Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ville Syrjälä | 7373 | 20.80% | 195 | 22.49% |
Jani Nikula | 4340 | 12.24% | 116 | 13.38% |
Manasi D Navare | 2812 | 7.93% | 28 | 3.23% |
Gwan-gyeong Mun | 2628 | 7.41% | 11 | 1.27% |
Keith Packard | 1909 | 5.38% | 26 | 3.00% |
Ramalingam C | 1534 | 4.33% | 10 | 1.15% |
Imre Deak | 1430 | 4.03% | 55 | 6.34% |
Daniel Vetter | 972 | 2.74% | 54 | 6.23% |
Maarten Lankhorst | 961 | 2.71% | 16 | 1.85% |
Jesse Barnes | 903 | 2.55% | 29 | 3.34% |
Sean Paul | 885 | 2.50% | 1 | 0.12% |
Animesh Manna | 822 | 2.32% | 3 | 0.35% |
Chris Wilson | 813 | 2.29% | 38 | 4.38% |
Chon Ming Lee | 722 | 2.04% | 7 | 0.81% |
Paulo Zanoni | 698 | 1.97% | 35 | 4.04% |
Vandana Kannan | 667 | 1.88% | 10 | 1.15% |
Wambui Karuga | 447 | 1.26% | 1 | 0.12% |
Rodrigo Vivi | 440 | 1.24% | 23 | 2.65% |
Dave Airlie | 365 | 1.03% | 9 | 1.04% |
Todd Previte | 363 | 1.02% | 5 | 0.58% |
Pradeep Bhat | 318 | 0.90% | 2 | 0.23% |
Damien Lespiau | 306 | 0.86% | 11 | 1.27% |
Zhenyu Wang | 277 | 0.78% | 8 | 0.92% |
Clint Taylor | 230 | 0.65% | 2 | 0.23% |
Anusha Srivatsa | 195 | 0.55% | 5 | 0.58% |
Pankaj Bharadiya | 193 | 0.54% | 2 | 0.23% |
Shubhangi Shrivastava | 190 | 0.54% | 7 | 0.81% |
Pallavi G | 187 | 0.53% | 1 | 0.12% |
Mika Kahola | 180 | 0.51% | 3 | 0.35% |
Dhinakaran Pandiyan | 171 | 0.48% | 12 | 1.38% |
Sonika Jindal | 153 | 0.43% | 5 | 0.58% |
Tvrtko A. Ursulin | 151 | 0.43% | 14 | 1.61% |
Matt Atwood | 141 | 0.40% | 1 | 0.12% |
Ander Conselvan de Oliveira | 133 | 0.38% | 24 | 2.77% |
Adam Jackson | 129 | 0.36% | 7 | 0.81% |
Matt Roper | 116 | 0.33% | 6 | 0.69% |
José Roberto de Souza | 115 | 0.32% | 8 | 0.92% |
Stephen Chandler Paul | 104 | 0.29% | 5 | 0.58% |
Gaurav K Singh | 90 | 0.25% | 2 | 0.23% |
Anshuman Gupta | 74 | 0.21% | 2 | 0.23% |
Hans Verkuil | 65 | 0.18% | 1 | 0.12% |
Wayne Boyer | 64 | 0.18% | 1 | 0.12% |
Xiong Zhang | 63 | 0.18% | 1 | 0.12% |
Mario Kleiner | 55 | 0.16% | 1 | 0.12% |
Shashank Sharma | 50 | 0.14% | 3 | 0.35% |
Jim Bride | 48 | 0.14% | 2 | 0.23% |
Kai Vehmanen | 48 | 0.14% | 1 | 0.12% |
Radhakrishna Sripada | 47 | 0.13% | 2 | 0.23% |
Abhay Kumar | 46 | 0.13% | 1 | 0.12% |
Yakui Zhao | 45 | 0.13% | 2 | 0.23% |
Lucas De Marchi | 42 | 0.12% | 5 | 0.58% |
Yetunde Adebisi | 40 | 0.11% | 1 | 0.12% |
Yuanhan Liu | 33 | 0.09% | 1 | 0.12% |
Hans de Goede | 21 | 0.06% | 2 | 0.23% |
Thulasimani,Sivakumar | 21 | 0.06% | 2 | 0.23% |
Madhumitha Tolakanahalli Pradeep | 21 | 0.06% | 1 | 0.12% |
Sudip Mukherjee | 20 | 0.06% | 2 | 0.23% |
Yuly Novikov | 20 | 0.06% | 2 | 0.23% |
Mika Kuoppala | 19 | 0.05% | 1 | 0.12% |
Eric Anholt | 17 | 0.05% | 1 | 0.12% |
Mustamin B Mustaffa | 13 | 0.04% | 1 | 0.12% |
Linus Torvalds | 12 | 0.03% | 1 | 0.12% |
Jan-Marek Glogowski | 12 | 0.03% | 1 | 0.12% |
Egbert Eich | 8 | 0.02% | 1 | 0.12% |
Andy Shevchenko | 8 | 0.02% | 2 | 0.23% |
James Ausmus | 7 | 0.02% | 2 | 0.23% |
Khaled Almahallawy | 6 | 0.02% | 1 | 0.12% |
Vijay Purushothaman | 5 | 0.01% | 2 | 0.23% |
Ma Ling | 5 | 0.01% | 1 | 0.12% |
Thierry Reding | 4 | 0.01% | 1 | 0.12% |
Patrik Jakobsson | 4 | 0.01% | 1 | 0.12% |
Derek Basehore | 4 | 0.01% | 1 | 0.12% |
Durgadoss R | 4 | 0.01% | 1 | 0.12% |
Gajanan Bhat | 4 | 0.01% | 1 | 0.12% |
Fengguang Wu | 4 | 0.01% | 1 | 0.12% |
Colin Ian King | 3 | 0.01% | 1 | 0.12% |
Oleg Vasilev | 3 | 0.01% | 1 | 0.12% |
Thomas Meyer | 3 | 0.01% | 1 | 0.12% |
Shawn C Lee | 3 | 0.01% | 1 | 0.12% |
Tejun Heo | 2 | 0.01% | 1 | 0.12% |
Paul Gortmaker | 2 | 0.01% | 1 | 0.12% |
Ma Feng | 2 | 0.01% | 1 | 0.12% |
Rafael J. Wysocki | 2 | 0.01% | 1 | 0.12% |
Rob Clark | 2 | 0.01% | 1 | 0.12% |
Daniele Ceraolo Spurio | 1 | 0.00% | 1 | 0.12% |
Dan Carpenter | 1 | 0.00% | 1 | 0.12% |
Matthew Garrett | 1 | 0.00% | 1 | 0.12% |
Chandra Konduru | 1 | 0.00% | 1 | 0.12% |
David Howells | 1 | 0.00% | 1 | 0.12% |
David Flynn | 1 | 0.00% | 1 | 0.12% |
Ben Widawsky | 1 | 0.00% | 1 | 0.12% |
David Weinehall | 1 | 0.00% | 1 | 0.12% |
Total | 35452 | 867 |
/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard <keithp@keithp.com> * */ #include <linux/export.h> #include <linux/i2c.h> #include <linux/notifier.h> #include <linux/reboot.h> #include <linux/slab.h> #include <linux/types.h> #include <asm/byteorder.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc.h> #include <drm/drm_dp_helper.h> #include <drm/drm_edid.h> #include <drm/drm_hdcp.h> #include <drm/drm_probe_helper.h> #include "i915_debugfs.h" #include "i915_drv.h" #include "i915_trace.h" #include "intel_atomic.h" #include "intel_audio.h" #include "intel_connector.h" #include "intel_ddi.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_dp_link_training.h" #include "intel_dp_mst.h" #include "intel_dpio_phy.h" #include "intel_fifo_underrun.h" #include "intel_hdcp.h" #include "intel_hdmi.h" #include "intel_hotplug.h" #include "intel_lspcon.h" #include "intel_lvds.h" #include "intel_panel.h" #include "intel_psr.h" #include "intel_sideband.h" #include "intel_tc.h" #include "intel_vdsc.h" #define DP_DPRX_ESI_LEN 14 /* DP DSC throughput values used for slice count calculations KPixels/s */ #define DP_DSC_PEAK_PIXEL_RATE 2720000 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000 /* DP DSC FEC Overhead factor = 1/(0.972261) */ #define DP_DSC_FEC_OVERHEAD_FACTOR 972261 /* Compliance test status bits */ #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) struct dp_link_dpll { int clock; struct dpll dpll; }; static const struct dp_link_dpll g4x_dpll[] = { { 162000, { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, { 270000, { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } }; static const struct dp_link_dpll pch_dpll[] = { { 162000, { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, { 270000, { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } }; static const struct dp_link_dpll vlv_dpll[] = { { 162000, { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, { 270000, { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } }; /* * CHV supports eDP 1.4 that have more link rates. * Below only provides the fixed rate but exclude variable rate. */ static const struct dp_link_dpll chv_dpll[] = { /* * CHV requires to program fractional division for m2. * m2 is stored in fixed point format using formula below * (m2_int << 22) | m2_fraction */ { 162000, /* m2_int = 32, m2_fraction = 1677722 */ { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, { 270000, /* m2_int = 27, m2_fraction = 0 */ { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, }; /* Constants for DP DSC configurations */ static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15}; /* With Single pipe configuration, HW is capable of supporting maximum * of 4 slices per line. */ static const u8 valid_dsc_slicecount[] = {1, 2, 4}; /** * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ bool intel_dp_is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.type == INTEL_OUTPUT_EDP; } static void intel_dp_link_down(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state); static bool edp_panel_vdd_on(struct intel_dp *intel_dp); static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state); static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, enum pipe pipe); static void intel_dp_unset_edid(struct intel_dp *intel_dp); /* update sink rates from dpcd */ static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) { static const int dp_rates[] = { 162000, 270000, 540000, 810000 }; int i, max_rate; if (drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) { /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */ static const int quirk_rates[] = { 162000, 270000, 324000 }; memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates)); intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates); return; } max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { if (dp_rates[i] > max_rate) break; intel_dp->sink_rates[i] = dp_rates[i]; } intel_dp->num_sink_rates = i; } /* Get length of rates array potentially limited by max_rate. */ static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) { int i; /* Limit results by potentially reduced max rate */ for (i = 0; i < len; i++) { if (rates[len - i - 1] <= max_rate) return len - i; } return 0; } /* Get length of common rates array potentially limited by max_rate. */ static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, int max_rate) { return intel_dp_rate_limit_len(intel_dp->common_rates, intel_dp->num_common_rates, max_rate); } /* Theoretical max between source and sink */ static int intel_dp_max_common_rate(struct intel_dp *intel_dp) { return intel_dp->common_rates[intel_dp->num_common_rates - 1]; } /* Theoretical max between source and sink */ static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); int source_max = intel_dig_port->max_lanes; int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port); return min3(source_max, sink_max, fia_max); } int intel_dp_max_lane_count(struct intel_dp *intel_dp) { return intel_dp->max_link_lane_count; } int intel_dp_link_required(int pixel_clock, int bpp) { /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ return DIV_ROUND_UP(pixel_clock * bpp, 8); } int intel_dp_max_data_rate(int max_link_clock, int max_lanes) { /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the * link rate that is generally expressed in Gbps. Since, 8 bits of data * is transmitted every LS_Clk per lane, there is no need to account for * the channel encoding that is done in the PHY layer here. */ return max_link_clock * max_lanes; } static int intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int max_dotclk = dev_priv->max_dotclk_freq; int ds_max_dotclk; int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type != DP_DS_PORT_TYPE_VGA) return max_dotclk; ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, intel_dp->downstream_ports); if (ds_max_dotclk != 0) max_dotclk = min(max_dotclk, ds_max_dotclk); return max_dotclk; } static int cnl_max_source_rate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum port port = dig_port->base.port; u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; /* Low voltage SKUs are limited to max of 5.4G */ if (voltage == VOLTAGE_INFO_0_85V) return 540000; /* For this SKU 8.1G is supported in all ports */ if (IS_CNL_WITH_PORT_F(dev_priv)) return 810000; /* For other SKUs, max rate on ports A and D is 5.4G */ if (port == PORT_A || port == PORT_D) return 540000; return 810000; } static int icl_max_source_rate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); if (intel_phy_is_combo(dev_priv, phy) && !IS_ELKHARTLAKE(dev_priv) && !intel_dp_is_edp(intel_dp)) return 540000; return 810000; } static void intel_dp_set_source_rates(struct intel_dp *intel_dp) { /* The values must be in increasing order */ static const int cnl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 }; static const int bxt_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000 }; static const int skl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000 }; static const int hsw_rates[] = { 162000, 270000, 540000 }; static const int g4x_rates[] = { 162000, 270000 }; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const int *source_rates; int size, max_rate = 0, vbt_max_rate; /* This should only be done once */ drm_WARN_ON(&dev_priv->drm, intel_dp->source_rates || intel_dp->num_source_rates); if (INTEL_GEN(dev_priv) >= 10) { source_rates = cnl_rates; size = ARRAY_SIZE(cnl_rates); if (IS_GEN(dev_priv, 10)) max_rate = cnl_max_source_rate(intel_dp); else max_rate = icl_max_source_rate(intel_dp); } else if (IS_GEN9_LP(dev_priv)) { source_rates = bxt_rates; size = ARRAY_SIZE(bxt_rates); } else if (IS_GEN9_BC(dev_priv)) { source_rates = skl_rates; size = ARRAY_SIZE(skl_rates); } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || IS_BROADWELL(dev_priv)) { source_rates = hsw_rates; size = ARRAY_SIZE(hsw_rates); } else { source_rates = g4x_rates; size = ARRAY_SIZE(g4x_rates); } vbt_max_rate = intel_bios_dp_max_link_rate(encoder); if (max_rate && vbt_max_rate) max_rate = min(max_rate, vbt_max_rate); else if (vbt_max_rate) max_rate = vbt_max_rate; if (max_rate) size = intel_dp_rate_limit_len(source_rates, size, max_rate); intel_dp->source_rates = source_rates; intel_dp->num_source_rates = size; } static int intersect_rates(const int *source_rates, int source_len, const int *sink_rates, int sink_len, int *common_rates) { int i = 0, j = 0, k = 0; while (i < source_len && j < sink_len) { if (source_rates[i] == sink_rates[j]) { if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) return k; common_rates[k] = source_rates[i]; ++k; ++i; ++j; } else if (source_rates[i] < sink_rates[j]) { ++i; } else { ++j; } } return k; } /* return index of rate in rates array, or -1 if not found */ static int intel_dp_rate_index(const int *rates, int len, int rate) { int i; for (i = 0; i < len; i++) if (rate == rates[i]) return i; return -1; } static void intel_dp_set_common_rates(struct intel_dp *intel_dp) { WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, intel_dp->num_source_rates, intel_dp->sink_rates, intel_dp->num_sink_rates, intel_dp->common_rates); /* Paranoia, there should always be something in common. */ if (WARN_ON(intel_dp->num_common_rates == 0)) { intel_dp->common_rates[0] = 162000; intel_dp->num_common_rates = 1; } } static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { /* * FIXME: we need to synchronize the current link parameters with * hardware readout. Currently fast link training doesn't work on * boot-up. */ if (link_rate == 0 || link_rate > intel_dp->max_link_rate) return false; if (lane_count == 0 || lane_count > intel_dp_max_lane_count(intel_dp)) return false; return true; } static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { const struct drm_display_mode *fixed_mode = intel_dp->attached_connector->panel.fixed_mode; int mode_rate, max_rate; mode_rate = intel_dp_link_required(fixed_mode->clock, 18); max_rate = intel_dp_max_data_rate(link_rate, lane_count); if (mode_rate > max_rate) return false; return true; } int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, int link_rate, u8 lane_count) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int index; index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, link_rate); if (index > 0) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp->common_rates[index - 1], lane_count)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; intel_dp->max_link_lane_count = lane_count; } else if (lane_count > 1) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_max_common_rate(intel_dp), lane_count >> 1)) { drm_dbg_kms(&i915->drm, "Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->max_link_lane_count = lane_count >> 1; } else { drm_err(&i915->drm, "Link Training Unsuccessful\n"); return -1; } return 0; } u32 intel_dp_mode_to_fec_clock(u32 mode_clock) { return div_u64(mul_u32_u32(mode_clock, 1000000U), DP_DSC_FEC_OVERHEAD_FACTOR); } static int small_joiner_ram_size_bits(struct drm_i915_private *i915) { if (INTEL_GEN(i915) >= 11) return 7680 * 8; else return 6144 * 8; } static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915, u32 link_clock, u32 lane_count, u32 mode_clock, u32 mode_hdisplay) { u32 bits_per_pixel, max_bpp_small_joiner_ram; int i; /* * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)* * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP) * for SST -> TimeSlotsPerMTP is 1, * for MST -> TimeSlotsPerMTP has to be calculated */ bits_per_pixel = (link_clock * lane_count * 8) / intel_dp_mode_to_fec_clock(mode_clock); drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel); /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */ max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) / mode_hdisplay; drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n", max_bpp_small_joiner_ram); /* * Greatest allowed DSC BPP = MIN (output BPP from available Link BW * check, output bpp from small joiner RAM check) */ bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram); /* Error out if the max bpp is less than smallest allowed valid bpp */ if (bits_per_pixel < valid_dsc_bpp[0]) { drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n", bits_per_pixel, valid_dsc_bpp[0]); return 0; } /* Find the nearest match in the array of known BPPs from VESA */ for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) { if (bits_per_pixel < valid_dsc_bpp[i + 1]) break; } bits_per_pixel = valid_dsc_bpp[i]; /* * Compressed BPP in U6.4 format so multiply by 16, for Gen 11, * fractional part is 0 */ return bits_per_pixel << 4; } static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp, int mode_clock, int mode_hdisplay) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 min_slice_count, i; int max_slice_width; if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE) min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_0); else min_slice_count = DIV_ROUND_UP(mode_clock, DP_DSC_MAX_ENC_THROUGHPUT_1); max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd); if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) { drm_dbg_kms(&i915->drm, "Unsupported slice width %d by DP DSC Sink device\n", max_slice_width); return 0; } /* Also take into account max slice width */ min_slice_count = min_t(u8, min_slice_count, DIV_ROUND_UP(mode_hdisplay, max_slice_width)); /* Find the closest match to the valid slice count values */ for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) { if (valid_dsc_slicecount[i] > drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, false)) break; if (min_slice_count <= valid_dsc_slicecount[i]) return valid_dsc_slicecount[i]; } drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n", min_slice_count); return 0; } static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv, int hdisplay) { /* * Older platforms don't like hdisplay==4096 with DP. * * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline * and frame counter increment), but we don't get vblank interrupts, * and the pipe underruns immediately. The link also doesn't seem * to get trained properly. * * On CHV the vblank interrupts don't seem to disappear but * otherwise the symptoms are similar. * * TODO: confirm the behaviour on HSW+ */ return hdisplay == 4096 && !HAS_DDI(dev_priv); } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; struct drm_i915_private *dev_priv = to_i915(connector->dev); int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; int max_dotclk; u16 dsc_max_output_bpp = 0; u8 dsc_slice_count = 0; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); if (intel_dp_is_edp(intel_dp) && fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; target_clock = fixed_mode->clock; } max_link_clock = intel_dp_max_link_rate(intel_dp); max_lanes = intel_dp_max_lane_count(intel_dp); max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, 18); if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay)) return MODE_H_ILLEGAL; /* * Output bpp is stored in 6.4 format so right shift by 4 to get the * integer value since we support only integer values of bpp. */ if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) && drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) { if (intel_dp_is_edp(intel_dp)) { dsc_max_output_bpp = drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4; dsc_slice_count = drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, true); } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) { dsc_max_output_bpp = intel_dp_dsc_get_output_bpp(dev_priv, max_link_clock, max_lanes, target_clock, mode->hdisplay) >> 4; dsc_slice_count = intel_dp_dsc_get_slice_count(intel_dp, target_clock, mode->hdisplay); } } if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) || target_clock > max_dotclk) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; return intel_mode_valid_max_plane_size(dev_priv, mode); } u32 intel_dp_pack_aux(const u8 *src, int src_bytes) { int i; u32 v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((u32)src[i]) << ((3 - i) * 8); return v; } static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } static void intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); static void intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, bool force_disable_vdd); static void intel_dp_pps_init(struct intel_dp *intel_dp); static intel_wakeref_t pps_lock(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); intel_wakeref_t wakeref; /* * See intel_power_sequencer_reset() why we need * a power domain reference here. */ wakeref = intel_display_power_get(dev_priv, intel_aux_power_domain(dp_to_dig_port(intel_dp))); mutex_lock(&dev_priv->pps_mutex); return wakeref; } static intel_wakeref_t pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); mutex_unlock(&dev_priv->pps_mutex); intel_display_power_put(dev_priv, intel_aux_power_domain(dp_to_dig_port(intel_dp)), wakeref); return 0; } #define with_pps_lock(dp, wf) \ for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf))) static void vlv_power_sequencer_kick(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum pipe pipe = intel_dp->pps_pipe; bool pll_enabled, release_cl_override = false; enum dpio_phy phy = DPIO_PHY(pipe); enum dpio_channel ch = vlv_pipe_to_channel(pipe); u32 DP; if (drm_WARN(&dev_priv->drm, intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN, "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n", pipe_name(pipe), intel_dig_port->base.base.base.id, intel_dig_port->base.base.name)) return; drm_dbg_kms(&dev_priv->drm, "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n", pipe_name(pipe), intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; DP |= DP_PORT_WIDTH(1); DP |= DP_LINK_TRAIN_PAT_1; if (IS_CHERRYVIEW(dev_priv)) DP |= DP_PIPE_SEL_CHV(pipe); else DP |= DP_PIPE_SEL(pipe); pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE; /* * The DPLL for the pipe must be enabled for this to work. * So enable temporarily it if it's not already enabled. */ if (!pll_enabled) { release_cl_override = IS_CHERRYVIEW(dev_priv) && !chv_phy_powergate_ch(dev_priv, phy, ch, true); if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { drm_err(&dev_priv->drm, "Failed to force on pll for pipe %c!\n", pipe_name(pipe)); return; } } /* * Similar magic as in intel_dp_enable_port(). * We _must_ do this port enable + disable trick * to make this power sequencer lock onto the port. * Otherwise even VDD force bit won't work. */ intel_de_write(dev_priv, intel_dp->output_reg, DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN); intel_de_posting_read(dev_priv, intel_dp->output_reg); intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN); intel_de_posting_read(dev_priv, intel_dp->output_reg); if (!pll_enabled) { vlv_force_pll_off(dev_priv, pipe); if (release_cl_override) chv_phy_powergate_ch(dev_priv, phy, ch, false); } } static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); /* * We don't have power sequencer currently. * Pick one that's not used by other ports. */ for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); if (encoder->type == INTEL_OUTPUT_EDP) { drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && intel_dp->active_pipe != intel_dp->pps_pipe); if (intel_dp->pps_pipe != INVALID_PIPE) pipes &= ~(1 << intel_dp->pps_pipe); } else { drm_WARN_ON(&dev_priv->drm, intel_dp->pps_pipe != INVALID_PIPE); if (intel_dp->active_pipe != INVALID_PIPE) pipes &= ~(1 << intel_dp->active_pipe); } } if (pipes == 0) return INVALID_PIPE; return ffs(pipes) - 1; } static enum pipe vlv_power_sequencer_pipe(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum pipe pipe; lockdep_assert_held(&dev_priv->pps_mutex); /* We should never land here with regular DP ports */ drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE && intel_dp->active_pipe != intel_dp->pps_pipe); if (intel_dp->pps_pipe != INVALID_PIPE) return intel_dp->pps_pipe; pipe = vlv_find_free_pps(dev_priv); /* * Didn't find one. This should not happen since there * are two power sequencers and up to two eDP ports. */ if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE)) pipe = PIPE_A; vlv_steal_power_sequencer(dev_priv, pipe); intel_dp->pps_pipe = pipe; drm_dbg_kms(&dev_priv->drm, "picked pipe %c power sequencer for [ENCODER:%d:%s]\n", pipe_name(intel_dp->pps_pipe), intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, true); /* * Even vdd force doesn't work until we've made * the power sequencer lock in on the port. */ vlv_power_sequencer_kick(intel_dp); return intel_dp->pps_pipe; } static int bxt_power_sequencer_idx(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int backlight_controller = dev_priv->vbt.backlight.controller; lockdep_assert_held(&dev_priv->pps_mutex); /* We should never land here with regular DP ports */ drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp)); if (!intel_dp->pps_reset) return backlight_controller; intel_dp->pps_reset = false; /* * Only the HW needs to be reprogrammed, the SW state is fixed and * has been setup during connector init. */ intel_dp_init_panel_power_sequencer_registers(intel_dp, false); return backlight_controller; } typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, enum pipe pipe); static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON; } static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD; } static bool vlv_pipe_any(struct drm_i915_private *dev_priv, enum pipe pipe) { return true; } static enum pipe vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, enum port port, vlv_pipe_check pipe_check) { enum pipe pipe; for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) & PANEL_PORT_SELECT_MASK; if (port_sel != PANEL_PORT_SELECT_VLV(port)) continue; if (!pipe_check(dev_priv, pipe)) continue; return pipe; } return INVALID_PIPE; } static void vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->base.port; lockdep_assert_held(&dev_priv->pps_mutex); /* try to find a pipe with this port selected */ /* first pick one where the panel is on */ intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_pp_on); /* didn't find one? pick one where vdd is on */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_vdd_on); /* didn't find one? pick one with just the correct port */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_any); /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ if (intel_dp->pps_pipe == INVALID_PIPE) { drm_dbg_kms(&dev_priv->drm, "no initial power sequencer for [ENCODER:%d:%s]\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); return; } drm_dbg_kms(&dev_priv->drm, "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name, pipe_name(intel_dp->pps_pipe)); intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, false); } void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (drm_WARN_ON(&dev_priv->drm, !(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)))) return; /* * We can't grab pps_mutex here due to deadlock with power_domain * mutex when power_domain functions are called while holding pps_mutex. * That also means that in order to use pps_pipe the code needs to * hold both a power domain reference and pps_mutex, and the power domain * reference get/put must be done while _not_ holding pps_mutex. * pps_{lock,unlock}() do these steps in the correct order, so one * should use them always. */ for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); if (encoder->type != INTEL_OUTPUT_EDP) continue; if (IS_GEN9_LP(dev_priv)) intel_dp->pps_reset = true; else intel_dp->pps_pipe = INVALID_PIPE; } } struct pps_registers { i915_reg_t pp_ctrl; i915_reg_t pp_stat; i915_reg_t pp_on; i915_reg_t pp_off; i915_reg_t pp_div; }; static void intel_pps_get_registers(struct intel_dp *intel_dp, struct pps_registers *regs) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int pps_idx = 0; memset(regs, 0, sizeof(*regs)); if (IS_GEN9_LP(dev_priv)) pps_idx = bxt_power_sequencer_idx(intel_dp); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) pps_idx = vlv_power_sequencer_pipe(intel_dp); regs->pp_ctrl = PP_CONTROL(pps_idx); regs->pp_stat = PP_STATUS(pps_idx); regs->pp_on = PP_ON_DELAYS(pps_idx); regs->pp_off = PP_OFF_DELAYS(pps_idx); /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */ if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP) regs->pp_div = INVALID_MMIO_REG; else regs->pp_div = PP_DIVISOR(pps_idx); } static i915_reg_t _pp_ctrl_reg(struct intel_dp *intel_dp) { struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); return regs.pp_ctrl; } static i915_reg_t _pp_stat_reg(struct intel_dp *intel_dp) { struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); return regs.pp_stat; } /* Reboot notifier handler to shutdown panel power to guarantee T12 timing This function only applicable when panel PM state is not to be tracked */ static int edp_notify_handler(struct notifier_block *this, unsigned long code, void *unused) { struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), edp_notifier); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); intel_wakeref_t wakeref; if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) return 0; with_pps_lock(intel_dp, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); i915_reg_t pp_ctrl_reg, pp_div_reg; u32 pp_div; pp_ctrl_reg = PP_CONTROL(pipe); pp_div_reg = PP_DIVISOR(pipe); pp_div = intel_de_read(dev_priv, pp_div_reg); pp_div &= PP_REFERENCE_DIVIDER_MASK; /* 0x1F write to PP_DIV_REG sets max cycle delay */ intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F); intel_de_write(dev_priv, pp_ctrl_reg, PANEL_UNLOCK_REGS); msleep(intel_dp->panel_power_cycle_delay); } } return 0; } static bool edp_have_panel_power(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); lockdep_assert_held(&dev_priv->pps_mutex); if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp->pps_pipe == INVALID_PIPE) return false; return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0; } static bool edp_have_panel_vdd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); lockdep_assert_held(&dev_priv->pps_mutex); if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp->pps_pipe == INVALID_PIPE) return false; return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; } static void intel_dp_check_edp(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { drm_WARN(&dev_priv->drm, 1, "eDP powered off while attempting aux channel communication.\n"); drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n", intel_de_read(dev_priv, _pp_stat_reg(intel_dp)), intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp))); } } static u32 intel_dp_aux_wait_done(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); const unsigned int timeout_ms = 10; u32 status; bool done; #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) done = wait_event_timeout(i915->gmbus_wait_queue, C, msecs_to_jiffies_timeout(timeout_ms)); /* just trace the final value */ trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); if (!done) drm_err(&i915->drm, "%s: did not complete or timeout within %ums (status 0x%08x)\n", intel_dp->aux.name, timeout_ms, status); #undef C return status; } static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (index) return 0; /* * The clock divider is based off the hrawclk, and would like to run at * 2MHz. So, take the hrawclk value and divide by 2000 and use that */ return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000); } static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u32 freq; if (index) return 0; /* * The clock divider is based off the cdclk or PCH rawclk, and would * like to run at 2MHz. So, take the cdclk or PCH rawclk value and * divide by 2000 and use that */ if (dig_port->aux_ch == AUX_CH_A) freq = dev_priv->cdclk.hw.cdclk; else freq = RUNTIME_INFO(dev_priv)->rawclk_freq; return DIV_ROUND_CLOSEST(freq, 2000); } static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { /* Workaround for non-ULT HSW */ switch (index) { case 0: return 63; case 1: return 72; default: return 0; } } return ilk_get_aux_clock_divider(intel_dp, index); } static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { /* * SKL doesn't need us to program the AUX clock divider (Hardware will * derive the clock from CDCLK automatically). We still implement the * get_aux_clock_divider vfunc to plug-in into the existing code. */ return index ? 0 : 1; } static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, u32 aux_clock_divider) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); u32 precharge, timeout; if (IS_GEN(dev_priv, 6)) precharge = 3; else precharge = 5; if (IS_BROADWELL(dev_priv)) timeout = DP_AUX_CH_CTL_TIME_OUT_600us; else timeout = DP_AUX_CH_CTL_TIME_OUT_400us; return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | timeout | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); } static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, u32 unused) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); u32 ret; ret = DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_TIME_OUT_MAX | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); if (intel_phy_is_tc(i915, phy) && intel_dig_port->tc_mode == TC_PORT_TBT_ALT) ret |= DP_AUX_CH_CTL_TBT_IO; return ret; } static int intel_dp_aux_xfer(struct intel_dp *intel_dp, const u8 *send, int send_bytes, u8 *recv, int recv_size, u32 aux_send_ctl_flags) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); struct intel_uncore *uncore = &i915->uncore; enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port); bool is_tc_port = intel_phy_is_tc(i915, phy); i915_reg_t ch_ctl, ch_data[5]; u32 aux_clock_divider; enum intel_display_power_domain aux_domain; intel_wakeref_t aux_wakeref; intel_wakeref_t pps_wakeref; int i, ret, recv_bytes; int try, clock = 0; u32 status; bool vdd; ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); for (i = 0; i < ARRAY_SIZE(ch_data); i++) ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); if (is_tc_port) intel_tc_port_lock(intel_dig_port); aux_domain = intel_aux_power_domain(intel_dig_port); aux_wakeref = intel_display_power_get(i915, aux_domain); pps_wakeref = pps_lock(intel_dp); /* * We will be called with VDD already enabled for dpcd/edid/oui reads. * In such cases we want to leave VDD enabled and it's up to upper layers * to turn it off. But for eg. i2c-dev access we need to turn it on/off * ourselves. */ vdd = edp_panel_vdd_on(intel_dp); /* dp aux is extremely sensitive to irq latency, hence request the * lowest possible wakeup latency and so prevent the cpu from going into * deep sleep states. */ cpu_latency_qos_update_request(&i915->pm_qos, 0); intel_dp_check_edp(intel_dp); /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = intel_uncore_read_notrace(uncore, ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } /* just trace the final value */ trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true); if (try == 3) { const u32 status = intel_uncore_read(uncore, ch_ctl); if (status != intel_dp->aux_busy_last_status) { drm_WARN(&i915->drm, 1, "%s: not started (status 0x%08x)\n", intel_dp->aux.name, status); intel_dp->aux_busy_last_status = status; } ret = -EBUSY; goto out; } /* Only 5 data