size, NULL); if (ret) return ret; return ret; } int smu_v11_0_check_pptable(struct smu_context *smu) { int ret; ret = smu_check_powerplay_table(smu); return ret; } int smu_v11_0_parse_pptable(struct smu_context *smu) { int ret; struct smu_table_context *table_context = &smu->smu_table; struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE]; /* during TDR we need to free and alloc the pptable */ if (table_context->driver_pptable) kfree(table_context->driver_pptable); table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL); if (!table_context->driver_pptable) return -ENOMEM; ret = smu_store_powerplay_table(smu); if (ret) return -EINVAL; ret = smu_append_powerplay_table(smu); return ret; } int smu_v11_0_populate_smc_pptable(struct smu_context *smu) { int ret; ret = smu_set_default_dpm_table(smu); return ret; } int smu_v11_0_write_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; int ret = 0; ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0, table_context->driver_pptable, true); return ret; } int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk) { int ret; if (amdgpu_sriov_vf(smu->adev)) return 0; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL); if (ret) pr_err("SMU11 attempt to set divider for DCEFCLK Failed!"); return ret; } int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; if (!table_context) return -EINVAL; return smu_v11_0_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100); } int smu_v11_0_set_driver_table_location(struct smu_context *smu) { struct smu_table *driver_table = &smu->smu_table.driver_table; int ret = 0; if (driver_table->mc_address) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh, upper_32_bits(driver_table->mc_address), NULL); if (!ret) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow, lower_32_bits(driver_table->mc_address), NULL); } return ret; } int smu_v11_0_set_tool_table_location(struct smu_context *smu) { int ret = 0; struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG]; if (amdgpu_sriov_vf(smu->adev)) return 0; if (tool_table->mc_address) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrHigh, upper_32_bits(tool_table->mc_address), NULL); if (!ret) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrLow, lower_32_bits(tool_table->mc_address), NULL); } return ret; } int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count) { int ret = 0; if (amdgpu_sriov_vf(smu->adev)) return 0; if (!smu->pm_enabled) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL); return ret; } int smu_v11_0_set_allowed_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t feature_mask[2]; if (amdgpu_sriov_vf(smu->adev)) return 0; mutex_lock(&feature->mutex); if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64) goto failed; bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh, feature_mask[1], NULL); if (ret) goto failed; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow, feature_mask[0], NULL); if (ret) goto failed; failed: mutex_unlock(&feature->mutex); return ret; } int smu_v11_0_get_enabled_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { uint32_t feature_mask_high = 0, feature_mask_low = 0; struct smu_feature *feature = &smu->smu_feature; int ret = 0; if (amdgpu_sriov_vf(smu->adev) && !amdgpu_sriov_is_pp_one_vf(smu->adev)) return 0; if (!feature_mask || num < 2) return -EINVAL; if (bitmap_empty(feature->enabled, feature->feature_num)) { ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh, &feature_mask_high); if (ret) return ret; ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow, &feature_mask_low); if (ret) return ret; feature_mask[0] = feature_mask_low; feature_mask[1] = feature_mask_high; } else { bitmap_copy((unsigned long *)feature_mask, feature->enabled, feature->feature_num); } return ret; } int smu_v11_0_system_features_control(struct smu_context *smu, bool en) { struct smu_feature *feature = &smu->smu_feature; uint32_t feature_mask[2]; int ret = 0; ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures : SMU_MSG_DisableAllSmuFeatures), NULL); if (ret) return ret; bitmap_zero(feature->enabled, feature->feature_num); bitmap_zero(feature->supported, feature->feature_num); if (en) { ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); } return ret; } int smu_v11_0_notify_display_change(struct smu_context *smu) { int ret = 0; if (amdgpu_sriov_vf(smu->adev)) return 0; if (!smu->pm_enabled) return ret; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL); return ret; } static int smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock, enum smu_clk_type clock_select) { int ret = 0; int clk_id; if ((smu_msg_get_index(smu, SMU_MSG_GetDcModeMaxDpmFreq) < 0) || (smu_msg_get_index(smu, SMU_MSG_GetMaxDpmFreq) < 0)) return 0; clk_id = smu_clk_get_index(smu, clock_select); if (clk_id < 0) return -EINVAL; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, clk_id << 16, clock); if (ret) { pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!"); return ret; } if (*clock != 0) return 0; /* if DC limit is zero, return AC limit */ ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, clk_id << 16, clock); if (ret) { pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!"); return ret; } return 0; } int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu) { struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks; int ret = 0; if (!smu->smu_table.max_sustainable_clocks) max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL); else max_sustainable_clocks = smu->smu_table.max_sustainable_clocks; smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks; max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100; max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100; max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->uclock), SMU_UCLK); if (ret) { pr_err("[%s] failed to get max UCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->soc_clock), SMU_SOCCLK); if (ret) { pr_err("[%s] failed to get max SOCCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->dcef_clock), SMU_DCEFCLK); if (ret) { pr_err("[%s] failed to get max DCEFCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->display_clock), SMU_DISPCLK); if (ret) { pr_err("[%s] failed to get max DISPCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->phy_clock), SMU_PHYCLK); if (ret) { pr_err("[%s] failed to get max PHYCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->pixel_clock), SMU_PIXCLK); if (ret) { pr_err("[%s] failed to get max PIXCLK from SMC!", __func__); return ret; } } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } uint32_t smu_v11_0_get_max_power_limit(struct smu_context *smu) { uint32_t od_limit, max_power_limit; struct smu_11_0_powerplay_table *powerplay_table = NULL; struct smu_table_context *table_context = &smu->smu_table; powerplay_table = table_context->power_play_table; max_power_limit = smu_get_pptable_power_limit(smu); if (!max_power_limit) { // If we couldn't get the table limit, fall back on first-read value if (!smu->default_power_limit) smu->default_power_limit = smu->power_limit; max_power_limit = smu->default_power_limit; } if (smu->od_enabled) { od_limit = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]); pr_debug("ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_limit, smu->default_power_limit); max_power_limit *= (100 + od_limit); max_power_limit /= 100; } return max_power_limit; } int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n) { int ret = 0; uint32_t max_power_limit; if (amdgpu_sriov_vf(smu->adev)) return 0; max_power_limit = smu_v11_0_get_max_power_limit(smu); if (n > max_power_limit) { pr_err("New power limit (%d) is over the max allowed %d\n", n, max_power_limit); return -EINVAL; } if (n == 0) n = smu->default_power_limit; if (!smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) { pr_err("Setting new power limit is not supported!\n"); return -EOPNOTSUPP; } ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL); if (ret) { pr_err("[%s] Set power limit Failed!\n", __func__); return ret; } smu->power_limit = n; return 0; } int smu_v11_0_get_current_clk_freq(struct smu_context *smu, enum smu_clk_type clk_id, uint32_t *value) { int ret = 0; uint32_t freq = 0; int asic_clk_id; if (clk_id >= SMU_CLK_COUNT || !value) return -EINVAL; asic_clk_id = smu_clk_get_index(smu, clk_id); if (asic_clk_id < 0) return -EINVAL; /* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */ if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) < 0) ret = smu_get_current_clk_freq_by_table(smu, clk_id, &freq); else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq, (asic_clk_id << 16), &freq); if (ret) return ret; } freq *= 100; *value = freq; return ret; } static int smu_v11_0_set_thermal_range(struct smu_context *smu, struct smu_temperature_range range) { struct amdgpu_device *adev = smu->adev; int low = SMU_THERMAL_MINIMUM_ALERT_TEMP; int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP; uint32_t val; struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES); high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp); if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } static int smu_v11_0_enable_thermal_alert(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val = 0; val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val); return 0; } int smu_v11_0_start_thermal_control(struct smu_context *smu) { int ret = 0; struct smu_temperature_range range; struct amdgpu_device *adev = smu->adev; memcpy(&range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range)); ret = smu_get_thermal_temperature_range(smu, &range); if (ret) return ret; if (smu->smu_table.thermal_controller_type) { ret = smu_v11_0_set_thermal_range(smu, range); if (ret) return ret; ret = smu_v11_0_enable_thermal_alert(smu); if (ret) return ret; ret = smu_set_thermal_fan_table(smu); if (ret) return ret; } adev->pm.dpm.thermal.min_temp = range.min; adev->pm.dpm.thermal.max_temp = range.max; adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max; adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min; adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max; adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max; adev->pm.dpm.thermal.min_mem_temp = range.mem_min; adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max; adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max; return ret; } int smu_v11_0_stop_thermal_control(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, 0); return 0; } static uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE); } static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t vdd = 0, val_vid = 0; if (!value) return -EINVAL; val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid); *value = vdd; return 0; } int smu_v11_0_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if(!data || !size) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_GFX_MCLK: ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *(uint32_t *)data = 0; *size = 4; break; default: ret = smu_common_read_sensor(smu, sensor, data, size); break; } if (ret) *size = 0; return ret; } int smu_v11_0_display_clock_voltage_request(struct smu_context *smu, struct pp_display_clock_request *clock_req) { enum amd_pp_clock_type clk_type = clock_req->clock_type; int ret = 0; enum smu_clk_type clk_select = 0; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) || smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_select = SMU_DISPCLK; break; case amd_pp_pixel_clock: clk_select = SMU_PIXCLK; break; case amd_pp_phy_clock: clk_select = SMU_PHYCLK; break; case amd_pp_mem_clock: clk_select = SMU_UCLK; break; default: pr_info("[%s] Invalid Clock Type!", __func__); ret = -EINVAL; break; } if (ret) goto failed; if (clk_select == SMU_UCLK && smu->disable_uclk_switch) return 0; ret = smu_set_hard_freq_range(smu, clk_select, clk_freq, 0); if(clk_select == SMU_UCLK) smu->hard_min_uclk_req_from_dal = clk_freq; } failed: return ret; } int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable) { int ret = 0; struct amdgpu_device *adev = smu->adev; switch (adev->asic_type) { case CHIP_VEGA20: break; case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return 0; if (enable) ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL); else ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL); break; default: break; } return ret; } uint32_t smu_v11_0_get_fan_control_mode(struct smu_context *smu) { if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int smu_v11_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control) { int ret = 0; if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return 0; ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control); if (ret) pr_err("[%s]%s smc FAN CONTROL feature failed!", __func__, (auto_fan_control ? "Start" : "Stop")); return ret; } static int smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } int smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t duty100, duty; uint64_t tmp64; if (speed > 100) speed = 100; if (smu_v11_0_auto_fan_control(smu, 0)) return -EINVAL; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (!duty100) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 100); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC); } int smu_v11_0_set_fan_control_mode(struct smu_context *smu, uint32_t mode) { int ret = 0; switch (mode) { case AMD_FAN_CTRL_NONE: ret = smu_v11_0_set_fan_speed_percent(smu, 100); break; case AMD_FAN_CTRL_MANUAL: ret = smu_v11_0_auto_fan_control(smu, 0); break; case AMD_FAN_CTRL_AUTO: ret = smu_v11_0_auto_fan_control(smu, 1); break; default: break; } if (ret) { pr_err("[%s]Set fan control mode failed!", __func__); return -EINVAL; } return ret; } int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; int ret; uint32_t tach_period, crystal_clock_freq; if (!speed) return -EINVAL; ret = smu_v11_0_auto_fan_control(smu, 0); if (ret) return ret; crystal_clock_freq = amdgpu_asic_get_xclk(adev); tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, mmCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM); return ret; } int smu_v11_0_set_xgmi_pstate(struct smu_context *smu, uint32_t pstate) { int ret = 0; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetXgmiMode, pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3, NULL); return ret; } static int smu_v11_0_ack_ac_dc_interrupt(struct smu_context *smu) { return smu_send_smc_msg(smu, SMU_MSG_ReenableAcDcInterrupt, NULL); } #define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */ #define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */ #define SMUIO_11_0__SRCID__SMUIO_GPIO19 83 static int smu_v11_0_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; /* * ctxid is used to distinguish different * events for SMCToHost interrupt. */ uint32_t ctxid = entry->src_data[0]; uint32_t data; if (client_id == SOC15_IH_CLIENTID_THM) { switch (src_id) { case THM_11_0__SRCID__THM_DIG_THERM_L2H: dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); /* * SW CTF just occurred. * Try to do a graceful shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); break; case THM_11_0__SRCID__THM_DIG_THERM_H2L: dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n"); break; default: dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n", src_id); break; } } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } else if (client_id == SOC15_IH_CLIENTID_MP1) { if (src_id == 0xfe) { /* ACK SMUToHost interrupt */ data = RREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL); data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1); WREG32_SOC15(MP1, 0, mmMP1_SMN_IH_SW_INT_CTRL, data); switch (ctxid) { case 0x3: dev_dbg(adev->dev, "Switched to AC mode!\n"); smu_v11_0_ack_ac_dc_interrupt(&adev->smu); break; case 0x4: dev_dbg(adev->dev, "Switched to DC mode!\n"); smu_v11_0_ack_ac_dc_interrupt(&adev->smu); break; } } } return 0; } static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs = { .process = smu_v11_0_irq_process, }; int smu_v11_0_register_irq_handler(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_irq_src *irq_src = smu->irq_source; int ret = 0; /* already register */ if (irq_src) return 0; irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); if (!irq_src) return -ENOMEM; smu->irq_source = irq_src; irq_src->funcs = &smu_v11_0_irq_funcs; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_L2H, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_H2L, irq_src); if (ret) return ret; /* Register CTF(GPIO_19) interrupt */ ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO, SMUIO_11_0__SRCID__SMUIO_GPIO19, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1, 0xfe, irq_src); if (ret) return ret; return ret; } int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu, struct pp_smu_nv_clock_table *max_clocks) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL; if (!max_clocks || !table_context->max_sustainable_clocks) return -EINVAL; sustainable_clocks = table_context->max_sustainable_clocks; max_clocks->dcfClockInKhz = (unsigned int) sustainable_clocks->dcef_clock * 1000; max_clocks->displayClockInKhz = (unsigned int) sustainable_clocks->display_clock * 1000; max_clocks->phyClockInKhz = (unsigned int) sustainable_clocks->phy_clock * 1000; max_clocks->pixelClockInKhz = (unsigned int) sustainable_clocks->pixel_clock * 1000; max_clocks->uClockInKhz = (unsigned int) sustainable_clocks->uclock * 1000; max_clocks->socClockInKhz = (unsigned int) sustainable_clocks->soc_clock * 1000; max_clocks->dscClockInKhz = 0; max_clocks->dppClockInKhz = 0; max_clocks->fabricClockInKhz = 0; return 0; } int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu) { int ret = 0; ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL); return ret; } static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq) { return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq, NULL); } bool smu_v11_0_baco_is_support(struct smu_context *smu) { struct smu_baco_context *smu_baco = &smu->smu_baco; bool baco_support; mutex_lock(&smu_baco->mutex); baco_support = smu_baco->platform_support; mutex_unlock(&smu_baco->mutex); if (!baco_support) return false; /* Arcturus does not support this bit mask */ if (smu_feature_is_supported(smu, SMU_FEATURE_BACO_BIT) && !smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) return false; return true; } enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu) { struct smu_baco_context *smu_baco = &smu->smu_baco; enum smu_baco_state