Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Madhav Chauhan | 5649 | 62.72% | 35 | 35.35% |
Vandita Kulkarni | 1184 | 13.15% | 20 | 20.20% |
Jani Nikula | 1069 | 11.87% | 15 | 15.15% |
Hans de Goede | 432 | 4.80% | 1 | 1.01% |
Wambui Karuga | 180 | 2.00% | 1 | 1.01% |
Matt Roper | 125 | 1.39% | 2 | 2.02% |
Imre Deak | 114 | 1.27% | 5 | 5.05% |
Ville Syrjälä | 86 | 0.95% | 6 | 6.06% |
José Roberto de Souza | 51 | 0.57% | 2 | 2.02% |
Chris Wilson | 46 | 0.51% | 1 | 1.01% |
Pankaj Bharadiya | 43 | 0.48% | 2 | 2.02% |
Maarten Lankhorst | 14 | 0.16% | 3 | 3.03% |
Derek Basehore | 4 | 0.04% | 1 | 1.01% |
Aditya Swarup | 4 | 0.04% | 1 | 1.01% |
Stephen Chandler Paul | 2 | 0.02% | 1 | 1.01% |
Lucas De Marchi | 2 | 0.02% | 2 | 2.02% |
Daniele Ceraolo Spurio | 2 | 0.02% | 1 | 1.01% |
Total | 9007 | 99 |
/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Madhav Chauhan <madhav.chauhan@intel.com> * Jani Nikula <jani.nikula@intel.com> */ #include <drm/drm_atomic_helper.h> #include <drm/drm_mipi_dsi.h> #include "intel_atomic.h" #include "intel_combo_phy.h" #include "intel_connector.h" #include "intel_ddi.h" #include "intel_dsi.h" #include "intel_panel.h" #include "intel_vdsc.h" static int header_credits_available(struct drm_i915_private *dev_priv, enum transcoder dsi_trans) { return (intel_de_read(dev_priv, DSI_CMD_TXCTL(dsi_trans)) & FREE_HEADER_CREDIT_MASK) >> FREE_HEADER_CREDIT_SHIFT; } static int payload_credits_available(struct drm_i915_private *dev_priv, enum transcoder dsi_trans) { return (intel_de_read(dev_priv, DSI_CMD_TXCTL(dsi_trans)) & FREE_PLOAD_CREDIT_MASK) >> FREE_PLOAD_CREDIT_SHIFT; } static void wait_for_header_credits(struct drm_i915_private *dev_priv, enum transcoder dsi_trans) { if (wait_for_us(header_credits_available(dev_priv, dsi_trans) >= MAX_HEADER_CREDIT, 100)) drm_err(&dev_priv->drm, "DSI header credits not released\n"); } static void wait_for_payload_credits(struct drm_i915_private *dev_priv, enum transcoder dsi_trans) { if (wait_for_us(payload_credits_available(dev_priv, dsi_trans) >= MAX_PLOAD_CREDIT, 100)) drm_err(&dev_priv->drm, "DSI payload credits not released\n"); } static enum transcoder dsi_port_to_transcoder(enum port port) { if (port == PORT_A) return TRANSCODER_DSI_0; else return TRANSCODER_DSI_1; } static void wait_for_cmds_dispatched_to_panel(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct mipi_dsi_device *dsi; enum port port; enum transcoder dsi_trans; int ret; /* wait for header/payload credits to be released */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); wait_for_header_credits(dev_priv, dsi_trans); wait_for_payload_credits(dev_priv, dsi_trans); } /* send nop DCS command */ for_each_dsi_port(port, intel_dsi->ports) { dsi = intel_dsi->dsi_hosts[port]->device; dsi->mode_flags |= MIPI_DSI_MODE_LPM; dsi->channel = 0; ret = mipi_dsi_dcs_nop(dsi); if (ret < 0) drm_err(&dev_priv->drm, "error sending DCS NOP command\n"); } /* wait for header credits to be released */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); wait_for_header_credits(dev_priv, dsi_trans); } /* wait for LP TX in progress bit to be cleared */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); if (wait_for_us(!(intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans)) & LPTX_IN_PROGRESS), 20)) drm_err(&dev_priv->drm, "LPTX bit not cleared\n"); } } static bool add_payld_to_queue(struct intel_dsi_host *host, const u8 *data, u32 len) { struct intel_dsi *intel_dsi = host->intel_dsi; struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev); enum transcoder dsi_trans = dsi_port_to_transcoder(host->port); int free_credits; int i, j; for (i = 0; i < len; i += 4) { u32 tmp = 0; free_credits = payload_credits_available(dev_priv, dsi_trans); if (free_credits < 1) { drm_err(&dev_priv->drm, "Payload credit not available\n"); return false; } for (j = 0; j < min_t(u32, len - i, 4); j++) tmp |= *data++ << 8 * j; intel_de_write(dev_priv, DSI_CMD_TXPYLD(dsi_trans), tmp); } return true; } static int dsi_send_pkt_hdr(struct intel_dsi_host *host, struct mipi_dsi_packet pkt, bool enable_lpdt) { struct intel_dsi *intel_dsi = host->intel_dsi; struct drm_i915_private *dev_priv = to_i915(intel_dsi->base.base.dev); enum transcoder dsi_trans = dsi_port_to_transcoder(host->port); u32 tmp; int free_credits; /* check if header credit available */ free_credits = header_credits_available(dev_priv, dsi_trans); if (free_credits < 1) { drm_err(&dev_priv->drm, "send pkt header failed, not enough hdr credits\n"); return -1; } tmp = intel_de_read(dev_priv, DSI_CMD_TXHDR(dsi_trans)); if (pkt.payload) tmp |= PAYLOAD_PRESENT; else tmp &= ~PAYLOAD_PRESENT; tmp &= ~VBLANK_FENCE; if (enable_lpdt) tmp |= LP_DATA_TRANSFER; tmp &= ~(PARAM_WC_MASK | VC_MASK | DT_MASK); tmp |= ((pkt.header[0] & VC_MASK) << VC_SHIFT); tmp |= ((pkt.header[0] & DT_MASK) << DT_SHIFT); tmp |= (pkt.header[1] << PARAM_WC_LOWER_SHIFT); tmp |= (pkt.header[2] << PARAM_WC_UPPER_SHIFT); intel_de_write(dev_priv, DSI_CMD_TXHDR(dsi_trans), tmp); return 0; } static int dsi_send_pkt_payld(struct intel_dsi_host *host, struct mipi_dsi_packet pkt) { struct intel_dsi *intel_dsi = host->intel_dsi; struct drm_i915_private *i915 = to_i915(intel_dsi->base.base.dev); /* payload queue can accept *256 bytes*, check limit */ if (pkt.payload_length > MAX_PLOAD_CREDIT * 4) { drm_err(&i915->drm, "payload size exceeds max queue limit\n"); return -1; } /* load data into command payload queue */ if (!add_payld_to_queue(host, pkt.payload, pkt.payload_length)) { drm_err(&i915->drm, "adding payload to queue failed\n"); return -1; } return 0; } static void dsi_program_swing_and_deemphasis(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum phy phy; u32 tmp; int lane; for_each_dsi_phy(phy, intel_dsi->phys) { /* * Program voltage swing and pre-emphasis level values as per * table in BSPEC under DDI buffer programing */ tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); tmp &= ~(SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK); tmp |= SCALING_MODE_SEL(0x2); tmp |= TAP2_DISABLE | TAP3_DISABLE; tmp |= RTERM_SELECT(0x6); intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_AUX(phy)); tmp &= ~(SCALING_MODE_SEL_MASK | RTERM_SELECT_MASK); tmp |= SCALING_MODE_SEL(0x2); tmp |= TAP2_DISABLE | TAP3_DISABLE; tmp |= RTERM_SELECT(0x6); intel_de_write(dev_priv, ICL_PORT_TX_DW5_AUX(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN0(phy)); tmp &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK | RCOMP_SCALAR_MASK); tmp |= SWING_SEL_UPPER(0x2); tmp |= SWING_SEL_LOWER(0x2); tmp |= RCOMP_SCALAR(0x98); intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_AUX(phy)); tmp &= ~(SWING_SEL_LOWER_MASK | SWING_SEL_UPPER_MASK | RCOMP_SCALAR_MASK); tmp |= SWING_SEL_UPPER(0x2); tmp |= SWING_SEL_LOWER(0x2); tmp |= RCOMP_SCALAR(0x98); intel_de_write(dev_priv, ICL_PORT_TX_DW2_AUX(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW4_AUX(phy)); tmp &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK | CURSOR_COEFF_MASK); tmp |= POST_CURSOR_1(0x0); tmp |= POST_CURSOR_2(0x0); tmp |= CURSOR_COEFF(0x3f); intel_de_write(dev_priv, ICL_PORT_TX_DW4_AUX(phy), tmp); for (lane = 0; lane <= 3; lane++) { /* Bspec: must not use GRP register for write */ tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy)); tmp &= ~(POST_CURSOR_1_MASK | POST_CURSOR_2_MASK | CURSOR_COEFF_MASK); tmp |= POST_CURSOR_1(0x0); tmp |= POST_CURSOR_2(0x0); tmp |= CURSOR_COEFF(0x3f); intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy), tmp); } } } static void configure_dual_link_mode(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 dss_ctl1; dss_ctl1 = intel_de_read(dev_priv, DSS_CTL1); dss_ctl1 |= SPLITTER_ENABLE; dss_ctl1 &= ~OVERLAP_PIXELS_MASK; dss_ctl1 |= OVERLAP_PIXELS(intel_dsi->pixel_overlap); if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) { const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; u32 dss_ctl2; u16 hactive = adjusted_mode->crtc_hdisplay; u16 dl_buffer_depth; dss_ctl1 &= ~DUAL_LINK_MODE_INTERLEAVE; dl_buffer_depth = hactive / 2 + intel_dsi->pixel_overlap; if (dl_buffer_depth > MAX_DL_BUFFER_TARGET_DEPTH) drm_err(&dev_priv->drm, "DL buffer depth exceed max value\n"); dss_ctl1 &= ~LEFT_DL_BUF_TARGET_DEPTH_MASK; dss_ctl1 |= LEFT_DL_BUF_TARGET_DEPTH(dl_buffer_depth); dss_ctl2 = intel_de_read(dev_priv, DSS_CTL2); dss_ctl2 &= ~RIGHT_DL_BUF_TARGET_DEPTH_MASK; dss_ctl2 |= RIGHT_DL_BUF_TARGET_DEPTH(dl_buffer_depth); intel_de_write(dev_priv, DSS_CTL2, dss_ctl2); } else { /* Interleave */ dss_ctl1 |= DUAL_LINK_MODE_INTERLEAVE; } intel_de_write(dev_priv, DSS_CTL1, dss_ctl1); } /* aka DSI 8X clock */ static int afe_clk(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); int bpp; if (crtc_state->dsc.compression_enable) bpp = crtc_state->dsc.compressed_bpp; else bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); return DIV_ROUND_CLOSEST(intel_dsi->pclk * bpp, intel_dsi->lane_count); } static void gen11_dsi_program_esc_clk_div(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; int afe_clk_khz; u32 esc_clk_div_m; afe_clk_khz = afe_clk(encoder, crtc_state); esc_clk_div_m = DIV_ROUND_UP(afe_clk_khz, DSI_MAX_ESC_CLK); for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, ICL_DSI_ESC_CLK_DIV(port), esc_clk_div_m & ICL_ESC_CLK_DIV_MASK); intel_de_posting_read(dev_priv, ICL_DSI_ESC_CLK_DIV(port)); } for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, ICL_DPHY_ESC_CLK_DIV(port), esc_clk_div_m & ICL_ESC_CLK_DIV_MASK); intel_de_posting_read(dev_priv, ICL_DPHY_ESC_CLK_DIV(port)); } } static void get_dsi_io_power_domains(struct drm_i915_private *dev_priv, struct intel_dsi *intel_dsi) { enum port port; for_each_dsi_port(port, intel_dsi->ports) { drm_WARN_ON(&dev_priv->drm, intel_dsi->io_wakeref[port]); intel_dsi->io_wakeref[port] = intel_display_power_get(dev_priv, port == PORT_A ? POWER_DOMAIN_PORT_DDI_A_IO : POWER_DOMAIN_PORT_DDI_B_IO); } } static void gen11_dsi_enable_io_power(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 tmp; for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, ICL_DSI_IO_MODECTL(port)); tmp |= COMBO_PHY_MODE_DSI; intel_de_write(dev_priv, ICL_DSI_IO_MODECTL(port), tmp); } get_dsi_io_power_domains(dev_priv, intel_dsi); } static void gen11_dsi_power_up_lanes(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum phy phy; for_each_dsi_phy(phy, intel_dsi->phys) intel_combo_phy_power_up_lanes(dev_priv, phy, true, intel_dsi->lane_count, false); } static void gen11_dsi_config_phy_lanes_sequence(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum phy phy; u32 tmp; int lane; /* Step 4b(i) set loadgen select for transmit and aux lanes */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW4_AUX(phy)); tmp &= ~LOADGEN_SELECT; intel_de_write(dev_priv, ICL_PORT_TX_DW4_AUX(phy), tmp); for (lane = 0; lane <= 3; lane++) { tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy)); tmp &= ~LOADGEN_SELECT; if (lane != 2) tmp |= LOADGEN_SELECT; intel_de_write(dev_priv, ICL_PORT_TX_DW4_LN(lane, phy), tmp); } } /* Step 4b(ii) set latency optimization for transmit and aux lanes */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_AUX(phy)); tmp &= ~FRC_LATENCY_OPTIM_MASK; tmp |= FRC_LATENCY_OPTIM_VAL(0x5); intel_de_write(dev_priv, ICL_PORT_TX_DW2_AUX(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW2_LN0(phy)); tmp &= ~FRC_LATENCY_OPTIM_MASK; tmp |= FRC_LATENCY_OPTIM_VAL(0x5); intel_de_write(dev_priv, ICL_PORT_TX_DW2_GRP(phy), tmp); /* For EHL, TGL, set latency optimization for PCS_DW1 lanes */ if (IS_ELKHARTLAKE(dev_priv) || (INTEL_GEN(dev_priv) >= 12)) { tmp = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_AUX(phy)); tmp &= ~LATENCY_OPTIM_MASK; tmp |= LATENCY_OPTIM_VAL(0); intel_de_write(dev_priv, ICL_PORT_PCS_DW1_AUX(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_LN0(phy)); tmp &= ~LATENCY_OPTIM_MASK; tmp |= LATENCY_OPTIM_VAL(0x1); intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy), tmp); } } } static void gen11_dsi_voltage_swing_program_seq(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum phy phy; /* clear common keeper enable bit */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_LN0(phy)); tmp &= ~COMMON_KEEPER_EN; intel_de_write(dev_priv, ICL_PORT_PCS_DW1_GRP(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_PCS_DW1_AUX(phy)); tmp &= ~COMMON_KEEPER_EN; intel_de_write(dev_priv, ICL_PORT_PCS_DW1_AUX(phy), tmp); } /* * Set