registers! */ if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) { ret = -E2BIG; goto out; } while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, send_bytes, aux_clock_divider); send_ctl |= aux_send_ctl_flags; /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) intel_uncore_write(uncore, ch_data[i >> 2], intel_dp_pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ intel_uncore_write(uncore, ch_ctl, send_ctl); status = intel_dp_aux_wait_done(intel_dp); /* Clear done status and any errors */ intel_uncore_write(uncore, ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 * 400us delay required for errors and timeouts * Timeout errors from the HW already meet this * requirement so skip to next iteration */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) continue; if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { usleep_range(400, 500); continue; } if (status & DP_AUX_CH_CTL_DONE) goto done; } } if ((status & DP_AUX_CH_CTL_DONE) == 0) { drm_err(&i915->drm, "%s: not done (status 0x%08x)\n", intel_dp->aux.name, status); ret = -EBUSY; goto out; } done: /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n", intel_dp->aux.name, status); ret = -EIO; goto out; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n", intel_dp->aux.name, status); ret = -ETIMEDOUT; goto out; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); /* * By BSpec: "Message sizes of 0 or >20 are not allowed." * We have no idea of what happened so we return -EBUSY so * drm layer takes care for the necessary retries. */ if (recv_bytes == 0 || recv_bytes > 20) { drm_dbg_kms(&i915->drm, "%s: Forbidden recv_bytes = %d on aux transaction\n", intel_dp->aux.name, recv_bytes); ret = -EBUSY; goto out; } if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]), recv + i, recv_bytes - i); ret = recv_bytes; out: cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE); if (vdd) edp_panel_vdd_off(intel_dp, false); pps_unlock(intel_dp, pps_wakeref); intel_display_power_put_async(i915, aux_domain, aux_wakeref); if (is_tc_port) intel_tc_port_unlock(intel_dig_port); return ret; } #define BARE_ADDRESS_SIZE 3 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) static void intel_dp_aux_header(u8 txbuf[HEADER_SIZE], const struct drm_dp_aux_msg *msg) { txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); txbuf[1] = (msg->address >> 8) & 0xff; txbuf[2] = msg->address & 0xff; txbuf[3] = msg->size - 1; } static ssize_t intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); u8 txbuf[20], rxbuf[20]; size_t txsize, rxsize; int ret; intel_dp_aux_header(txbuf, msg); switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_I2C_WRITE_STATUS_UPDATE: txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; rxsize = 2; /* 0 or 1 data bytes */ if (WARN_ON(txsize > 20)) return -E2BIG; WARN_ON(!msg->buffer != !msg->size); if (msg->buffer) memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, 0); if (ret > 0) { msg->reply = rxbuf[0] >> 4; if (ret > 1) { /* Number of bytes written in a short write. */ ret = clamp_t(int, rxbuf[1], 0, msg->size); } else { /* Return payload size. */ ret = msg->size; } } break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; rxsize = msg->size + 1; if (WARN_ON(rxsize > 20)) return -E2BIG; ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, 0); if (ret > 0) { msg->reply = rxbuf[0] >> 4; /* * Assume happy day, and copy the data. The caller is * expected to check msg->reply before touching it. * * Return payload size. */ ret--; memcpy(msg->buffer, rxbuf + 1, ret); } break; default: ret = -EINVAL; break; } return ret; } static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_B); } } static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_B, index); } } static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_CTL(aux_ch); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_DATA(aux_ch, index); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: case AUX_CH_G: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum aux_ch aux_ch = dig_port->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: case AUX_CH_G: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static void intel_dp_aux_fini(struct intel_dp *intel_dp) { kfree(intel_dp->aux.name); } static void intel_dp_aux_init(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; if (INTEL_GEN(dev_priv) >= 9) { intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; intel_dp->aux_ch_data_reg = skl_aux_data_reg; } else if (HAS_PCH_SPLIT(dev_priv)) { intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; intel_dp->aux_ch_data_reg = ilk_aux_data_reg; } else { intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; intel_dp->aux_ch_data_reg = g4x_aux_data_reg; } if (INTEL_GEN(dev_priv) >= 9) intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; else if (HAS_PCH_SPLIT(dev_priv)) intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; else intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; if (INTEL_GEN(dev_priv) >= 9) intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; else intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; drm_dp_aux_init(&intel_dp->aux); /* Failure to allocate our preferred name is not critical */ intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c", aux_ch_name(dig_port->aux_ch), port_name(encoder->port)); intel_dp->aux.transfer = intel_dp_aux_transfer; } bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) { int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; return max_rate >= 540000; } bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) { int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; return max_rate >= 810000; } static void intel_dp_set_clock(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct dp_link_dpll *divisor = NULL; int i, count = 0; if (IS_G4X(dev_priv)) { divisor = g4x_dpll; count = ARRAY_SIZE(g4x_dpll); } else if (HAS_PCH_SPLIT(dev_priv)) { divisor = pch_dpll; count = ARRAY_SIZE(pch_dpll); } else if (IS_CHERRYVIEW(dev_priv)) { divisor = chv_dpll; count = ARRAY_SIZE(chv_dpll); } else if (IS_VALLEYVIEW(dev_priv)) { divisor = vlv_dpll; count = ARRAY_SIZE(vlv_dpll); } if (divisor && count) { for (i = 0; i < count; i++) { if (pipe_config->port_clock == divisor[i].clock) { pipe_config->dpll = divisor[i].dpll; pipe_config->clock_set = true; break; } } } } static void snprintf_int_array(char *str, size_t len, const int *array, int nelem) { int i; str[0] = '\0'; for (i = 0; i < nelem; i++) { int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); if (r >= len) return; str += r; len -= r; } } static void intel_dp_print_rates(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); char str[128]; /* FIXME: too big for stack? */ if (!drm_debug_enabled(DRM_UT_KMS)) return; snprintf_int_array(str, sizeof(str), intel_dp->source_rates, intel_dp->num_source_rates); drm_dbg_kms(&i915->drm, "source rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->sink_rates, intel_dp->num_sink_rates); drm_dbg_kms(&i915->drm, "sink rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->common_rates, intel_dp->num_common_rates); drm_dbg_kms(&i915->drm, "common rates: %s\n", str); } int intel_dp_max_link_rate(struct intel_dp *intel_dp) { int len; len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); if (WARN_ON(len <= 0)) return 162000; return intel_dp->common_rates[len - 1]; } int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) { int i = intel_dp_rate_index(intel_dp->sink_rates, intel_dp->num_sink_rates, rate); if (WARN_ON(i < 0)) i = 0; return i; } void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, u8 *link_bw, u8 *rate_select) { /* eDP 1.4 rate select method. */ if (intel_dp->use_rate_select) { *link_bw = 0; *rate_select = intel_dp_rate_select(intel_dp, port_clock); } else { *link_bw = drm_dp_link_rate_to_bw_code(port_clock); *rate_select = 0; } } static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* On TGL, FEC is supported on all Pipes */ if (INTEL_GEN(dev_priv) >= 12) return true; if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A) return true; return false; } static bool intel_dp_supports_fec(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { return intel_dp_source_supports_fec(intel_dp, pipe_config) && drm_dp_sink_supports_fec(intel_dp->fec_capable); } static bool intel_dp_supports_dsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable) return false; return intel_dsc_source_support(encoder, crtc_state) && drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd); } static int intel_dp_compute_bpp(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_connector *intel_connector = intel_dp->attached_connector; int bpp, bpc; bpp = pipe_config->pipe_bpp; bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); if (bpc > 0) bpp = min(bpp, 3*bpc); if (intel_dp_is_edp(intel_dp)) { /* Get bpp from vbt only for panels that dont have bpp in edid */ if (intel_connector->base.display_info.bpc == 0 && dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { drm_dbg_kms(&dev_priv->drm, "clamping bpp for eDP panel to BIOS-provided %i\n", dev_priv->vbt.edp.bpp); bpp = dev_priv->vbt.edp.bpp; } } return bpp; } /* Adjust link config limits based on compliance test requests. */ void intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* For DP Compliance we override the computed bpp for the pipe */ if (intel_dp->compliance.test_data.bpc != 0) { int bpp = 3 * intel_dp->compliance.test_data.bpc; limits->min_bpp = limits->max_bpp = bpp; pipe_config->dither_force_disable = bpp == 6 * 3; drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp); } /* Use values requested by Compliance Test Request */ if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { int index; /* Validate the compliance test data since max values * might have changed due to link train fallback. */ if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, intel_dp->compliance.test_lane_count)) { index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, intel_dp->compliance.test_link_rate); if (index >= 0) limits->min_clock = limits->max_clock = index; limits->min_lane_count = limits->max_lane_count = intel_dp->compliance.test_lane_count; } } } static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp) { /* * bpp value was assumed to RGB format. And YCbCr 4:2:0 output * format of the number of bytes per pixel will be half the number * of bytes of RGB pixel. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) bpp /= 2; return bpp; } /* Optimize link config in order: max bpp, min clock, min lanes */ static int intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, const struct link_config_limits *limits) { struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; int bpp, clock, lane_count; int mode_rate, link_clock, link_avail; for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { int output_bpp = intel_dp_output_bpp(pipe_config, bpp); mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, output_bpp); for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { for (lane_count = limits->min_lane_count; lane_count <= limits->max_lane_count; lane_count <<= 1) { link_clock = intel_dp->common_rates[clock]; link_avail = intel_dp_max_data_rate(link_clock, lane_count); if (mode_rate <= link_avail) { pipe_config->lane_count = lane_count; pipe_config->pipe_bpp = bpp; pipe_config->port_clock = link_clock; return 0; } } } } return -EINVAL; } static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc) { int i, num_bpc; u8 dsc_bpc[3] = {0}; num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd, dsc_bpc); for (i = 0; i < num_bpc; i++) { if (dsc_max_bpc >= dsc_bpc[i]) return dsc_bpc[i] * 3; } return 0; } #define DSC_SUPPORTED_VERSION_MIN 1 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; u8 line_buf_depth; int ret; ret = intel_dsc_compute_params(encoder, crtc_state); if (ret) return ret; /* * Slice Height of 8 works for all currently available panels. So start * with that if pic_height is an integral multiple of 8. Eventually add * logic to try multiple slice heights. */ if (vdsc_cfg->pic_height % 8 == 0) vdsc_cfg->slice_height = 8; else if (vdsc_cfg->pic_height % 4 == 0) vdsc_cfg->slice_height = 4; else vdsc_cfg->slice_height = 2; vdsc_cfg->dsc_version_major = (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT; vdsc_cfg->dsc_version_minor = min(DSC_SUPPORTED_VERSION_MIN, (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] & DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT); vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] & DP_DSC_RGB; line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd); if (!line_buf_depth) { drm_dbg_kms(&i915->drm, "DSC Sink Line Buffer Depth invalid\n"); return -EINVAL; } if (vdsc_cfg->dsc_version_minor == 2) vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ? DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth; else vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ? DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth; vdsc_cfg->block_pred_enable = intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] & DP_DSC_BLK_PREDICTION_IS_SUPPORTED; return drm_dsc_compute_rc_parameters(vdsc_cfg); } static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state, struct link_config_limits *limits) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; u8 dsc_max_bpc; int pipe_bpp; int ret; pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) && intel_dp_supports_fec(intel_dp, pipe_config); if (!intel_dp_supports_dsc(intel_dp, pipe_config)) return -EINVAL; /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */ if (INTEL_GEN(dev_priv) >= 12) dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc); else dsc_max_bpc = min_t(u8, 10, conn_state->max_requested_bpc); pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc); /* Min Input BPC for ICL+ is 8 */ if (pipe_bpp < 8 * 3) { drm_dbg_kms(&dev_priv->drm, "No DSC support for less than 8bpc\n"); return -EINVAL; } /* * For now enable DSC for max bpp, max link rate, max lane count. * Optimize this later for the minimum possible link rate/lane count * with DSC enabled for the requested mode. */ pipe_config->pipe_bpp = pipe_bpp; pipe_config->port_clock = intel_dp->common_rates[limits->max_clock]; pipe_config->lane_count = limits->max_lane_count; if (intel_dp_is_edp(intel_dp)) { pipe_config->dsc.compressed_bpp = min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4, pipe_config->pipe_bpp); pipe_config->dsc.slice_count = drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd, true); } else { u16 dsc_max_output_bpp; u8 dsc_dp_slice_count; dsc_max_output_bpp = intel_dp_dsc_get_output_bpp(dev_priv, pipe_config->port_clock, pipe_config->lane_count, adjusted_mode->crtc_clock, adjusted_mode->crtc_hdisplay); dsc_dp_slice_count = intel_dp_dsc_get_slice_count(intel_dp, adjusted_mode->crtc_clock, adjusted_mode->crtc_hdisplay); if (!dsc_max_output_bpp || !dsc_dp_slice_count) { drm_dbg_kms(&dev_priv->drm, "Compressed BPP/Slice Count not supported\n"); return -EINVAL; } pipe_config->dsc.compressed_bpp = min_t(u16, dsc_max_output_bpp >> 4, pipe_config->pipe_bpp); pipe_config->dsc.slice_count = dsc_dp_slice_count; } /* * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate * is greater than the maximum Cdclock and if slice count is even * then we need to use 2 VDSC instances. */ if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) { if (pipe_config->dsc.slice_count > 1) { pipe_config->dsc.dsc_split = true; } else { drm_dbg_kms(&dev_priv->drm, "Cannot split stream to use 2 VDSC instances\n"); return -EINVAL; } } ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config); if (ret < 0) { drm_dbg_kms(&dev_priv->drm, "Cannot compute valid DSC parameters for Input Bpp = %d " "Compressed BPP = %d\n", pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp); return ret; } pipe_config->dsc.compression_enable = true; drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d " "Compressed Bpp = %d Slice Count = %d\n", pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp, pipe_config->dsc.slice_count); return 0; } int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state) { if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) return 6 * 3; else return 8 * 3; } static int intel_dp_compute_link_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct link_config_limits limits; int common_len; int ret; common_len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); /* No common link rates between source and sink */ drm_WARN_ON(encoder->base.dev, common_len <= 0); limits.min_clock = 0; limits.max_clock = common_len - 1; limits.min_lane_count = 1; limits.max_lane_count = intel_dp_max_lane_count(intel_dp); limits.min_bpp = intel_dp_min_bpp(pipe_config); limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); if (intel_dp_is_edp(intel_dp)) { /* * Use the maximum clock and number of lanes the eDP panel * advertizes being capable of. The panels are generally * designed to support only a single clock and lane * configuration, and typically these values correspond to the * native resolution of the panel. */ limits.min_lane_count = limits.max_lane_count; limits.min_clock = limits.max_clock; } intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i " "max rate %d max bpp %d pixel clock %iKHz\n", limits.max_lane_count, intel_dp->common_rates[limits.max_clock], limits.max_bpp, adjusted_mode->crtc_clock); /* * Optimize for slow and wide. This is the place to add alternative * optimization policy. */ ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits); /* enable compression if the mode doesn't fit available BW */ drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en); if (ret || intel_dp->force_dsc_en) { ret = intel_dp_dsc_compute_config(intel_dp, pipe_config, conn_state, &limits); if (ret < 0) return ret; } if (pipe_config->dsc.compression_enable) { drm_dbg_kms(&i915->drm, "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp, pipe_config->dsc.compressed_bpp); drm_dbg_kms(&i915->drm, "DP link rate required %i available %i\n", intel_dp_link_required(adjusted_mode->crtc_clock, pipe_config->dsc.compressed_bpp), intel_dp_max_data_rate(pipe_config->port_clock, pipe_config->lane_count)); } else { drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp); drm_dbg_kms(&i915->drm, "DP link rate required %i available %i\n", intel_dp_link_required(adjusted_mode->crtc_clock, pipe_config->pipe_bpp), intel_dp_max_data_rate(pipe_config->port_clock, pipe_config->lane_count)); } return 0; } static int intel_dp_ycbcr420_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_connector *connector = conn_state->connector; const struct drm_display_info *info = &connector->display_info; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!drm_mode_is_420_only(info, adjusted_mode) || !intel_dp_get_colorimetry_status(intel_dp) || !connector->ycbcr_420_allowed) return 0; crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420; return intel_pch_panel_fitting(crtc_state, conn_state); } bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Our YCbCr output is always limited range. * crtc_state->limited_color_range only applies to RGB, * and it must never be set for YCbCr or we risk setting * some conflicting bits in PIPECONF which will mess up * the colors on the monitor. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return false; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ return crtc_state->pipe_bpp != 18 && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } } static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv, enum port port) { if (IS_G4X(dev_priv)) return false; if (INTEL_GEN(dev_priv) < 12 && port == PORT_A) return false; return true; } static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, struct drm_dp_vsc_sdp *vsc) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/ * Colorimetry Format indication. */ vsc->revision = 0x5; vsc->length = 0x13; /* DP 1.4a spec, Table 2-120 */ switch (crtc_state->output_format) { case INTEL_OUTPUT_FORMAT_YCBCR444: vsc->pixelformat = DP_PIXELFORMAT_YUV444; break; case INTEL_OUTPUT_FORMAT_YCBCR420: vsc->pixelformat = DP_PIXELFORMAT_YUV420; break; case INTEL_OUTPUT_FORMAT_RGB: default: vsc->pixelformat = DP_PIXELFORMAT_RGB; } switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_BT709_YCC: vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; break; case DRM_MODE_COLORIMETRY_XVYCC_601: vsc->colorimetry = DP_COLORIMETRY_XVYCC_601; break; case DRM_MODE_COLORIMETRY_XVYCC_709: vsc->colorimetry = DP_COLORIMETRY_XVYCC_709; break; case DRM_MODE_COLORIMETRY_SYCC_601: vsc->colorimetry = DP_COLORIMETRY_SYCC_601; break; case DRM_MODE_COLORIMETRY_OPYCC_601: vsc->colorimetry = DP_COLORIMETRY_OPYCC_601; break; case DRM_MODE_COLORIMETRY_BT2020_CYCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC; break; case DRM_MODE_COLORIMETRY_BT2020_RGB: vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB; break; case DRM_MODE_COLORIMETRY_BT2020_YCC: vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC; break; case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65: case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER: vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB; break; default: /* * RGB->YCBCR color conversion uses the BT.709 * color space. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) vsc->colorimetry = DP_COLORIMETRY_BT709_YCC; else vsc->colorimetry = DP_COLORIMETRY_DEFAULT; break; } vsc->bpc = crtc_state->pipe_bpp / 3; /* only RGB pixelformat supports 6 bpc */ drm_WARN_ON(&dev_priv->drm, vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB); /* all YCbCr are always limited range */ vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA; vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED; } static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc; /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */ if (crtc_state->has_psr) return; if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state)) return; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); vsc->sdp_type = DP_SDP_VSC; intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, &crtc_state->infoframes.vsc); } void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, struct drm_dp_vsc_sdp *vsc) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); vsc->sdp_type = DP_SDP_VSC; if (dev_priv->psr.psr2_enabled) { if (dev_priv->psr.colorimetry_support && intel_dp_needs_vsc_sdp(crtc_state, conn_state)) { /* [PSR2, +Colorimetry] */ intel_dp_compute_vsc_colorimetry(crtc_state, conn_state, vsc); } else { /* * [PSR2, -Colorimetry] * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11 * 3D stereo + PSR/PSR2 + Y-coordinate. */ vsc->revision = 0x4; vsc->length = 0xe; } } else { /* * [PSR1] * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or * higher). */ vsc->revision = 0x2; vsc->length = 0x8; } } static void intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { int ret; struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm; if (!conn_state->hdr_output_metadata) return; ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state); if (ret) { drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); return; } crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA); } int intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder); enum port port = encoder->port; struct intel_connector *intel_connector = intel_dp->attached_connector; struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_CONSTANT_N); int ret = 0, output_bpp; if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) pipe_config->has_pch_encoder = true; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; if (lspcon->active) lspcon_ycbcr420_config(&intel_connector->base, pipe_config); else ret = intel_dp_ycbcr420_config(intel_dp, pipe_config, conn_state); if (ret) return ret; pipe_config->has_drrs = false; if (!intel_dp_port_has_audio(dev_priv, port)) pipe_config->has_audio = false; else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) pipe_config->has_audio = intel_dp->has_audio; else pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { intel_fixed_panel_mode(intel_connector->panel.fixed_mode, adjusted_mode); if (HAS_GMCH(dev_priv)) ret = intel_gmch_panel_fitting(pipe_config, conn_state); else ret = intel_pch_panel_fitting(pipe_config, conn_state); if (ret) return ret; } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; if (HAS_GMCH(dev_priv) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return -EINVAL; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return -EINVAL; if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay)) return -EINVAL; ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state); if (ret < 0) return ret; pipe_config->limited_color_range = intel_dp_limited_color_range(pipe_config, conn_state); if (pipe_config->dsc.compression_enable) output_bpp = pipe_config->dsc.compressed_bpp; else output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp); intel_link_compute_m_n(output_bpp, pipe_config->lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, &pipe_config->dp_m_n, constant_n, pipe_config->fec_enable); if (intel_connector->panel.downclock_mode != NULL && dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { pipe_config->has_drrs = true; intel_link_compute_m_n(output_bpp, pipe_config->lane_count, intel_connector->panel.downclock_mode->clock, pipe_config->port_clock, &pipe_config->dp_m2_n2, constant_n, pipe_config->fec_enable); } if (!HAS_DDI(dev_priv)) intel_dp_set_clock(encoder, pipe_config); intel_psr_compute_config(intel_dp, pipe_config); intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state); intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state); return 0; } void intel_dp_set_link_params(struct intel_dp *intel_dp, int link_rate, u8 lane_count, bool link_mst) { intel_dp->link_trained = false; intel_dp->link_rate = link_rate; intel_dp->lane_count = lane_count; intel_dp->link_mst = link_mst; } static void intel_dp_prepare(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; intel_dp_set_link_params(intel_dp, pipe_config->port_clock, pipe_config->lane_count, intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)); /* * There are four kinds of DP registers: * * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ilk_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED; /* Handle DP bits in common between all three register formats */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); /* Split out the IBX/CPU vs CPT settings */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { u32 trans_dp; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) trans_dp |= TRANS_DP_ENH_FRAMING; else trans_dp &= ~TRANS_DP_ENH_FRAMING; intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp); } else { if (IS_G4X(dev_priv) && pipe_config->limited_color_range) intel_dp->DP |= DP_COLOR_RANGE_16_235; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; if (IS_CHERRYVIEW(dev_priv)) intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); else intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); } } #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) static void intel_pps_verify_state(struct intel_dp *intel_dp); static void wait_panel_status(struct intel_dp *intel_dp, u32 mask, u32 value) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); i915_reg_t pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); intel_pps_verify_state(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); drm_dbg_kms(&dev_priv->drm, "mask %08x value %08x status %08x control %08x\n", mask, value, intel_de_read(dev_priv, pp_stat_reg), intel_de_read(dev_priv, pp_ctrl_reg)); if (intel_de_wait_for_register(dev_priv, pp_stat_reg, mask, value, 5000)) drm_err(&dev_priv->drm, "Panel status timeout: status %08x control %08x\n", intel_de_read(dev_priv, pp_stat_reg), intel_de_read(dev_priv, pp_ctrl_reg)); drm_dbg_kms(&dev_priv->drm, "Wait complete\n"); } static void wait_panel_on(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_dbg_kms(&i915->drm, "Wait for panel power on\n"); wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); } static void wait_panel_off(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); drm_dbg_kms(&i915->drm, "Wait for panel power off time\n"); wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); } static void wait_panel_power_cycle(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); ktime_t panel_power_on_time; s64 panel_power_off_duration; drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n"); /* take the difference of currrent time and panel power off time * and then make panel wait for t11_t12 if needed. */ panel_power_on_time = ktime_get_boottime(); panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); /* When we disable the VDD override bit last we have to do the manual * wait. */ if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) wait_remaining_ms_from_jiffies(jiffies, intel_dp->panel_power_cycle_delay - panel_power_off_duration); wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); } static void wait_backlight_on(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_power_on, intel_dp->backlight_on_delay); } static void edp_wait_backlight_off(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, intel_dp->backlight_off_delay); } /* Read the current pp_control value, unlocking the register if it * is locked */ static u32 ilk_get_pp_control(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 control; lockdep_assert_held(&dev_priv->pps_mutex); control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)); if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) && (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { control &= ~PANEL_UNLOCK_MASK; control |= PANEL_UNLOCK_REGS; } return control; } /* * Must be paired with edp_panel_vdd_off(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static bool edp_panel_vdd_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); u32 pp; i915_reg_t pp_stat_reg, pp_ctrl_reg; bool need_to_disable = !intel_dp->want_panel_vdd; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return false; cancel_delayed_work(&intel_dp->panel_vdd_work); intel_dp->want_panel_vdd = true; if (edp_have_panel_vdd(intel_dp)) return need_to_disable; intel_display_power_get(dev_priv, intel_aux_power_domain(intel_dig_port)); drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); if (!edp_have_panel_power(intel_dp)) wait_panel_power_cycle(intel_dp); pp = ilk_get_pp_control(intel_dp); pp |= EDP_FORCE_VDD; pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", intel_de_read(dev_priv, pp_stat_reg), intel_de_read(dev_priv, pp_ctrl_reg)); /* * If the panel wasn't on, delay before accessing aux channel */ if (!edp_have_panel_power(intel_dp)) { drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] panel power wasn't enabled\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); msleep(intel_dp->panel_power_up_delay); } return need_to_disable; } /* * Must be paired with intel_edp_panel_vdd_off() or * intel_edp_panel_off(). * Nested calls to these functions are not allowed since * we drop the lock. Caller must use some higher level * locking to prevent nested calls from other threads. */ void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) { intel_wakeref_t wakeref; bool vdd; if (!intel_dp_is_edp(intel_dp)) return; vdd = false; with_pps_lock(intel_dp, wakeref) vdd = edp_panel_vdd_on(intel_dp); I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n", dp_to_dig_port(intel_dp)->base.base.base.id, dp_to_dig_port(intel_dp)->base.base.name); } static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); u32 pp; i915_reg_t pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd); if (!edp_have_panel_vdd(intel_dp)) return; drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); pp = ilk_get_pp_control(intel_dp); pp &= ~EDP_FORCE_VDD; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); /* Make sure sequencer is idle before allowing subsequent activity */ drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", intel_de_read(dev_priv, pp_stat_reg), intel_de_read(dev_priv, pp_ctrl_reg)); if ((pp & PANEL_POWER_ON) == 0) intel_dp->panel_power_off_time = ktime_get_boottime(); intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(intel_dig_port)); } static void edp_panel_vdd_work(struct work_struct *__work) { struct intel_dp *intel_dp = container_of(to_delayed_work(__work), struct intel_dp, panel_vdd_work); intel_wakeref_t wakeref; with_pps_lock(intel_dp, wakeref) { if (!intel_dp->want_panel_vdd) edp_panel_vdd_off_sync(intel_dp); } } static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) { unsigned long delay; /* * Queue the timer to fire a long time from now (relative to the power * down delay) to keep the panel power up across a sequence of * operations. */ delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); schedule_delayed_work(&intel_dp->panel_vdd_work, delay); } /* * Must be paired with edp_panel_vdd_on(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on", dp_to_dig_port(intel_dp)->base.base.base.id, dp_to_dig_port(intel_dp)->base.base.name); intel_dp->want_panel_vdd = false; if (sync) edp_panel_vdd_off_sync(intel_dp); else edp_panel_vdd_schedule_off(intel_dp); } static void edp_panel_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 pp; i915_reg_t pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n", dp_to_dig_port(intel_dp)->base.base.base.id, dp_to_dig_port(intel_dp)->base.base.name); if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp), "[ENCODER:%d:%s] panel power already on\n", dp_to_dig_port(intel_dp)->base.base.base.id, dp_to_dig_port(intel_dp)->base.base.name)) return; wait_panel_power_cycle(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp = ilk_get_pp_control(intel_dp); if (IS_GEN(dev_priv, 5)) { /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); } pp |= PANEL_POWER_ON; if (!IS_GEN(dev_priv, 5)) pp |= PANEL_POWER_RESET; intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); wait_panel_on(intel_dp); intel_dp->last_power_on = jiffies; if (IS_GEN(dev_priv, 5)) { pp |= PANEL_POWER_RESET; /* restore panel reset bit */ intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); } } void intel_edp_panel_on(struct intel_dp *intel_dp) { intel_wakeref_t wakeref; if (!intel_dp_is_edp(intel_dp)) return; with_pps_lock(intel_dp, wakeref) edp_panel_on(intel_dp); } static void edp_panel_off(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); u32 pp; i915_reg_t pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n", dig_port->base.base.base.id, dig_port->base.base.name); drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n", dig_port->base.base.base.id, dig_port->base.base.name); pp = ilk_get_pp_control(intel_dp); /* We need to switch off panel power _and_ force vdd, for otherwise some * panels get very unhappy and cease to work. */ pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | EDP_BLC_ENABLE); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); intel_dp->want_panel_vdd = false; intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); wait_panel_off(intel_dp); intel_dp->panel_power_off_time = ktime_get_boottime(); /* We got a reference when we enabled the VDD. */ intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port)); } void intel_edp_panel_off(struct intel_dp *intel_dp) { intel_wakeref_t wakeref; if (!intel_dp_is_edp(intel_dp)) return; with_pps_lock(intel_dp, wakeref) edp_panel_off(intel_dp); } /* Enable backlight in the panel power control. */ static void _intel_edp_backlight_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); intel_wakeref_t wakeref; /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ wait_backlight_on(intel_dp); with_pps_lock(intel_dp, wakeref) { i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); u32 pp; pp = ilk_get_pp_control(intel_dp); pp |= EDP_BLC_ENABLE; intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); } } /* Enable backlight PWM and backlight PP control. */ void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); intel_panel_enable_backlight(crtc_state, conn_state); _intel_edp_backlight_on(intel_dp); } /* Disable backlight in the panel power control. */ static void _intel_edp_backlight_off(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); intel_wakeref_t wakeref; if (!intel_dp_is_edp(intel_dp)) return; with_pps_lock(intel_dp, wakeref) { i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp); u32 pp; pp = ilk_get_pp_control(intel_dp); pp &= ~EDP_BLC_ENABLE; intel_de_write(dev_priv, pp_ctrl_reg, pp); intel_de_posting_read(dev_priv, pp_ctrl_reg); } intel_dp->last_backlight_off = jiffies; edp_wait_backlight_off(intel_dp); } /* Disable backlight PP control and backlight PWM. */ void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder)); struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (!intel_dp_is_edp(intel_dp)) return; drm_dbg_kms(&i915->drm, "\n"); _intel_edp_backlight_off(intel_dp); intel_panel_disable_backlight(old_conn_state); } /* * Hook for controlling the panel power control backlight through the bl_power * sysfs attribute. Take care to handle multiple calls. */ static void intel_edp_backlight_power(struct intel_connector *connector, bool enable) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_dp *intel_dp = intel_attached_dp(connector); intel_wakeref_t wakeref; bool is_enabled; is_enabled = false; with_pps_lock(intel_dp, wakeref) is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE; if (is_enabled == enable) return; drm_dbg_kms(&i915->drm, "panel power control backlight %s\n", enable ? "enable" : "disable"); if (enable) _intel_edp_backlight_on(intel_dp); else _intel_edp_backlight_off(intel_dp); } static void assert_dp_port(struct intel_dp *intel_dp, bool state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN; I915_STATE_WARN(cur_state != state, "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n", dig_port->base.base.base.id, dig_port->base.base.name, onoff(state), onoff(cur_state)); } #define assert_dp_port_disabled(d) assert_dp_port((d), false) static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) { bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE; I915_STATE_WARN(cur_state != state, "eDP PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) static void ilk_edp_pll_on(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); assert_dp_port_disabled(intel_dp); assert_edp_pll_disabled(dev_priv); drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n", pipe_config->port_clock); intel_dp->DP &= ~DP_PLL_FREQ_MASK; if (pipe_config->port_clock == 162000) intel_dp->DP |= DP_PLL_FREQ_162MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; intel_de_write(dev_priv, DP_A, intel_dp->DP); intel_de_posting_read(dev_priv, DP_A); udelay(500); /* * [DevILK] Work around required when enabling DP PLL * while a pipe is enabled going to FDI: * 1. Wait for the start of vertical blank on the enabled pipe going to FDI * 2. Program DP PLL enable */ if (IS_GEN(dev_priv, 5)) intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); intel_dp->DP |= DP_PLL_ENABLE; intel_de_write(dev_priv, DP_A, intel_dp->DP); intel_de_posting_read(dev_priv, DP_A); udelay(200); } static void ilk_edp_pll_off(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder); assert_dp_port_disabled(intel_dp); assert_edp_pll_enabled(dev_priv); drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n"); intel_dp->DP &= ~DP_PLL_ENABLE; intel_de_write(dev_priv, DP_A, intel_dp->DP); intel_de_posting_read(dev_priv, DP_A); udelay(200); } static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) { /* * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus * be capable of signalling downstream hpd with a long pulse. * Whether or not that means D3 is safe to use is not clear, * but let's assume so until proven otherwise. * * FIXME should really check all downstream ports... */ return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && drm_dp_is_branch(intel_dp->dpcd) && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; } void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state, bool enable) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int ret; if (!crtc_state->dsc.compression_enable) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE, enable ? DP_DECOMPRESSION_EN : 0); if (ret < 0) drm_dbg_kms(&i915->drm, "Failed to %s sink decompression state\n", enable ? "enable" : "disable"); } /* If the sink supports it, try to set the power state appropriately */ void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { if (downstream_hpd_needs_d0(intel_dp)) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D3); } else { struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; msleep(1); } if (ret == 1 && lspcon->active) lspcon_wait_pcon_mode(lspcon); } if (ret != 1) drm_dbg_kms(&i915->drm, "failed to %s sink power state\n", mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); } static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, enum port port, enum pipe *pipe) { enum pipe p; for_each_pipe(dev_priv, p) { u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p)); if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { *pipe = p; return true; } } drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n", port_name(port)); /* must initialize pipe to something for the asserts */ *pipe = PIPE_A; return false; } bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, i915_reg_t dp_reg, enum port port, enum pipe *pipe) { bool ret; u32 val; val = intel_de_read(dev_priv, dp_reg); ret = val & DP_PORT_EN; /* asserts want to know the pipe even if the port is disabled */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) ret &= cpt_dp_port_selected(dev_priv, port, pipe); else if (IS_CHERRYVIEW(dev_priv)) *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; else *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; return ret; } static bool intel_dp_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_wakeref_t wakeref; bool ret; wakeref = intel_display_power_get_if_enabled(dev_priv, encoder->power_domain); if (!wakeref) return false; ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, encoder->port, pipe); intel_display_power_put(dev_priv, encoder->power_domain, wakeref); return ret; } static void intel_dp_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); u32 tmp, flags = 0; enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); if (encoder->type == INTEL_OUTPUT_EDP) pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); else pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); tmp = intel_de_read(dev_priv, intel_dp->output_reg); pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { u32 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe)); if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } else { if (tmp & DP_SYNC_HS_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DP_SYNC_VS_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->hw.adjusted_mode.flags |= flags; if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; pipe_config->lane_count = ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(crtc, pipe_config); if (port == PORT_A) { if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) pipe_config->port_clock = 162000; else pipe_config->port_clock = 270000; } pipe_config->hw.adjusted_mode.crtc_clock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ drm_dbg_kms(&dev_priv->drm, "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; } } static void intel_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_dp->link_trained = false; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); /* Make sure the panel is off before trying to change the mode. But also * ensure that we have vdd while we switch off the panel. */ intel_edp_panel_vdd_on(intel_dp); intel_edp_backlight_off(old_conn_state); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_edp_panel_off(intel_dp); } static void g4x_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); } static void vlv_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(state, encoder, old_crtc_state, old_conn_state); } static void g4x_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; /* * Bspec does not list a specific disable sequence for g4x DP. * Follow the ilk+ sequence (disable pipe before the port) for * g4x DP as it does not suffer from underruns like the normal * g4x modeset sequence (disable pipe after the port). */ intel_dp_link_down(encoder, old_crtc_state); /* Only ilk+ has port A */ if (port == PORT_A) ilk_edp_pll_off(intel_dp, old_crtc_state); } static void vlv_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_dp_link_down(encoder, old_crtc_state); } static void chv_post_disable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); intel_dp_link_down(encoder, old_crtc_state); vlv_dpio_get(dev_priv); /* Assert data lane reset */ chv_data_lane_soft_reset(encoder, old_crtc_state, true); vlv_dpio_put(dev_priv); } static void cpt_set_link_train(struct intel_dp *intel_dp, u8 dp_train_pat) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 *DP = &intel_dp->DP; *DP &= ~DP_LINK_TRAIN_MASK_CPT; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; case DP_TRAINING_PATTERN_3: drm_dbg_kms(&dev_priv->drm, "TPS3 not supported, using TPS2 instead\n"); *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; } intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } static void g4x_set_link_train(struct intel_dp *intel_dp, u8 dp_train_pat) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 *DP = &intel_dp->DP; *DP &= ~DP_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2; break; case DP_TRAINING_PATTERN_3: drm_dbg_kms(&dev_priv->drm, "TPS3 not supported, using TPS2 instead\n"); *DP |= DP_LINK_TRAIN_PAT_2; break; } intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } static void intel_dp_enable_port(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); /* enable with pattern 1 (as per spec) */ intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); /* * Magic for VLV/CHV. We _must_ first set up the register * without actually enabling the port, and then do another * write to enable the port. Otherwise link training will * fail when the power sequencer is freshly used for this port. */ intel_dp->DP |= DP_PORT_EN; if (old_crtc_state->has_audio) intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } static void intel_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg); enum pipe pipe = crtc->pipe; intel_wakeref_t wakeref; if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN)) return; with_pps_lock(intel_dp, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_init_panel_power_sequencer(encoder, pipe_config); intel_dp_enable_port(intel_dp, pipe_config); edp_panel_vdd_on(intel_dp); edp_panel_on(intel_dp); edp_panel_vdd_off(intel_dp, true); } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { unsigned int lane_mask = 0x0; if (IS_CHERRYVIEW(dev_priv)) lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), lane_mask); } intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); if (pipe_config->has_audio) { drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n", pipe_name(pipe)); intel_audio_codec_enable(encoder, pipe_config, conn_state); } } static void g4x_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_enable_dp(state, encoder, pipe_config, conn_state); intel_edp_backlight_on(pipe_config, conn_state); } static void vlv_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_edp_backlight_on(pipe_config, conn_state); } static void g4x_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); enum port port = encoder->port; intel_dp_prepare(encoder, pipe_config); /* Only ilk+ has port A */ if (port == PORT_A) ilk_edp_pll_on(intel_dp, pipe_config); } static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); enum pipe pipe = intel_dp->pps_pipe; i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B)) return; edp_panel_vdd_off_sync(intel_dp); /* * VLV seems to get confused when multiple power sequencers * have the same port selected (even if only one has power/vdd * enabled). The failure manifests as vlv_wait_port_ready() failing * CHV on the other hand doesn't seem to mind having the same port * selected in multiple power sequencers, but let's clear the * port select always when logically disconnecting a power sequencer * from a port. */ drm_dbg_kms(&dev_priv->drm, "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n", pipe_name(pipe), intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); intel_de_write(dev_priv, pp_on_reg, 0); intel_de_posting_read(dev_priv, pp_on_reg); intel_dp->pps_pipe = INVALID_PIPE; } static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_encoder *encoder; lockdep_assert_held(&dev_priv->pps_mutex); for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe, "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n", pipe_name(pipe), encoder->base.base.id, encoder->base.name); if (intel_dp->pps_pipe != pipe) continue; drm_dbg_kms(&dev_priv->drm, "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n", pipe_name(pipe), encoder->base.base.id, encoder->base.name); /* make sure vdd is off before we steal it */ vlv_detach_power_sequencer(intel_dp); } } static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); lockdep_assert_held(&dev_priv->pps_mutex); drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE); if (intel_dp->pps_pipe != INVALID_PIPE && intel_dp->pps_pipe != crtc->pipe) { /* * If another power sequencer was being used on this * port previously make sure to turn off vdd there while * we still have control of it. */ vlv_detach_power_sequencer(intel_dp); } /* * We may be stealing the power * sequencer from another port. */ vlv_steal_power_sequencer(dev_priv, crtc->pipe); intel_dp->active_pipe = crtc->pipe; if (!intel_dp_is_edp(intel_dp)) return; /* now it's all ours */ intel_dp->pps_pipe = crtc->pipe; drm_dbg_kms(&dev_priv->drm, "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n", pipe_name(intel_dp->pps_pipe), encoder->base.base.id, encoder->base.name); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, true); } static void vlv_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { vlv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(state, encoder, pipe_config, conn_state); } static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); vlv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_pre_enable_dp(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { chv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(state, encoder, pipe_config, conn_state); /* Second common lane will stay alive on its own now */ chv_phy_release_cl2_override(encoder); } static void chv_dp_pre_pll_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); chv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_dp_post_pll_disable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { chv_phy_post_pll_disable(encoder, old_crtc_state); } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ bool intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE]) { return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; } /* These are source-specific values. */ u8 intel_dp_voltage_max(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum port port = encoder->port; if (HAS_DDI(dev_priv)) return intel_ddi_dp_voltage_max(encoder); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } u8 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum port port = encoder->port; if (HAS_DDI(dev_priv)) { return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_3; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } } static void vlv_set_signal_levels(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; unsigned long demph_reg_value, preemph_reg_value, uniqtranscale_reg_value; u8 train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: preemph_reg_value = 0x0004000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x552AB83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5548B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B245555; uniqtranscale_reg_value = 0x5560B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x5598DA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: preemph_reg_value = 0x0002000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5552B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404848; uniqtranscale_reg_value = 0x5580B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: preemph_reg_value = 0x0000000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B305555; uniqtranscale_reg_value = 0x5570B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B2B4040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: preemph_reg_value = 0x0006000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x1B405555; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return; } break; default: return; } vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, uniqtranscale_reg_value, 0); } static void chv_set_signal_levels(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; u32 deemph_reg_value, margin_reg_value; bool uniq_trans_scale = false; u8 train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 128; margin_reg_value = 52; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 128; margin_reg_value = 77; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 128; margin_reg_value = 102; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: deemph_reg_value = 128; margin_reg_value = 154; uniq_trans_scale = true; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 85; margin_reg_value = 78; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 85; margin_reg_value = 116; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 85; margin_reg_value = 154; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 64; margin_reg_value = 104; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 64; margin_reg_value = 154; break; default: return; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 43; margin_reg_value = 154; break; default: return; } break; default: return; } chv_set_phy_signal_level(encoder, deemph_reg_value, margin_reg_value, uniq_trans_scale); } static u32 g4x_signal_levels(u8 train_set) { u32 signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPH_LEVEL_1: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPH_LEVEL_2: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPH_LEVEL_3: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } static void g4x_set_signal_levels(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = g4x_signal_levels(train_set); drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK); intel_dp->DP |= signal_levels; intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } /* SNB CPU eDP voltage swing and pre-emphasis control */ static u32 snb_cpu_edp_signal_levels(u8 train_set) { u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } static void snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = snb_cpu_edp_signal_levels(train_set); drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; intel_dp->DP |= signal_levels; intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } /* IVB CPU eDP voltage swing and pre-emphasis control */ static u32 ivb_cpu_edp_signal_levels(u8 train_set) { u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } static void ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_set = intel_dp->train_set[0]; u32 signal_levels; signal_levels = ivb_cpu_edp_signal_levels(train_set); drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n", signal_levels); intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; intel_dp->DP |= signal_levels; intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); } void intel_dp_set_signal_levels(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_set = intel_dp->train_set[0]; drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n", train_set & DP_TRAIN_VOLTAGE_SWING_MASK, train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : ""); drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n", (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT, train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ? " (max)" : ""); intel_dp->set_signal_levels(intel_dp); } void intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, u8 dp_train_pat) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); if (dp_train_pat & train_pat_mask) drm_dbg_kms(&dev_priv->drm, "Using DP training pattern TPS%d\n", dp_train_pat & train_pat_mask); intel_dp->set_link_train(intel_dp, dp_train_pat); } void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) { if (intel_dp->set_idle_link_train) intel_dp->set_idle_link_train(intel_dp); } static void intel_dp_link_down(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); enum port port = encoder->port; u32 DP = intel_dp->DP; if (drm_WARN_ON(&dev_priv->drm, (intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN) == 0)) return; drm_dbg_kms(&dev_priv->drm, "\n"); if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { DP &= ~DP_LINK_TRAIN_MASK_CPT; DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; } else { DP &= ~DP_LINK_TRAIN_MASK; DP |= DP_LINK_TRAIN_PAT_IDLE; } intel_de_write(dev_priv, intel_dp->output_reg, DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); intel_de_write(dev_priv, intel_dp->output_reg, DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching HDMI port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); /* always enable with pattern 1 (as per spec) */ DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | DP_LINK_TRAIN_PAT_1; intel_de_write(dev_priv, intel_dp->output_reg, DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); DP &= ~DP_PORT_EN; intel_de_write(dev_priv, intel_dp->output_reg, DP); intel_de_posting_read(dev_priv, intel_dp->output_reg); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } msleep(intel_dp->panel_power_down_delay); intel_dp->DP = DP; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { intel_wakeref_t wakeref; with_pps_lock(intel_dp, wakeref) intel_dp->active_pipe = INVALID_PIPE; } } static void intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 dpcd_ext[6]; /* * Prior to DP1.3 the bit represented by * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved. * if it is set DP_DPCD_REV at 0000h could be at a value less than * the true capability of the panel. The only way to check is to * then compare 0000h and 2200h. */ if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] & DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT)) return; if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV, &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) { drm_err(&i915->drm, "DPCD failed read at extended capabilities\n"); return; } if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) { drm_dbg_kms(&i915->drm, "DPCD extended DPCD rev less than base DPCD rev\n"); return; } if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext))) return; drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)); } bool intel_dp_read_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, sizeof(intel_dp->dpcd)) < 0) return false; /* aux transfer failed */ intel_dp_extended_receiver_capabilities(intel_dp); drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd), intel_dp->dpcd); return intel_dp->dpcd[DP_DPCD_REV] != 0; } bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) { u8 dprx = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &dprx) != 1) return false; return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; } static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); /* * Clear the cached register set to avoid using stale values * for the sinks that do not support DSC. */ memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); /* Clear fec_capable to avoid using stale values */ intel_dp->fec_capable = 0; /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 || intel_dp->edp_dpcd[0] >= DP_EDP_14) { if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT, intel_dp->dsc_dpcd, sizeof(intel_dp->dsc_dpcd)) < 0) drm_err(&i915->drm, "Failed to read DPCD register 0x%x\n", DP_DSC_SUPPORT); drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n", (int)sizeof(intel_dp->dsc_dpcd), intel_dp->dsc_dpcd); /* FEC is supported only on DP 1.4 */ if (!intel_dp_is_edp(intel_dp) && drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY, &intel_dp->fec_capable) < 0) drm_err(&i915->drm, "Failed to read FEC DPCD register\n"); drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n", intel_dp->fec_capable); } } static bool intel_edp_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); /* this function is meant to be called only once */ drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0); if (!intel_dp_read_dpcd(intel_dp)) return false; drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); /* * Read the eDP display control registers. * * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it * set, but require eDP 1.4+ detection (e.g. for supported link rates * method). The display control registers should read zero if they're * not supported anyway. */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == sizeof(intel_dp->edp_dpcd)) drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n", (int)sizeof(intel_dp->edp_dpcd), intel_dp->edp_dpcd); /* * This has to be called after intel_dp->edp_dpcd is filled, PSR checks * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] */ intel_psr_init_dpcd(intel_dp); /* Read the eDP 1.4+ supported link rates. */ if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; int i; drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { int val = le16_to_cpu(sink_rates[i]); if (val == 0) break; /* Value read multiplied by 200kHz gives the per-lane * link rate in kHz. The source rates are, however, * stored in terms of LS_Clk kHz. The full conversion * back to symbols is * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) */ intel_dp->sink_rates[i] = (val * 200) / 10; } intel_dp->num_sink_rates = i; } /* * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. */ if (intel_dp->num_sink_rates) intel_dp->use_rate_select = true; else intel_dp_set_sink_rates(intel_dp); intel_dp_set_common_rates(intel_dp); /* Read the eDP DSC DPCD registers */ if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) intel_dp_get_dsc_sink_cap(intel_dp); return true; } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { if (!intel_dp_read_dpcd(intel_dp)) return false; /* * Don't clobber cached eDP rates. Also skip re-reading * the OUI/ID since we know it won't change. */ if (!intel_dp_is_edp(intel_dp)) { drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); intel_dp_set_sink_rates(intel_dp); intel_dp_set_common_rates(intel_dp); } /* * Some eDP panels do not set a valid value for sink count, that is why * it don't care about read it here and in intel_edp_init_dpcd(). */ if (!intel_dp_is_edp(intel_dp) && !drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_NO_SINK_COUNT)) { u8 count; ssize_t r; r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count); if (r < 1) return false; /* * Sink count can change between short pulse hpd hence * a member variable in intel_dp will track any changes * between short pulse interrupts. */ intel_dp->sink_count = DP_GET_SINK_COUNT(count); /* * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that * a dongle is present but no display. Unless we require to know * if a dongle is present or not, we don't need to update * downstream port information. So, an early return here saves * time from performing other operations which are not required. */ if (!intel_dp->sink_count) return false; } if (!drm_dp_is_branch(intel_dp->dpcd)) return true; /* native DP sink */ if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) return true; /* no per-port downstream info */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, intel_dp->downstream_ports, DP_MAX_DOWNSTREAM_PORTS) < 0) return false; /* downstream port status fetch failed */ return true; } static bool intel_dp_sink_can_mst(struct intel_dp *intel_dp) { u8 mstm_cap; if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) return false; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) return false; return mstm_cap & DP_MST_CAP; } static bool intel_dp_can_mst(struct intel_dp *intel_dp) { return i915_modparams.enable_dp_mst && intel_dp->can_mst && intel_dp_sink_can_mst(intel_dp); } static void intel_dp_configure_mst(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; bool sink_can_mst = intel_dp_sink_can_mst(intel_dp); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n", encoder->base.base.id, encoder->base.name, yesno(intel_dp->can_mst), yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst)); if (!intel_dp->can_mst) return; intel_dp->is_mst = sink_can_mst && i915_modparams.enable_dp_mst; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } static bool intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) { return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, sink_irq_vector, DP_DPRX_ESI_LEN) == DP_DPRX_ESI_LEN; } bool intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { /* * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication * of Color Encoding Format and Content Color Gamut], in order to * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) return true; switch (conn_state->colorspace) { case DRM_MODE_COLORIMETRY_SYCC_601: case DRM_MODE_COLORIMETRY_OPYCC_601: case DRM_MODE_COLORIMETRY_BT2020_YCC: case DRM_MODE_COLORIMETRY_BT2020_RGB: case DRM_MODE_COLORIMETRY_BT2020_CYCC: return true; default: break; } return false; } static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); if (size < length) return -ENOSPC; memset(sdp, 0, size); /* * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 * VSC SDP Header Bytes */ sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */ sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */ sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */ sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */ /* * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as * per DP 1.4a spec. */ if (vsc->revision != 0x5) goto out; /* VSC SDP Payload for DB16 through DB18 */ /* Pixel Encoding and Colorimetry Formats */ sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */ sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */ switch (vsc->bpc) { case 6: /* 6bpc: 0x0 */ break; case 8: sdp->db[17] = 0x1; /* DB17[3:0] */ break; case 10: sdp->db[17] = 0x2; break; case 12: sdp->db[17] = 0x3; break; case 16: sdp->db[17] = 0x4; break; default: MISSING_CASE(vsc->bpc); break; } /* Dynamic Range and Component Bit Depth */ if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA) sdp->db[17] |= 0x80; /* DB17[7] */ /* Content Type */ sdp->db[18] = vsc->content_type & 0x7; out: return length; } static ssize_t intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe, struct dp_sdp *sdp, size_t size) { size_t length = sizeof(struct dp_sdp); const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE; unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE]; ssize_t len; if (size < length) return -ENOSPC; memset(sdp, 0, size); len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf)); if (len < 0) { DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n"); return -ENOSPC; } if (len != infoframe_size) { DRM_DEBUG_KMS("wrong static hdr metadata size\n"); return -ENOSPC; } /* * Set up the infoframe sdp packet for HDR static metadata. * Prepare VSC Header for SU as per DP 1.4a spec, * Table 2-100 and Table 2-101 */ /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */ sdp->sdp_header.HB0 = 0; /* * Packet Type 80h + Non-audio INFOFRAME Type value * HDMI_INFOFRAME_TYPE_DRM: 0x87 * - 80h + Non-audio INFOFRAME Type value * - InfoFrame Type: 0x07 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame] */ sdp->sdp_header.HB1 = drm_infoframe->type; /* * Least Significant Eight Bits of (Data Byte Count – 1) * infoframe_size - 1 */ sdp->sdp_header.HB2 = 0x1D; /* INFOFRAME SDP Version Number */ sdp->sdp_header.HB3 = (0x13 << 2); /* CTA Header Byte 2 (INFOFRAME Version Number) */ sdp->db[0] = drm_infoframe->version; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ sdp->db[1] = drm_infoframe->length; /* * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after * HDMI_INFOFRAME_HEADER_SIZE */ BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2); memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE], HDMI_DRM_INFOFRAME_SIZE); /* * Size of DP infoframe sdp packet for HDR static metadata consists of * - DP SDP Header(struct dp_sdp_header): 4 bytes * - Two Data Blocks: 2 bytes * CTA Header Byte2 (INFOFRAME Version Number) * CTA Header Byte3 (Length of INFOFRAME) * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes * * Prior to GEN11's GMP register size is identical to DP HDR static metadata * infoframe size. But GEN11+ has larger than that size, write_infoframe * will pad rest of the size. */ return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE; } static void intel_write_dp_sdp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct dp_sdp sdp = {}; ssize_t len; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; switch (type) { case DP_SDP_VSC: len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp, sizeof(sdp)); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm, &sdp, sizeof(sdp)); break; default: MISSING_CASE(type); return; } if (drm_WARN_ON(&dev_priv->drm, len < 0)) return; intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len); } void intel_write_dp_vsc_sdp(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, struct drm_dp_vsc_sdp *vsc) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct dp_sdp sdp = {}; ssize_t len; len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp)); if (drm_WARN_ON(&dev_priv->drm, len < 0)) return; intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC, &sdp, len); } void intel_dp_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK; u32 val = intel_de_read(dev_priv, reg); /* TODO: Add DSC case (DIP_ENABLE_PPS) */ /* When PSR is enabled, this routine doesn't disable VSC DIP */ if (intel_psr_enabled(intel_dp)) val &= ~dip_enable; else val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW); if (!enable) { intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); /* When PSR is enabled, VSC SDP is handled by PSR routine */ if (!intel_psr_enabled(intel_dp)) intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC); intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA); } static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc, const void *buffer, size_t size) { const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; memset(vsc, 0, size); if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != DP_SDP_VSC) return -EINVAL; vsc->sdp_type = sdp->sdp_header.HB1; vsc->revision = sdp->sdp_header.HB2; vsc->length = sdp->sdp_header.HB3; if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) || (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) { /* * - HB2 = 0x2, HB3 = 0x8 * VSC SDP supporting 3D stereo + PSR * - HB2 = 0x4, HB3 = 0xe * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of * first scan line of the SU region (applies to eDP v1.4b * and higher). */ return 0; } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) { /* * - HB2 = 0x5, HB3 = 0x13 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry * Format. */ vsc->pixelformat = (sdp->db[16] >> 4) & 0xf; vsc->colorimetry = sdp->db[16] & 0xf; vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1; switch (sdp->db[17] & 0x7) { case 0x0: vsc->bpc = 6; break; case 0x1: vsc->bpc = 8; break; case 0x2: vsc->bpc = 10; break; case 0x3: vsc->bpc = 12; break; case 0x4: vsc->bpc = 16; break; default: MISSING_CASE(sdp->db[17] & 0x7); return -EINVAL; } vsc->content_type = sdp->db[18] & 0x7; } else { return -EINVAL; } return 0; } static int intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe, const void *buffer, size_t size) { int ret; const struct dp_sdp *sdp = buffer; if (size < sizeof(struct dp_sdp)) return -EINVAL; if (sdp->sdp_header.HB0 != 0) return -EINVAL; if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM) return -EINVAL; /* * Least Significant Eight Bits of (Data Byte Count – 1) * 1Dh (i.e., Data Byte Count = 30 bytes). */ if (sdp->sdp_header.HB2 != 0x1D) return -EINVAL; /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */ if ((sdp->sdp_header.HB3 & 0x3) != 0) return -EINVAL; /* INFOFRAME SDP Version Number */ if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13) return -EINVAL; /* CTA Header Byte 2 (INFOFRAME Version Number) */ if (sdp->db[0] != 1) return -EINVAL; /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */ if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE) return -EINVAL; ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2], HDMI_DRM_INFOFRAME_SIZE); return ret; } static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_dp_vsc_sdp *vsc) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = DP_SDP_VSC; struct dp_sdp sdp = {}; int ret; /* When PSR is enabled, VSC SDP is handled by PSR routine */ if (intel_psr_enabled(intel_dp)) return; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n"); } static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct hdmi_drm_infoframe *drm_infoframe) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA; struct dp_sdp sdp = {}; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp)); ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp, sizeof(sdp)); if (ret) drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP HDR Metadata Infoframe SDP\n"); } void intel_read_dp_sdp(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, unsigned int type) { if (encoder->type != INTEL_OUTPUT_DDI) return; switch (type) { case DP_SDP_VSC: intel_read_dp_vsc_sdp(encoder, crtc_state, &crtc_state->infoframes.vsc); break; case HDMI_PACKET_TYPE_GAMUT_METADATA: intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state, &crtc_state->infoframes.drm.drm); break; default: MISSING_CASE(type); break; } } static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); int status = 0; int test_link_rate; u8 test_lane_count, test_link_bw; /* (DP CTS 1.2) * 4.3.1.11 */ /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, &test_lane_count); if (status <= 0) { drm_dbg_kms(&i915->drm, "Lane count read failed\n"); return DP_TEST_NAK; } test_lane_count &= DP_MAX_LANE_COUNT_MASK; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, &test_link_bw); if (status <= 0) { drm_dbg_kms(&i915->drm, "Link Rate read failed\n"); return DP_TEST_NAK; } test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); /* Validate the requested link rate and lane count */ if (!intel_dp_link_params_valid(intel_dp, test_link_rate, test_lane_count)) return DP_TEST_NAK; intel_dp->compliance.test_lane_count = test_lane_count; intel_dp->compliance.test_link_rate = test_link_rate; return DP_TEST_ACK; } static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_pattern; u8 test_misc; __be16 h_width, v_height; int status = 0; /* Read the TEST_PATTERN (DP CTS 3.1.5) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, &test_pattern); if (status <= 0) { drm_dbg_kms(&i915->drm, "Test pattern read failed\n"); return DP_TEST_NAK; } if (test_pattern != DP_COLOR_RAMP) return DP_TEST_NAK; status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, &h_width, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "H Width read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, &v_height, 2); if (status <= 0) { drm_dbg_kms(&i915->drm, "V Height read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, &test_misc); if (status <= 0) { drm_dbg_kms(&i915->drm, "TEST MISC read failed\n"); return DP_TEST_NAK; } if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) return DP_TEST_NAK; if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) return DP_TEST_NAK; switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { case DP_TEST_BIT_DEPTH_6: intel_dp->compliance.test_data.bpc = 6; break; case DP_TEST_BIT_DEPTH_8: intel_dp->compliance.test_data.bpc = 8; break; default: return DP_TEST_NAK; } intel_dp->compliance.test_data.video_pattern = test_pattern; intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return DP_TEST_ACK; } static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 test_result = DP_TEST_ACK; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; if (intel_connector->detect_edid == NULL || connector->edid_corrupt || intel_dp->aux.i2c_defer_count > 6) { /* Check EDID read for NACKs, DEFERs and corruption * (DP CTS 1.2 Core r1.1) * 4.2.2.4 : Failed EDID read, I2C_NAK * 4.2.2.5 : Failed EDID read, I2C_DEFER * 4.2.2.6 : EDID corruption detected * Use failsafe mode for all cases */ if (intel_dp->aux.i2c_nack_count > 0 || intel_dp->aux.i2c_defer_count > 0) drm_dbg_kms(&i915->drm, "EDID read had %d NACKs, %d DEFERs\n", intel_dp->aux.i2c_nack_count, intel_dp->aux.i2c_defer_count); intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; } else { struct edid *block = intel_connector->detect_edid; /* We have to write the checksum * of the last block read */ block += intel_connector->detect_edid->extensions; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, block->checksum) <= 0) drm_dbg_kms(&i915->drm, "Failed to write EDID checksum\n"); test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = true; return test_result; } static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp) { struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) { DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n"); return DP_TEST_NAK; } /* * link_mst is set to false to avoid executing mst related code * during compliance testing. */ intel_dp->link_mst = false; return DP_TEST_ACK; } static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); enum pipe pipe = crtc->pipe; u32 pattern_val; switch (data->phy_pattern) { case DP_PHY_TEST_PATTERN_NONE: DRM_DEBUG_KMS("Disable Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0); break; case DP_PHY_TEST_PATTERN_D10_2: DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2); break; case DP_PHY_TEST_PATTERN_ERROR_COUNT: DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_SCRAMBLED_0); break; case DP_PHY_TEST_PATTERN_PRBS7: DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n"); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7); break; case DP_PHY_TEST_PATTERN_80BIT_CUSTOM: /* * FIXME: Ideally pattern should come from DPCD 0x250. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n"); pattern_val = 0x3e0f83e0; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val); pattern_val = 0x0f83e0f8; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val); pattern_val = 0x0000f83e; intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val); intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_CUSTOM80); break; case DP_PHY_TEST_PATTERN_CP2520: /* * FIXME: Ideally pattern should come from DPCD 0x24A. As * current firmware of DPR-100 could not set it, so hardcoding * now for complaince test. */ DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n"); pattern_val = 0xFB; intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 | pattern_val); break; default: WARN(1, "Invalid Phy Test Pattern\n"); } } static void intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); enum pipe pipe = crtc->pipe; u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; trans_ddi_func_ctl_value = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe)); trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE | TGL_TRANS_DDI_PORT_MASK); trans_conf_value &= ~PIPECONF_ENABLE; dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE; intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), trans_ddi_func_ctl_value); intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); } static void intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_dig_port->base.port; struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc); enum pipe pipe = crtc->pipe; u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value; trans_ddi_func_ctl_value = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe)); trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe)); dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe)); trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE | TGL_TRANS_DDI_SELECT_PORT(port); trans_conf_value |= PIPECONF_ENABLE; dp_tp_ctl_value |= DP_TP_CTL_ENABLE; intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value); intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value); intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe), trans_ddi_func_ctl_value); } void intel_dp_process_phy_request(struct intel_dp *intel_dp) { struct drm_dp_phy_test_params *data = &intel_dp->compliance.test_data.phytest; u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_dp_get_link_status(intel_dp, link_status)) { DRM_DEBUG_KMS("failed to get link status\n"); return; } /* retrieve vswing & pre-emphasis setting */ intel_dp_get_adjust_train(intel_dp, link_status); intel_dp_autotest_phy_ddi_disable(intel_dp); intel_dp_set_signal_levels(intel_dp); intel_dp_phy_pattern_update(intel_dp); intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes); drm_dp_set_phy_test_pattern(&intel_dp->aux, data, link_status[DP_DPCD_REV]); } static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) { u8 test_result; test_result = intel_dp_prepare_phytest(intel_dp); if (test_result != DP_TEST_ACK) DRM_ERROR("Phy test preparation failed\n"); intel_dp_process_phy_request(intel_dp); return test_result; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 response = DP_TEST_NAK; u8 request = 0; int status; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); if (status <= 0) { drm_dbg_kms(&i915->drm, "Could not read test request from sink\n"); goto update_status; } switch (request) { case DP_TEST_LINK_TRAINING: drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n"); response = intel_dp_autotest_link_training(intel_dp); break; case DP_TEST_LINK_VIDEO_PATTERN: drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n"); response = intel_dp_autotest_video_pattern(intel_dp); break; case DP_TEST_LINK_EDID_READ: drm_dbg_kms(&i915->drm, "EDID test requested\n"); response = intel_dp_autotest_edid(intel_dp); break; case DP_TEST_LINK_PHY_TEST_PATTERN: drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n"); response = intel_dp_autotest_phy_pattern(intel_dp); break; default: drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n", request); break; } if (response & DP_TEST_ACK) intel_dp->compliance.test_type = request; update_status: status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); if (status <= 0) drm_dbg_kms(&i915->drm, "Could not write test response to sink\n"); } static int intel_dp_check_mst_status(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); bool need_retrain = false; if (!intel_dp->is_mst) return -EINVAL; WARN_ON_ONCE(intel_dp->active_mst_links < 0); for (;;) { u8 esi[DP_DPRX_ESI_LEN] = {}; bool bret, handled; int retry; bret = intel_dp_get_sink_irq_esi(intel_dp, esi); if (!bret) { drm_dbg_kms(&i915->drm, "failed to get ESI - device may have failed\n"); return -EINVAL; } /* check link status - esi[10] = 0x200c */ if (intel_dp->active_mst_links > 0 && !need_retrain && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { drm_dbg_kms(&i915->drm, "channel EQ not ok, retraining\n"); need_retrain = true; } drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi); drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); if (!handled) break; for (retry = 0; retry < 3; retry++) { int wret; wret = drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI+1, &esi[1], 3); if (wret == 3) break; } } return need_retrain; } static bool intel_dp_needs_link_retrain(struct intel_dp *intel_dp) { u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_dp->link_trained) return false; /* * While PSR source HW is enabled, it will control main-link sending * frames, enabling and disabling it so trying to do a retrain will fail * as the link would or not be on or it could mix training patterns * and frame data at the same time causing retrain to fail. * Also when exiting PSR, HW will retrain the link anyways fixing * any link status error. */ if (intel_psr_enabled(intel_dp)) return false; if (!intel_dp_get_link_status(intel_dp, link_status)) return false; /* * Validate the cached values of intel_dp->link_rate and * intel_dp->lane_count before attempting to retrain. */ if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, intel_dp->lane_count)) return false; /* Retrain if Channel EQ or CR not ok */ return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); } static bool intel_dp_has_connector(struct intel_dp *intel_dp, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_encoder *encoder; enum pipe pipe; if (!conn_state->best_encoder) return false; /* SST */ encoder = &dp_to_dig_port(intel_dp)->base; if (conn_state->best_encoder == &encoder->base) return true; /* MST */ for_each_pipe(i915, pipe) { encoder = &intel_dp->mst_encoders[pipe]->base; if (conn_state->best_encoder == &encoder->base) return true; } return false; } static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp, struct drm_modeset_acquire_ctx *ctx, u32 *crtc_mask) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct drm_connector_list_iter conn_iter; struct intel_connector *connector; int ret = 0; *crtc_mask = 0; if (!intel_dp_needs_link_retrain(intel_dp)) return 0; drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state = connector->base.state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!intel_dp_has_connector(intel_dp, conn_state)) continue; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) break; crtc_state = to_intel_crtc_state(crtc->base.state); drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->hw.active) continue; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) continue; *crtc_mask |= drm_crtc_mask(&crtc->base); } drm_connector_list_iter_end(&conn_iter); if (!intel_dp_needs_link_retrain(intel_dp)) *crtc_mask = 0; return ret; } static bool intel_dp_is_connected(struct intel_dp *intel_dp) { struct intel_connector *connector = intel_dp->attached_connector; return connector->base.status == connector_status_connected || intel_dp->is_mst; } int intel_dp_retrain_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_crtc *crtc; u32 crtc_mask; int ret; if (!intel_dp_is_connected(intel_dp)) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask); if (ret) return ret; if (crtc_mask == 0) return 0; drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n", encoder->base.base.id, encoder->base.name); for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Suppress underruns caused by re-training */ intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), false); } intel_dp_start_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) { const struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); /* Keep underrun reporting disabled until things are stable */ intel_wait_for_vblank(dev_priv, crtc->pipe); intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), true); } return 0; } /* * If display is now connected check links status, * there has been known issues of link loss triggering * long pulse. * * Some sinks (eg. ASUS PB287Q) seem to perform some * weird HPD ping pong during modesets. So we can apparently * end up with HPD going low during a modeset, and then * going back up soon after. And once that happens we must * retrain the