baco_state; mutex_lock(&smu_baco->mutex); baco_state = smu_baco->state; mutex_unlock(&smu_baco->mutex); return baco_state; } int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state) { struct smu_baco_context *smu_baco = &smu->smu_baco; struct amdgpu_device *adev = smu->adev; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); uint32_t data; int ret = 0; if (smu_v11_0_baco_get_state(smu) == state) return 0; mutex_lock(&smu_baco->mutex); if (state == SMU_BACO_STATE_ENTER) { if (!ras || !ras->supported) { data = RREG32_SOC15(THM, 0, mmTHM_BACO_CNTL); data |= 0x80000000; WREG32_SOC15(THM, 0, mmTHM_BACO_CNTL, data); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 0, NULL); } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, 1, NULL); } } else { ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco, NULL); if (ret) goto out; if (ras && ras->supported) { ret = smu_send_smc_msg(smu, SMU_MSG_PrepareMp1ForUnload, NULL); if (ret) goto out; } /* clear vbios scratch 6 and 7 for coming asic reinit */ WREG32(adev->bios_scratch_reg_offset + 6, 0); WREG32(adev->bios_scratch_reg_offset + 7, 0); } if (ret) goto out; smu_baco->state = state; out: mutex_unlock(&smu_baco->mutex); return ret; } int smu_v11_0_baco_enter(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; /* Arcturus does not need this audio workaround */ if (adev->asic_type != CHIP_ARCTURUS) { ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO); if (ret) return ret; } ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER); if (ret) return ret; msleep(10); return ret; } int smu_v11_0_baco_exit(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT); if (ret) return ret; return ret; } int smu_v11_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0, clk_id = 0; uint32_t param = 0; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) { ret = -EINVAL; goto failed; } param = (clk_id & 0xffff) << 16; if (max) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max); if (ret) goto failed; } if (min) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min); if (ret) goto failed; } failed: return ret; } int smu_v11_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq, param, NULL); if (ret) return ret; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq, param, NULL); if (ret) return ret; } return ret; } int smu_v11_0_override_pcie_parameters(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t pcie_gen = 0, pcie_width = 0; int ret; if (amdgpu_sriov_vf(smu->adev)) return 0; if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width); if (ret) pr_err("[%s] Attempt to override pcie params failed!\n", __func__); return ret; } int smu_v11_0_set_default_od_settings(struct smu_context *smu, bool initialize, size_t overdrive_table_size) { struct smu_table_context *table_context = &smu->smu_table; int ret = 0; if (initialize) { if (table_context->overdrive_table) { return -EINVAL; } table_context->overdrive_table = kzalloc(overdrive_table_size, GFP_KERNEL); if (!table_context->overdrive_table) { return -ENOMEM; } ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, false); if (ret) { pr_err("Failed to export overdrive table!\n"); return ret; } if (!table_context->boot_overdrive_table) { table_context->boot_overdrive_table = kmemdup(table_context->overdrive_table, overdrive_table_size, GFP_KERNEL); if (!table_context->boot_overdrive_table) { return -ENOMEM; } } } ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE, 0, table_context->overdrive_table, true); if (ret) { pr_err("Failed to import overdrive table!\n"); return ret; } return ret; } int smu_v11_0_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask, mclk_mask, soc_mask; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = smu_force_dpm_limit_value(smu, true); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = smu_force_dpm_limit_value(smu, false); break; case AMD_DPM_FORCED_LEVEL_AUTO: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: ret = smu_unforce_dpm_levels(smu); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = smu_get_profiling_clk_mask(smu, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false); smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false); smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } int smu_v11_0_set_power_source(struct smu_context *smu, enum smu_power_src_type power_src) { int pwr_source; pwr_source = smu_power_get_index(smu, (uint32_t)power_src); if (pwr_source < 0) return -EINVAL; return smu_send_smc_msg_with_param(smu, SMU_MSG_NotifyPowerSource, pwr_source, NULL); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1