SUS Clock Config bitfield to 11b * Note: loadgen select program is done * as part of lane phy sequence configuration */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_CL_DW5(phy)); tmp |= SUS_CLOCK_CONFIG; intel_de_write(dev_priv, ICL_PORT_CL_DW5(phy), tmp); } /* Clear training enable to change swing values */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); tmp &= ~TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_AUX(phy)); tmp &= ~TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_AUX(phy), tmp); } /* Program swing and de-emphasis */ dsi_program_swing_and_deemphasis(encoder); /* Set training enable to trigger update */ for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_LN0(phy)); tmp |= TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_GRP(phy), tmp); tmp = intel_de_read(dev_priv, ICL_PORT_TX_DW5_AUX(phy)); tmp |= TX_TRAINING_EN; intel_de_write(dev_priv, ICL_PORT_TX_DW5_AUX(phy), tmp); } } static void gen11_dsi_enable_ddi_buffer(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum port port; for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, DDI_BUF_CTL(port)); tmp |= DDI_BUF_CTL_ENABLE; intel_de_write(dev_priv, DDI_BUF_CTL(port), tmp); if (wait_for_us(!(intel_de_read(dev_priv, DDI_BUF_CTL(port)) & DDI_BUF_IS_IDLE), 500)) drm_err(&dev_priv->drm, "DDI port:%c buffer idle\n", port_name(port)); } } static void gen11_dsi_setup_dphy_timings(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum port port; enum phy phy; /* Program T-INIT master registers */ for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, ICL_DSI_T_INIT_MASTER(port)); tmp &= ~MASTER_INIT_TIMER_MASK; tmp |= intel_dsi->init_count; intel_de_write(dev_priv, ICL_DSI_T_INIT_MASTER(port), tmp); } /* Program DPHY clock lanes timings */ for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, DPHY_CLK_TIMING_PARAM(port), intel_dsi->dphy_reg); /* shadow register inside display core */ intel_de_write(dev_priv, DSI_CLK_TIMING_PARAM(port), intel_dsi->dphy_reg); } /* Program DPHY data lanes timings */ for_each_dsi_port(port, intel_dsi->ports) { intel_de_write(dev_priv, DPHY_DATA_TIMING_PARAM(port), intel_dsi->dphy_data_lane_reg); /* shadow register inside display core */ intel_de_write(dev_priv, DSI_DATA_TIMING_PARAM(port), intel_dsi->dphy_data_lane_reg); } /* * If DSI link operating at or below an 800 MHz, * TA_SURE should be override and programmed to * a value '0' inside TA_PARAM_REGISTERS otherwise * leave all fields at HW default values. */ if (IS_GEN(dev_priv, 11)) { if (afe_clk(encoder, crtc_state) <= 800000) { for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, DPHY_TA_TIMING_PARAM(port)); tmp &= ~TA_SURE_MASK; tmp |= TA_SURE_OVERRIDE | TA_SURE(0); intel_de_write(dev_priv, DPHY_TA_TIMING_PARAM(port), tmp); /* shadow register inside display core */ tmp = intel_de_read(dev_priv, DSI_TA_TIMING_PARAM(port)); tmp &= ~TA_SURE_MASK; tmp |= TA_SURE_OVERRIDE | TA_SURE(0); intel_de_write(dev_priv, DSI_TA_TIMING_PARAM(port), tmp); } } } if (IS_ELKHARTLAKE(dev_priv)) { for_each_dsi_phy(phy, intel_dsi->phys) { tmp = intel_de_read(dev_priv, ICL_DPHY_CHKN(phy)); tmp |= ICL_DPHY_CHKN_AFE_OVER_PPI_STRAP; intel_de_write(dev_priv, ICL_DPHY_CHKN(phy), tmp); } } } static void gen11_dsi_gate_clocks(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum phy phy; mutex_lock(&dev_priv->dpll.lock); tmp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); for_each_dsi_phy(phy, intel_dsi->phys) tmp |= ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, tmp); mutex_unlock(&dev_priv->dpll.lock); } static void gen11_dsi_ungate_clocks(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum phy phy; mutex_lock(&dev_priv->dpll.lock); tmp = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); for_each_dsi_phy(phy, intel_dsi->phys) tmp &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, tmp); mutex_unlock(&dev_priv->dpll.lock); } static void gen11_dsi_map_pll(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct intel_shared_dpll *pll = crtc_state->shared_dpll; enum phy phy; u32 val; mutex_lock(&dev_priv->dpll.lock); val = intel_de_read(dev_priv, ICL_DPCLKA_CFGCR0); for_each_dsi_phy(phy, intel_dsi->phys) { val &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy); val |= ICL_DPCLKA_CFGCR0_DDI_CLK_SEL(pll->info->id, phy); } intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); for_each_dsi_phy(phy, intel_dsi->phys) { if (INTEL_GEN(dev_priv) >= 12) val |= ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); else val &= ~ICL_DPCLKA_CFGCR0_DDI_CLK_OFF(phy); } intel_de_write(dev_priv, ICL_DPCLKA_CFGCR0, val); intel_de_posting_read(dev_priv, ICL_DPCLKA_CFGCR0); mutex_unlock(&dev_priv->dpll.lock); } static void gen11_dsi_configure_transcoder(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); enum pipe pipe = intel_crtc->pipe; u32 tmp; enum port port; enum transcoder dsi_trans; for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans)); if (intel_dsi->eotp_pkt) tmp &= ~EOTP_DISABLED; else tmp |= EOTP_DISABLED; /* enable link calibration if freq > 1.5Gbps */ if (afe_clk(encoder, pipe_config) >= 1500 * 1000) { tmp &= ~LINK_CALIBRATION_MASK; tmp |= CALIBRATION_ENABLED_INITIAL_ONLY; } /* configure continuous clock */ tmp &= ~CONTINUOUS_CLK_MASK; if (intel_dsi->clock_stop) tmp |= CLK_ENTER_LP_AFTER_DATA; else tmp |= CLK_HS_CONTINUOUS; /* configure buffer threshold limit to minimum */ tmp &= ~PIX_BUF_THRESHOLD_MASK; tmp |= PIX_BUF_THRESHOLD_1_4; /* set virtual channel to '0' */ tmp &= ~PIX_VIRT_CHAN_MASK; tmp |= PIX_VIRT_CHAN(0); /* program BGR transmission */ if (intel_dsi->bgr_enabled) tmp |= BGR_TRANSMISSION; /* select pixel format */ tmp &= ~PIX_FMT_MASK; if (pipe_config->dsc.compression_enable) { tmp |= PIX_FMT_COMPRESSED; } else { switch (intel_dsi->pixel_format) { default: MISSING_CASE(intel_dsi->pixel_format); /* fallthrough */ case MIPI_DSI_FMT_RGB565: tmp |= PIX_FMT_RGB565; break; case MIPI_DSI_FMT_RGB666_PACKED: tmp |= PIX_FMT_RGB666_PACKED; break; case MIPI_DSI_FMT_RGB666: tmp |= PIX_FMT_RGB666_LOOSE; break; case MIPI_DSI_FMT_RGB888: tmp |= PIX_FMT_RGB888; break; } } if (INTEL_GEN(dev_priv) >= 12) { if (is_vid_mode(intel_dsi)) tmp |= BLANKING_PACKET_ENABLE; } /* program DSI operation mode */ if (is_vid_mode(intel_dsi)) { tmp &= ~OP_MODE_MASK; switch (intel_dsi->video_mode_format) { default: MISSING_CASE(intel_dsi->video_mode_format); /* fallthrough */ case VIDEO_MODE_NON_BURST_WITH_SYNC_EVENTS: tmp |= VIDEO_MODE_SYNC_EVENT; break; case VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE: tmp |= VIDEO_MODE_SYNC_PULSE; break; } } else { /* * FIXME: Retrieve this info from VBT. * As per the spec when dsi transcoder is operating * in TE GATE mode, TE comes from GPIO * which is UTIL PIN for DSI 0. * Also this GPIO would not be used for other * purposes is an assumption. */ tmp &= ~OP_MODE_MASK; tmp |= CMD_MODE_TE_GATE; tmp |= TE_SOURCE_GPIO; } intel_de_write(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans), tmp); } /* enable port sync mode if dual link */ if (intel_dsi->dual_link) { for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL2(dsi_trans)); tmp |= PORT_SYNC_MODE_ENABLE; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL2(dsi_trans), tmp); } /* configure stream splitting */ configure_dual_link_mode(encoder, pipe_config); } for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); /* select data lane width */ tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(dsi_trans)); tmp &= ~DDI_PORT_WIDTH_MASK; tmp |= DDI_PORT_WIDTH(intel_dsi->lane_count); /* select input pipe */ tmp &= ~TRANS_DDI_EDP_INPUT_MASK; switch (pipe) { default: MISSING_CASE(pipe); /* fallthrough */ case PIPE_A: tmp |= TRANS_DDI_EDP_INPUT_A_ON; break; case PIPE_B: tmp |= TRANS_DDI_EDP_INPUT_B_ONOFF; break; case PIPE_C: tmp |= TRANS_DDI_EDP_INPUT_C_ONOFF; break; case PIPE_D: tmp |= TRANS_DDI_EDP_INPUT_D_ONOFF; break; } /* enable DDI buffer */ tmp |= TRANS_DDI_FUNC_ENABLE; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(dsi_trans), tmp); } /* wait for link ready */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); if (wait_for_us((intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans)) & LINK_READY), 2500)) drm_err(&dev_priv->drm, "DSI link not ready\n"); } } static void gen11_dsi_set_transcoder_timings(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; enum port port; enum transcoder dsi_trans; /* horizontal timings */ u16 htotal, hactive, hsync_start, hsync_end, hsync_size; u16 hback_porch; /* vertical timings */ u16 vtotal, vactive, vsync_start, vsync_end, vsync_shift; int mul = 1, div = 1; /* * Adjust horizontal timings (htotal, hsync_start, hsync_end) to account * for slower link speed if DSC is enabled. * * The compression frequency ratio is the ratio between compressed and * non-compressed link speeds, and simplifies down to the ratio between * compressed and non-compressed bpp. */ if (crtc_state->dsc.compression_enable) { mul = crtc_state->dsc.compressed_bpp; div = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); } hactive = adjusted_mode->crtc_hdisplay; if (is_vid_mode(intel_dsi)) htotal = DIV_ROUND_UP(adjusted_mode->crtc_htotal * mul, div); else htotal = DIV_ROUND_UP((hactive + 160) * mul, div); hsync_start = DIV_ROUND_UP(adjusted_mode->crtc_hsync_start * mul, div); hsync_end = DIV_ROUND_UP(adjusted_mode->crtc_hsync_end * mul, div); hsync_size = hsync_end - hsync_start; hback_porch = (adjusted_mode->crtc_htotal - adjusted_mode->crtc_hsync_end); vactive = adjusted_mode->crtc_vdisplay; if (is_vid_mode(intel_dsi)) { vtotal = adjusted_mode->crtc_vtotal; } else { int bpp, line_time_us, byte_clk_period_ns; if (crtc_state->dsc.compression_enable) bpp = crtc_state->dsc.compressed_bpp; else bpp = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); byte_clk_period_ns = 1000000 / afe_clk(encoder, crtc_state); line_time_us = (htotal * (bpp / 8) * byte_clk_period_ns) / (1000 * intel_dsi->lane_count); vtotal = vactive + DIV_ROUND_UP(400, line_time_us); } vsync_start = adjusted_mode->crtc_vsync_start; vsync_end = adjusted_mode->crtc_vsync_end; vsync_shift = hsync_start - htotal / 2; if (intel_dsi->dual_link) { hactive /= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) hactive += intel_dsi->pixel_overlap; htotal /= 2; } /* minimum hactive as per bspec: 256 pixels */ if (adjusted_mode->crtc_hdisplay < 256) drm_err(&dev_priv->drm, "hactive is less then 256 pixels\n"); /* if RGB666 format, then hactive must be multiple of 4 pixels */ if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB666 && hactive % 4 != 0) drm_err(&dev_priv->drm, "hactive pixels are not multiple of 4\n"); /* program TRANS_HTOTAL register */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); intel_de_write(dev_priv, HTOTAL(dsi_trans), (hactive - 1) | ((htotal - 1) << 16)); } /* TRANS_HSYNC register to be programmed only for video mode */ if (is_vid_mode(intel_dsi)) { if (intel_dsi->video_mode_format == VIDEO_MODE_NON_BURST_WITH_SYNC_PULSE) { /* BSPEC: hsync size should be atleast 16 pixels */ if (hsync_size < 16) drm_err(&dev_priv->drm, "hsync size < 16 pixels\n"); } if (hback_porch < 16) drm_err(&dev_priv->drm, "hback porch < 16 pixels\n"); if (intel_dsi->dual_link) { hsync_start /= 2; hsync_end /= 2; } for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); intel_de_write(dev_priv, HSYNC(dsi_trans), (hsync_start - 1) | ((hsync_end - 1) << 16)); } } /* program TRANS_VTOTAL register */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); /* * FIXME: Programing this by assuming progressive mode, since * non-interlaced info from VBT is not saved inside * struct drm_display_mode. * For interlace mode: program required pixel minus 2 */ intel_de_write(dev_priv, VTOTAL(dsi_trans), (vactive - 1) | ((vtotal - 1) << 16)); } if (vsync_end < vsync_start || vsync_end > vtotal) drm_err(&dev_priv->drm, "Invalid vsync_end value\n"); if (vsync_start < vactive) drm_err(&dev_priv->drm, "vsync_start less than vactive\n"); /* program TRANS_VSYNC register for video mode only */ if (is_vid_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); intel_de_write(dev_priv, VSYNC(dsi_trans), (vsync_start - 1) | ((vsync_end - 1) << 16)); } } /* * FIXME: It has to be programmed only for video modes and interlaced * modes. Put the check condition here once interlaced * info available as described above. * program TRANS_VSYNCSHIFT register */ if (is_vid_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); intel_de_write(dev_priv, VSYNCSHIFT(dsi_trans), vsync_shift); } } /* program TRANS_VBLANK register, should be same as vtotal programmed */ if (INTEL_GEN(dev_priv) >= 12) { for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); intel_de_write(dev_priv, VBLANK(dsi_trans), (vactive - 1) | ((vtotal - 1) << 16)); } } } static void gen11_dsi_enable_transcoder(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; enum transcoder dsi_trans; u32 tmp; for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, PIPECONF(dsi_trans)); tmp |= PIPECONF_ENABLE; intel_de_write(dev_priv, PIPECONF(dsi_trans), tmp); /* wait for transcoder to be enabled */ if (intel_de_wait_for_set(dev_priv, PIPECONF(dsi_trans), I965_PIPECONF_ACTIVE, 10)) drm_err(&dev_priv->drm, "DSI transcoder not enabled\n"); } } static void gen11_dsi_setup_timeouts(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; enum transcoder dsi_trans; u32 tmp, hs_tx_timeout, lp_rx_timeout, ta_timeout, divisor, mul; /* * escape clock count calculation: * BYTE_CLK_COUNT = TIME_NS/(8 * UI) * UI (nsec) = (10^6)/Bitrate * TIME_NS = (BYTE_CLK_COUNT * 8 * 10^6)/ Bitrate * ESCAPE_CLK_COUNT = TIME_NS/ESC_CLK_NS */ divisor = intel_dsi_tlpx_ns(intel_dsi) * afe_clk(encoder, crtc_state) * 1000; mul = 8 * 1000000; hs_tx_timeout = DIV_ROUND_UP(intel_dsi->hs_tx_timeout * mul, divisor); lp_rx_timeout = DIV_ROUND_UP(intel_dsi->lp_rx_timeout * mul, divisor); ta_timeout = DIV_ROUND_UP(intel_dsi->turn_arnd_val * mul, divisor); for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); /* program hst_tx_timeout */ tmp = intel_de_read(dev_priv, DSI_HSTX_TO(dsi_trans)); tmp &= ~HSTX_TIMEOUT_VALUE_MASK; tmp |= HSTX_TIMEOUT_VALUE(hs_tx_timeout); intel_de_write(dev_priv, DSI_HSTX_TO(dsi_trans), tmp); /* FIXME: DSI_CALIB_TO */ /* program lp_rx_host timeout */ tmp = intel_de_read(dev_priv, DSI_LPRX_HOST_TO(dsi_trans)); tmp &= ~LPRX_TIMEOUT_VALUE_MASK; tmp |= LPRX_TIMEOUT_VALUE(lp_rx_timeout); intel_de_write(dev_priv, DSI_LPRX_HOST_TO(dsi_trans), tmp); /* FIXME: DSI_PWAIT_TO */ /* program turn around timeout */ tmp = intel_de_read(dev_priv, DSI_TA_TO(dsi_trans)); tmp &= ~TA_TIMEOUT_VALUE_MASK; tmp |= TA_TIMEOUT_VALUE(ta_timeout); intel_de_write(dev_priv, DSI_TA_TO(dsi_trans), tmp); } } static void gen11_dsi_config_util_pin(struct intel_encoder *encoder, bool enable) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; /* * used as TE i/p for DSI0, * for dual link/DSI1 TE is from slave DSI1 * through GPIO. */ if (is_vid_mode(intel_dsi) || (intel_dsi->ports & BIT(PORT_B))) return; tmp = intel_de_read(dev_priv, UTIL_PIN_CTL); if (enable) { tmp |= UTIL_PIN_DIRECTION_INPUT; tmp |= UTIL_PIN_ENABLE; } else { tmp &= ~UTIL_PIN_ENABLE; } intel_de_write(dev_priv, UTIL_PIN_CTL, tmp); } static void gen11_dsi_enable_port_and_phy(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); /* step 4a: power up all lanes of the DDI used by DSI */ gen11_dsi_power_up_lanes(encoder); /* step 4b: configure lane sequencing of the Combo-PHY transmitters */ gen11_dsi_config_phy_lanes_sequence(encoder); /* step 4c: configure voltage swing and skew */ gen11_dsi_voltage_swing_program_seq(encoder); /* enable DDI buffer */ gen11_dsi_enable_ddi_buffer(encoder); /* setup D-PHY timings */ gen11_dsi_setup_dphy_timings(encoder, crtc_state); /* Since transcoder is configured to take events from GPIO */ gen11_dsi_config_util_pin(encoder, true); /* step 4h: setup DSI protocol timeouts */ gen11_dsi_setup_timeouts(encoder, crtc_state); /* Step (4h, 4i, 4j, 4k): Configure transcoder */ gen11_dsi_configure_transcoder(encoder, crtc_state); /* Step 4l: Gate DDI clocks */ if (IS_GEN(dev_priv, 11)) gen11_dsi_gate_clocks(encoder); } static void gen11_dsi_powerup_panel(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct mipi_dsi_device *dsi; enum port port; enum transcoder dsi_trans; u32 tmp; int ret; /* set maximum return packet size */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); /* * FIXME: This uses the number of DW's currently in the payload * receive queue. This is probably not what we want here. */ tmp = intel_de_read(dev_priv, DSI_CMD_RXCTL(dsi_trans)); tmp &= NUMBER_RX_PLOAD_DW_MASK; /* multiply "Number Rx Payload DW" by 4 to get max value */ tmp = tmp * 4; dsi = intel_dsi->dsi_hosts[port]->device; ret = mipi_dsi_set_maximum_return_packet_size(dsi, tmp); if (ret < 0) drm_err(&dev_priv->drm, "error setting max return pkt size%d\n", tmp); } /* panel power on related mipi dsi vbt sequences */ intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_ON); intel_dsi_msleep(intel_dsi, intel_dsi->panel_on_delay); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DEASSERT_RESET); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_INIT_OTP); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_ON); /* ensure all panel commands dispatched before enabling transcoder */ wait_for_cmds_dispatched_to_panel(encoder); } static void gen11_dsi_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { /* step2: enable IO power */ gen11_dsi_enable_io_power(encoder); /* step3: enable DSI PLL */ gen11_dsi_program_esc_clk_div(encoder, crtc_state); } static void gen11_dsi_pre_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { /* step3b */ gen11_dsi_map_pll(encoder, pipe_config); /* step4: enable DSI port and DPHY */ gen11_dsi_enable_port_and_phy(encoder, pipe_config); /* step5: program and powerup panel */ gen11_dsi_powerup_panel(encoder); intel_dsc_enable(encoder, pipe_config); /* step6c: configure transcoder timings */ gen11_dsi_set_transcoder_timings(encoder, pipe_config); } static void gen11_dsi_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); drm_WARN_ON(state->base.dev, crtc_state->has_pch_encoder); /* step6d: enable dsi transcoder */ gen11_dsi_enable_transcoder(encoder); /* step7: enable backlight */ intel_panel_enable_backlight(crtc_state, conn_state); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_ON); intel_crtc_vblank_on(crtc_state); } static void gen11_dsi_disable_transcoder(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; enum transcoder dsi_trans; u32 tmp; for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); /* disable transcoder */ tmp = intel_de_read(dev_priv, PIPECONF(dsi_trans)); tmp &= ~PIPECONF_ENABLE; intel_de_write(dev_priv, PIPECONF(dsi_trans), tmp); /* wait for transcoder to be disabled */ if (intel_de_wait_for_clear(dev_priv, PIPECONF(dsi_trans), I965_PIPECONF_ACTIVE, 50)) drm_err(&dev_priv->drm, "DSI trancoder not disabled\n"); } } static void gen11_dsi_powerdown_panel(struct intel_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_DISPLAY_OFF); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_ASSERT_RESET); intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_POWER_OFF); /* ensure cmds dispatched to panel */ wait_for_cmds_dispatched_to_panel(encoder); } static void gen11_dsi_deconfigure_trancoder(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; enum transcoder dsi_trans; u32 tmp; /* disable periodic update mode */ if (is_cmd_mode(intel_dsi)) { for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, DSI_CMD_FRMCTL(port)); tmp &= ~DSI_PERIODIC_FRAME_UPDATE_ENABLE; intel_de_write(dev_priv, DSI_CMD_FRMCTL(port), tmp); } } /* put dsi link in ULPS */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans)); tmp |= LINK_ENTER_ULPS; tmp &= ~LINK_ULPS_TYPE_LP11; intel_de_write(dev_priv, DSI_LP_MSG(dsi_trans), tmp); if (wait_for_us((intel_de_read(dev_priv, DSI_LP_MSG(dsi_trans)) & LINK_IN_ULPS), 10)) drm_err(&dev_priv->drm, "DSI link not in ULPS\n"); } /* disable ddi function */ for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(dsi_trans)); tmp &= ~TRANS_DDI_FUNC_ENABLE; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(dsi_trans), tmp); } /* disable port sync mode if dual link */ if (intel_dsi->dual_link) { for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL2(dsi_trans)); tmp &= ~PORT_SYNC_MODE_ENABLE; intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL2(dsi_trans), tmp); } } } static void gen11_dsi_disable_port(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); u32 tmp; enum port port; gen11_dsi_ungate_clocks(encoder); for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, DDI_BUF_CTL(port)); tmp &= ~DDI_BUF_CTL_ENABLE; intel_de_write(dev_priv, DDI_BUF_CTL(port), tmp); if (wait_for_us((intel_de_read(dev_priv, DDI_BUF_CTL(port)) & DDI_BUF_IS_IDLE), 8)) drm_err(&dev_priv->drm, "DDI port:%c buffer not idle\n", port_name(port)); } gen11_dsi_gate_clocks(encoder); } static void gen11_dsi_disable_io_power(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum port port; u32 tmp; for_each_dsi_port(port, intel_dsi->ports) { intel_wakeref_t wakeref; wakeref = fetch_and_zero(&intel_dsi->io_wakeref[port]); intel_display_power_put(dev_priv, port == PORT_A ? POWER_DOMAIN_PORT_DDI_A_IO : POWER_DOMAIN_PORT_DDI_B_IO, wakeref); } /* set mode to DDI */ for_each_dsi_port(port, intel_dsi->ports) { tmp = intel_de_read(dev_priv, ICL_DSI_IO_MODECTL(port)); tmp &= ~COMBO_PHY_MODE_DSI; intel_de_write(dev_priv, ICL_DSI_IO_MODECTL(port), tmp); } } static void gen11_dsi_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); /* step1: turn off backlight */ intel_dsi_vbt_exec_sequence(intel_dsi, MIPI_SEQ_BACKLIGHT_OFF); intel_panel_disable_backlight(old_conn_state); /* step2d,e: disable transcoder and wait */ gen11_dsi_disable_transcoder(encoder); /* step2f,g: powerdown panel */ gen11_dsi_powerdown_panel(encoder); /* step2h,i,j: deconfig trancoder */ gen11_dsi_deconfigure_trancoder(encoder); /* step3: disable port */ gen11_dsi_disable_port(encoder); gen11_dsi_config_util_pin(encoder, false); /* step4: disable IO power */ gen11_dsi_disable_io_power(encoder); } static void gen11_dsi_post_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_crtc_vblank_off(old_crtc_state); intel_dsc_disable(old_crtc_state); skl_scaler_disable(old_crtc_state); } static enum drm_mode_status gen11_dsi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { /* FIXME: DSC? */ return intel_dsi_mode_valid(connector, mode); } static void gen11_dsi_get_timings(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; if (pipe_config->dsc.compressed_bpp) { int div = pipe_config->dsc.compressed_bpp; int mul = mipi_dsi_pixel_format_to_bpp(intel_dsi->pixel_format); adjusted_mode->crtc_htotal = DIV_ROUND_UP(adjusted_mode->crtc_htotal * mul, div); adjusted_mode->crtc_hsync_start = DIV_ROUND_UP(adjusted_mode->crtc_hsync_start * mul, div); adjusted_mode->crtc_hsync_end = DIV_ROUND_UP(adjusted_mode->crtc_hsync_end * mul, div); } if (intel_dsi->dual_link) { adjusted_mode->crtc_hdisplay *= 2; if (intel_dsi->dual_link == DSI_DUAL_LINK_FRONT_BACK) adjusted_mode->crtc_hdisplay -= intel_dsi->pixel_overlap; adjusted_mode->crtc_htotal *= 2; } adjusted_mode->crtc_hblank_start = adjusted_mode->crtc_hdisplay; adjusted_mode->crtc_hblank_end = adjusted_mode->crtc_htotal; if (intel_dsi->operation_mode == INTEL_DSI_VIDEO_MODE) { if (intel_dsi->dual_link) { adjusted_mode->crtc_hsync_start *= 2; adjusted_mode->crtc_hsync_end *= 2; } } adjusted_mode->crtc_vblank_start = adjusted_mode->crtc_vdisplay; adjusted_mode->crtc_vblank_end = adjusted_mode->crtc_vtotal; } static bool gen11_dsi_is_periodic_cmd_mode(struct intel_dsi *intel_dsi) { struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder dsi_trans; u32 val; if (intel_dsi->ports == BIT(PORT_B)) dsi_trans = TRANSCODER_DSI_1; else dsi_trans = TRANSCODER_DSI_0; val = intel_de_read(dev_priv, DSI_TRANS_FUNC_CONF(dsi_trans)); return (val & DSI_PERIODIC_FRAME_UPDATE_ENABLE); } static void gen11_dsi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); intel_dsc_get_config(encoder, pipe_config); /* FIXME: adapt icl_ddi_clock_get() for DSI and use that? */ pipe_config->port_clock = intel_dpll_get_freq(i915, pipe_config->shared_dpll); pipe_config->hw.adjusted_mode.crtc_clock = intel_dsi->pclk; if (intel_dsi->dual_link) pipe_config->hw.adjusted_mode.crtc_clock *= 2; gen11_dsi_get_timings(encoder, pipe_config); pipe_config->output_types |= BIT(INTEL_OUTPUT_DSI); pipe_config->pipe_bpp = bdw_get_pipemisc_bpp(crtc); if (gen11_dsi_is_periodic_cmd_mode(intel_dsi)) pipe_config->hw.adjusted_mode.private_flags |= I915_MODE_FLAG_DSI_PERIODIC_CMD_MODE; } static int gen11_dsi_dsc_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; int dsc_max_bpc = INTEL_GEN(dev_priv) >= 12 ? 12 : 10; bool use_dsc; int ret; use_dsc = intel_bios_get_dsc_params(encoder, crtc_state, dsc_max_bpc); if (!use_dsc) return 0; if (crtc_state->pipe_bpp < 8 * 3) return -EINVAL; /* FIXME: split only when necessary */ if (crtc_state->dsc.slice_count > 1) crtc_state->dsc.dsc_split = true; vdsc_cfg->convert_rgb = true; ret = intel_dsc_compute_params(encoder, crtc_state); if (ret) return ret; /* DSI specific sanity checks on the common code */ drm_WARN_ON(&dev_priv->drm, vdsc_cfg->vbr_enable); drm_WARN_ON(&dev_priv->drm, vdsc_cfg->simple_422); drm_WARN_ON(&dev_priv->drm, vdsc_cfg->pic_width % vdsc_cfg->slice_width); drm_WARN_ON(&dev_priv->drm, vdsc_cfg->slice_height < 8); drm_WARN_ON(&dev_priv->drm, vdsc_cfg->pic_height % vdsc_cfg->slice_height); ret = drm_dsc_compute_rc_parameters(vdsc_cfg); if (ret) return ret; crtc_state->dsc.compression_enable = true; return 0; } static int gen11_dsi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = container_of(encoder, struct intel_dsi, base); struct intel_connector *intel_connector = intel_dsi->attached_connector; const struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int ret; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; intel_fixed_panel_mode(fixed_mode, adjusted_mode); ret = intel_pch_panel_fitting(pipe_config, conn_state); if (ret) return ret; adjusted_mode->flags = 0; /* Dual link goes to trancoder DSI'0' */ if (intel_dsi->ports == BIT(PORT_B)) pipe_config->cpu_transcoder = TRANSCODER_DSI_1; else pipe_config->cpu_transcoder = TRANSCODER_DSI_0; if (intel_dsi->pixel_format == MIPI_DSI_FMT_RGB888) pipe_config->pipe_bpp = 24; else pipe_config->pipe_bpp = 18; pipe_config->clock_set = true; if (gen11_dsi_dsc_compute_config(encoder, pipe_config)) drm_dbg_kms(&i915->drm, "Attempting to use DSC failed\n"); pipe_config->port_clock = afe_clk(encoder, pipe_config) / 5; /* We would not operate in periodic command mode */ pipe_config->hw.adjusted_mode.private_flags &= ~I915_MODE_FLAG_DSI_PERIODIC_CMD_MODE; /* * In case of TE GATE cmd mode, we * receive TE from the slave if * dual link is enabled */ if (is_cmd_mode(intel_dsi)) { if (intel_dsi->ports == (BIT(PORT_B) | BIT(PORT_A))) pipe_config->hw.adjusted_mode.private_flags |= I915_MODE_FLAG_DSI_USE_TE1 | I915_MODE_FLAG_DSI_USE_TE0; else if (intel_dsi->ports == BIT(PORT_B)) pipe_config->hw.adjusted_mode.private_flags |= I915_MODE_FLAG_DSI_USE_TE1; else pipe_config->hw.adjusted_mode.private_flags |= I915_MODE_FLAG_DSI_USE_TE0; } return 0; } static void gen11_dsi_get_power_domains(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); get_dsi_io_power_domains(i915, enc_to_intel_dsi(encoder)); if (crtc_state->dsc.compression_enable) intel_display_power_get(i915, intel_dsc_power_domain(crtc_state)); } static bool gen11_dsi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); enum transcoder dsi_trans; intel_wakeref_t wakeref; enum port port; bool ret = false; u32 tmp; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; for_each_dsi_port(port, intel_dsi->ports) { dsi_trans = dsi_port_to_transcoder(port); tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(dsi_trans)); switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { case TRANS_DDI_EDP_INPUT_A_ON: *pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: *pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: *pipe = PIPE_C; break; case TRANS_DDI_EDP_INPUT_D_ONOFF: *pipe = PIPE_D; break; default: drm_err(&dev_priv->drm, "Invalid PIPE input\n"); goto out; } tmp = intel_de_read(dev_priv, PIPECONF(dsi_trans)); ret = tmp & PIPECONF_ENABLE; } out: intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return ret; } static void gen11_dsi_encoder_destroy(struct drm_encoder *encoder) { intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs gen11_dsi_encoder_funcs = { .destroy = gen11_dsi_encoder_destroy, }; static const struct drm_connector_funcs gen11_dsi_connector_funcs = { .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_connector_destroy, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static const struct drm_connector_helper_funcs gen11_dsi_connector_helper_funcs = { .get_modes = intel_dsi_get_modes, .mode_valid = gen11_dsi_mode_valid, .atomic_check = intel_digital_connector_atomic_check, }; static int gen11_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static int gen11_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *dsi) { return 0; } static ssize_t gen11_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct intel_dsi_host *intel_dsi_host = to_intel_dsi_host(host); struct mipi_dsi_packet dsi_pkt; ssize_t ret; bool enable_lpdt = false; ret = mipi_dsi_create_packet(&dsi_pkt, msg); if (ret < 0) return ret; if (msg->flags & MIPI_DSI_MSG_USE_LPM) enable_lpdt = true; /* send packet header */ ret = dsi_send_pkt_hdr(intel_dsi_host, dsi_pkt, enable_lpdt); if (ret < 0) return ret; /* only long packet contains payload */ if (mipi_dsi_packet_format_is_long(msg->type)) { ret = dsi_send_pkt_payld(intel_dsi_host, dsi_pkt); if (ret < 0) return ret; } //TODO: add payload receive code if needed ret = sizeof(dsi_pkt.header) + dsi_pkt.payload_length; return ret; } static const struct mipi_dsi_host_ops gen11_dsi_host_ops = { .attach = gen11_dsi_host_attach, .detach = gen11_dsi_host_detach, .transfer = gen11_dsi_host_transfer, }; #define ICL_PREPARE_CNT_MAX 0x7 #define ICL_CLK_ZERO_CNT_MAX 0xf #define ICL_TRAIL_CNT_MAX 0x7 #define ICL_TCLK_PRE_CNT_MAX 0x3 #define ICL_TCLK_POST_CNT_MAX 0x7 #define ICL_HS_ZERO_CNT_MAX 0xf #define ICL_EXIT_ZERO_CNT_MAX 0x7 static void icl_dphy_param_init(struct intel_dsi *intel_dsi) { struct drm_device *dev = intel_dsi->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct mipi_config *mipi_config = dev_priv->vbt.dsi.config; u32 tlpx_ns; u32 prepare_cnt, exit_zero_cnt, clk_zero_cnt, trail_cnt; u32 ths_prepare_ns, tclk_trail_ns; u32 hs_zero_cnt; u32 tclk_pre_cnt, tclk_post_cnt; tlpx_ns = intel_dsi_tlpx_ns(intel_dsi); tclk_trail_ns = max(mipi_config->tclk_trail, mipi_config->ths_trail); ths_prepare_ns = max(mipi_config->ths_prepare, mipi_config->tclk_prepare); /* * prepare cnt in escape clocks * this field represents a hexadecimal value with a precision * of 1.2 – i.e. the most significant bit is the integer * and the least significant 2 bits are fraction bits. * so, the field can represent a range of 0.25 to 1.75 */ prepare_cnt = DIV_ROUND_UP(ths_prepare_ns * 4, tlpx_ns); if (prepare_cnt > ICL_PREPARE_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "prepare_cnt out of range (%d)\n", prepare_cnt); prepare_cnt = ICL_PREPARE_CNT_MAX; } /* clk zero count in escape clocks */ clk_zero_cnt = DIV_ROUND_UP(mipi_config->tclk_prepare_clkzero - ths_prepare_ns, tlpx_ns); if (clk_zero_cnt > ICL_CLK_ZERO_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "clk_zero_cnt out of range (%d)\n", clk_zero_cnt); clk_zero_cnt = ICL_CLK_ZERO_CNT_MAX; } /* trail cnt in escape clocks*/ trail_cnt = DIV_ROUND_UP(tclk_trail_ns, tlpx_ns); if (trail_cnt > ICL_TRAIL_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "trail_cnt out of range (%d)\n", trail_cnt); trail_cnt = ICL_TRAIL_CNT_MAX; } /* tclk pre count in escape clocks */ tclk_pre_cnt = DIV_ROUND_UP(mipi_config->tclk_pre, tlpx_ns); if (tclk_pre_cnt > ICL_TCLK_PRE_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "tclk_pre_cnt out of range (%d)\n", tclk_pre_cnt); tclk_pre_cnt = ICL_TCLK_PRE_CNT_MAX; } /* tclk post count in escape clocks */ tclk_post_cnt = DIV_ROUND_UP(mipi_config->tclk_post, tlpx_ns); if (tclk_post_cnt > ICL_TCLK_POST_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "tclk_post_cnt out of range (%d)\n", tclk_post_cnt); tclk_post_cnt = ICL_TCLK_POST_CNT_MAX; } /* hs zero cnt in escape clocks */ hs_zero_cnt = DIV_ROUND_UP(mipi_config->ths_prepare_hszero - ths_prepare_ns, tlpx_ns); if (hs_zero_cnt > ICL_HS_ZERO_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "hs_zero_cnt out of range (%d)\n", hs_zero_cnt); hs_zero_cnt = ICL_HS_ZERO_CNT_MAX; } /* hs exit zero cnt in escape clocks */ exit_zero_cnt = DIV_ROUND_UP(mipi_config->ths_exit, tlpx_ns); if (exit_zero_cnt > ICL_EXIT_ZERO_CNT_MAX) { drm_dbg_kms(&dev_priv->drm, "exit_zero_cnt out of range (%d)\n", exit_zero_cnt); exit_zero_cnt = ICL_EXIT_ZERO_CNT_MAX; } /* clock lane dphy timings */ intel_dsi->dphy_reg = (CLK_PREPARE_OVERRIDE | CLK_PREPARE(prepare_cnt) | CLK_ZERO_OVERRIDE | CLK_ZERO(clk_zero_cnt) | CLK_PRE_OVERRIDE | CLK_PRE(tclk_pre_cnt) | CLK_POST_OVERRIDE | CLK_POST(tclk_post_cnt) | CLK_TRAIL_OVERRIDE | CLK_TRAIL(trail_cnt)); /* data lanes dphy timings */ intel_dsi->dphy_data_lane_reg = (HS_PREPARE_OVERRIDE | HS_PREPARE(prepare_cnt) | HS_ZERO_OVERRIDE | HS_ZERO(hs_zero_cnt) | HS_TRAIL_OVERRIDE | HS_TRAIL(trail_cnt) | HS_EXIT_OVERRIDE | HS_EXIT(exit_zero_cnt)); intel_dsi_log_params(intel_dsi); } static void icl_dsi_add_properties(struct intel_connector *connector) { u32 allowed_scalers; allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN) | BIT(DRM_MODE_SCALE_CENTER); drm_connector_attach_scaling_mode_property(&connector->base, allowed_scalers); connector->base.state->scaling_mode = DRM_MODE_SCALE_ASPECT; drm_connector_set_panel_orientation_with_quirk(&connector->base, intel_dsi_get_panel_orientation(connector), connector->panel.fixed_mode->hdisplay, connector->panel.fixed_mode->vdisplay); } void icl_dsi_init(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct intel_dsi *intel_dsi; struct intel_encoder *encoder; struct intel_connector *intel_connector; struct drm_connector *connector; struct drm_display_mode *fixed_mode; enum port port; if (!intel_bios_is_dsi_present(dev_priv, &port)) return; intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL); if (!intel_dsi) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_dsi); return; } encoder = &intel_dsi->base; intel_dsi->attached_connector = intel_connector; connector = &intel_connector->base; /* register DSI encoder with DRM subsystem */ drm_encoder_init(dev, &encoder->base, &gen11_dsi_encoder_funcs, DRM_MODE_ENCODER_DSI, "DSI %c", port_name(port)); encoder->pre_pll_enable = gen11_dsi_pre_pll_enable; encoder->pre_enable = gen11_dsi_pre_enable; encoder->enable = gen11_dsi_enable; encoder->disable = gen11_dsi_disable; encoder->post_disable = gen11_dsi_post_disable; encoder->port = port; encoder->get_config = gen11_dsi_get_config; encoder->update_pipe = intel_panel_update_backlight; encoder->compute_config = gen11_dsi_compute_config; encoder->get_hw_state = gen11_dsi_get_hw_state; encoder->type = INTEL_OUTPUT_DSI; encoder->cloneable = 0; encoder->pipe_mask = ~0; encoder->power_domain = POWER_DOMAIN_PORT_DSI; encoder->get_power_domains = gen11_dsi_get_power_domains; /* register DSI connector with DRM subsystem */ drm_connector_init(dev, connector, &gen11_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_helper_add(connector, &gen11_dsi_connector_helper_funcs); connector->display_info.subpixel_order = SubPixelHorizontalRGB; connector->interlace_allowed = false; connector->doublescan_allowed = false; intel_connector->get_hw_state = intel_connector_get_hw_state; /* attach connector to encoder */ intel_connector_attach_encoder(intel_connector, encoder); mutex_lock(&dev->mode_config.mutex); fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); mutex_unlock(&dev->mode_config.mutex); if (!fixed_mode) { drm_err(&dev_priv->drm, "DSI fixed mode info missing\n"); goto err; } intel_panel_init(&intel_connector->panel, fixed_mode, NULL); intel_panel_setup_backlight(connector, INVALID_PIPE); if (dev_priv->vbt.dsi.config->dual_link) intel_dsi->ports = BIT(PORT_A) | BIT(PORT_B); else intel_dsi->ports = BIT(port); intel_dsi->dcs_backlight_ports = dev_priv->vbt.dsi.bl_ports; intel_dsi->dcs_cabc_ports = dev_priv->vbt.dsi.cabc_ports; for_each_dsi_port(port, intel_dsi->ports) { struct intel_dsi_host *host; host = intel_dsi_host_init(intel_dsi, &gen11_dsi_host_ops, port); if (!host) goto err; intel_dsi->dsi_hosts[port] = host; } if (!intel_dsi_vbt_init(intel_dsi, MIPI_DSI_GENERIC_PANEL_ID)) { drm_dbg_kms(&dev_priv->drm, "no device found\n"); goto err; } icl_dphy_param_init(intel_dsi); icl_dsi_add_properties(intel_connector); return; err: drm_encoder_cleanup(&encoder->base); kfree(intel_dsi); kfree(intel_connector); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1