link to get a picture. That's in case no * userspace component reacted to intermittent HPD dip. */ static enum intel_hotplug_state intel_dp_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { struct drm_modeset_acquire_ctx ctx; enum intel_hotplug_state state; int ret; state = intel_encoder_hotplug(encoder, connector); drm_modeset_acquire_init(&ctx, 0); for (;;) { ret = intel_dp_retrain_link(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_WARN(encoder->base.dev, ret, "Acquiring modeset locks failed with %i\n", ret); /* * Keeping it consistent with intel_ddi_hotplug() and * intel_hdmi_hotplug(). */ if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries) state = INTEL_HOTPLUG_RETRY; return state; } static void intel_dp_check_service_irq(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); u8 val; if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val) return; drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val); if (val & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (val & DP_CP_IRQ) intel_hdcp_handle_cp_irq(intel_dp->attached_connector); if (val & DP_SINK_SPECIFIC_IRQ) drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n"); } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt * * intel_dp_short_pulse - handles short pulse interrupts * when full detection is not required. * Returns %true if short pulse is handled and full detection * is NOT required and %false otherwise. */ static bool intel_dp_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 old_sink_count = intel_dp->sink_count; bool ret; /* * Clearing compliance test variables to allow capturing * of values for next automated test request. */ memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); /* * Now read the DPCD to see if it's actually running * If the current value of sink count doesn't match with * the value that was stored earlier or dpcd read failed * we need to do full detection */ ret = intel_dp_get_dpcd(intel_dp); if ((old_sink_count != intel_dp->sink_count) || !ret) { /* No need to proceed if we are going to do full detect */ return false; } intel_dp_check_service_irq(intel_dp); /* Handle CEC interrupts, if any */ drm_dp_cec_irq(&intel_dp->aux); /* defer to the hotplug work for link retraining if needed */ if (intel_dp_needs_link_retrain(intel_dp)) return false; intel_psr_short_pulse(intel_dp); if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { drm_dbg_kms(&dev_priv->drm, "Link Training Compliance Test requested\n"); /* Send a Hotplug Uevent to userspace to start modeset */ drm_kms_helper_hotplug_event(&dev_priv->drm); } return true; } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *i915 = dp_to_i915(intel_dp); struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); u8 *dpcd = intel_dp->dpcd; u8 type; if (WARN_ON(intel_dp_is_edp(intel_dp))) return connector_status_connected; if (lspcon->active) lspcon_resume(lspcon); if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; /* if there's no downstream port, we're done */ if (!drm_dp_is_branch(dpcd)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { return intel_dp->sink_count ? connector_status_connected : connector_status_disconnected; } if (intel_dp_can_mst(intel_dp)) return connector_status_connected; /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->aux.ddc)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status edp_detect(struct intel_dp *intel_dp) { return connector_status_connected; } static bool ibx_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin]; return intel_de_read(dev_priv, SDEISR) & bit; } static bool g4x_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; } static bool gm45_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; break; case HPD_PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; break; case HPD_PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit; } static bool ilk_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin]; return intel_de_read(dev_priv, DEISR) & bit; } /* * intel_digital_port_connected - is the specified port connected? * @encoder: intel_encoder * * In cases where there's a connector physically connected but it can't be used * by our hardware we also return false, since the rest of the driver should * pretty much treat the port as disconnected. This is relevant for type-C * (starting on ICL) where there's ownership involved. * * Return %true if port is connected, %false otherwise. */ bool intel_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool is_connected = false; intel_wakeref_t wakeref; with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref) is_connected = dig_port->connected(encoder); return is_connected; } static struct edid * intel_dp_get_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; /* use cached edid if we have one */ if (intel_connector->edid) { /* invalid edid */ if (IS_ERR(intel_connector->edid)) return NULL; return drm_edid_duplicate(intel_connector->edid); } else return drm_get_edid(&intel_connector->base, &intel_dp->aux.ddc); } static void intel_dp_set_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct edid *edid; intel_dp_unset_edid(intel_dp); edid = intel_dp_get_edid(intel_dp); intel_connector->detect_edid = edid; intel_dp->has_audio = drm_detect_monitor_audio(edid); drm_dp_cec_set_edid(&intel_dp->aux, edid); intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); } static void intel_dp_unset_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; drm_dp_cec_unset_edid(&intel_dp->aux); kfree(intel_connector->detect_edid); intel_connector->detect_edid = NULL; intel_dp->has_audio = false; intel_dp->edid_quirks = 0; } static int intel_dp_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &dig_port->base; enum drm_connector_status status; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); drm_WARN_ON(&dev_priv->drm, !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); /* Can't disconnect eDP */ if (intel_dp_is_edp(intel_dp)) status = edp_detect(intel_dp); else if (intel_digital_port_connected(encoder)) status = intel_dp_detect_dpcd(intel_dp); else status = connector_status_disconnected; if (status == connector_status_disconnected) { memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd)); if (intel_dp->is_mst) { drm_dbg_kms(&dev_priv->drm, "MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } goto out; } if (intel_dp->reset_link_params) { /* Initial max link lane count */ intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); /* Initial max link rate */ intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->reset_link_params = false; } intel_dp_print_rates(intel_dp); /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */ if (INTEL_GEN(dev_priv) >= 11) intel_dp_get_dsc_sink_cap(intel_dp); intel_dp_configure_mst(intel_dp); if (intel_dp->is_mst) { /* * If we are in MST mode then this connector * won't appear connected or have anything * with EDID on it */ status = connector_status_disconnected; goto out; } /* * Some external monitors do not signal loss of link synchronization * with an IRQ_HPD, so force a link status check. */ if (!intel_dp_is_edp(intel_dp)) { int ret; ret = intel_dp_retrain_link(encoder, ctx); if (ret) return ret; } /* * Clearing NACK and defer counts to get their exact values * while reading EDID which are required by Compliance tests * 4.2.2.4 and 4.2.2.5 */ intel_dp->aux.i2c_nack_count = 0; intel_dp->aux.i2c_defer_count = 0; intel_dp_set_edid(intel_dp); if (intel_dp_is_edp(intel_dp) || to_intel_connector(connector)->detect_edid) status = connector_status_connected; intel_dp_check_service_irq(intel_dp); out: if (status != connector_status_connected && !intel_dp->is_mst) intel_dp_unset_edid(intel_dp); /* * Make sure the refs for power wells enabled during detect are * dropped to avoid a new detect cycle triggered by HPD polling. */ intel_display_power_flush_work(dev_priv); return status; } static void intel_dp_force(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *intel_encoder = &dig_port->base; struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); enum intel_display_power_domain aux_domain = intel_aux_power_domain(dig_port); intel_wakeref_t wakeref; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_dp_unset_edid(intel_dp); if (connector->status != connector_status_connected) return; wakeref = intel_display_power_get(dev_priv, aux_domain); intel_dp_set_edid(intel_dp); intel_display_power_put(dev_priv, aux_domain, wakeref); } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct edid *edid; edid = intel_connector->detect_edid; if (edid) { int ret = intel_connector_update_modes(connector, edid); if (ret) return ret; } /* if eDP has no EDID, fall back to fixed mode */ if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) && intel_connector->panel.fixed_mode) { struct drm_display_mode *mode; mode = drm_mode_duplicate(connector->dev, intel_connector->panel.fixed_mode); if (mode) { drm_mode_probed_add(connector, mode); return 1; } } return 0; } static int intel_dp_connector_register(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); int ret; ret = intel_connector_register(connector); if (ret) return ret; drm_dbg_kms(&i915->drm, "registering %s bus for %s\n", intel_dp->aux.name, connector->kdev->kobj.name); intel_dp->aux.dev = connector->kdev; ret = drm_dp_aux_register(&intel_dp->aux); if (!ret) drm_dp_cec_register_connector(&intel_dp->aux, connector); return ret; } static void intel_dp_connector_unregister(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector)); drm_dp_cec_unregister_connector(&intel_dp->aux); drm_dp_aux_unregister(&intel_dp->aux); intel_connector_unregister(connector); } void intel_dp_encoder_flush_work(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder)); struct intel_dp *intel_dp = &intel_dig_port->dp; intel_dp_mst_encoder_cleanup(intel_dig_port); if (intel_dp_is_edp(intel_dp)) { intel_wakeref_t wakeref; cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ with_pps_lock(intel_dp, wakeref) edp_panel_vdd_off_sync(intel_dp); if (intel_dp->edp_notifier.notifier_call) { unregister_reboot_notifier(&intel_dp->edp_notifier); intel_dp->edp_notifier.notifier_call = NULL; } } intel_dp_aux_fini(intel_dp); } static void intel_dp_encoder_destroy(struct drm_encoder *encoder) { intel_dp_encoder_flush_work(encoder); drm_encoder_cleanup(encoder); kfree(enc_to_dig_port(to_intel_encoder(encoder))); } void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder); intel_wakeref_t wakeref; if (!intel_dp_is_edp(intel_dp)) return; /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ cancel_delayed_work_sync(&intel_dp->panel_vdd_work); with_pps_lock(intel_dp, wakeref) edp_panel_vdd_off_sync(intel_dp); } static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout) { long ret; #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count)) ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C, msecs_to_jiffies(timeout)); if (!ret) DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n"); } static int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, u8 *an) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base)); static const struct drm_dp_aux_msg msg = { .request = DP_AUX_NATIVE_WRITE, .address = DP_AUX_HDCP_AKSV, .size = DRM_HDCP_KSV_LEN, }; u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; ssize_t dpcd_ret; int ret; /* Output An first, that's easy */ dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, an, DRM_HDCP_AN_LEN); if (dpcd_ret != DRM_HDCP_AN_LEN) { drm_dbg_kms(&i915->drm, "Failed to write An over DP/AUX (%zd)\n", dpcd_ret); return dpcd_ret >= 0 ? -EIO : dpcd_ret; } /* * Since Aksv is Oh-So-Secret, we can't access it in software. So in * order to get it on the wire, we need to create the AUX header as if * we were writing the data, and then tickle the hardware to output the * data once the header is sent out. */ intel_dp_aux_header(txbuf, &msg); ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, rxbuf, sizeof(rxbuf), DP_AUX_CH_CTL_AUX_AKSV_SELECT); if (ret < 0) { drm_dbg_kms(&i915->drm, "Write Aksv over DP/AUX failed (%d)\n", ret); return ret; } else if (ret == 0) { drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n"); return -EIO; } reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; if (reply != DP_AUX_NATIVE_REPLY_ACK) { drm_dbg_kms(&i915->drm, "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n", reply); return -EIO; } return 0; } static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, u8 *bksv) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, DRM_HDCP_KSV_LEN); if (ret != DRM_HDCP_KSV_LEN) { drm_dbg_kms(&i915->drm, "Read Bksv from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, u8 *bstatus) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; /* * For some reason the HDMI and DP HDCP specs call this register * definition by different names. In the HDMI spec, it's called BSTATUS, * but in DP it's called BINFO. */ ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, bstatus, DRM_HDCP_BSTATUS_LEN); if (ret != DRM_HDCP_BSTATUS_LEN) { drm_dbg_kms(&i915->drm, "Read bstatus from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, u8 *bcaps) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, bcaps, 1); if (ret != 1) { drm_dbg_kms(&i915->drm, "Read bcaps from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, bool *repeater_present) { ssize_t ret; u8 bcaps; ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); if (ret) return ret; *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; return 0; } static int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, u8 *ri_prime) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, ri_prime, DRM_HDCP_RI_LEN); if (ret != DRM_HDCP_RI_LEN) { drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, bool *ksv_ready) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; u8 bstatus; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, &bstatus, 1); if (ret != 1) { drm_dbg_kms(&i915->drm, "Read bstatus from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } *ksv_ready = bstatus & DP_BSTATUS_READY; return 0; } static int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, int num_downstream, u8 *ksv_fifo) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; int i; /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ for (i = 0; i < num_downstream; i += 3) { size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_KSV_FIFO, ksv_fifo + i * DRM_HDCP_KSV_LEN, len); if (ret != len) { drm_dbg_kms(&i915->drm, "Read ksv[%d] from DP/AUX failed (%zd)\n", i, ret); return ret >= 0 ? -EIO : ret; } } return 0; } static int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, int i, u32 *part) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) return -EINVAL; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_V_PRIME(i), part, DRM_HDCP_V_PRIME_PART_LEN); if (ret != DRM_HDCP_V_PRIME_PART_LEN) { drm_dbg_kms(&i915->drm, "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, bool enable) { /* Not used for single stream DisplayPort setups */ return 0; } static bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; u8 bstatus; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, &bstatus, 1); if (ret != 1) { drm_dbg_kms(&i915->drm, "Read bstatus from DP/AUX failed (%zd)\n", ret); return false; } return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); } static int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, bool *hdcp_capable) { ssize_t ret; u8 bcaps; ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); if (ret) return ret; *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; return 0; } struct hdcp2_dp_errata_stream_type { u8 msg_id; u8 stream_type; } __packed; struct hdcp2_dp_msg_data { u8 msg_id; u32 offset; bool msg_detectable; u32 timeout; u32 timeout2; /* Added for non_paired situation */ }; static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = { { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 }, { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET, false, HDCP_2_2_CERT_TIMEOUT_MS, 0 }, { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET, false, 0, 0 }, { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET, false, 0, 0 }, { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET, true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS, HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS }, { HDCP_2_2_AKE_SEND_PAIRING_INFO, DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true, HDCP_2_2_PAIRING_TIMEOUT_MS, 0 }, { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 }, { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET, false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 }, { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false, 0, 0 }, { HDCP_2_2_REP_SEND_RECVID_LIST, DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 }, { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false, 0, 0 }, { HDCP_2_2_REP_STREAM_MANAGE, DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false, 0, 0 }, { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET, false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 }, /* local define to shovel this through the write_2_2 interface */ #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50 { HDCP_2_2_ERRATA_DP_STREAM_TYPE, DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false, 0, 0 }, }; static int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port, u8 *rx_status) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status, HDCP_2_2_DP_RXSTATUS_LEN); if (ret != HDCP_2_2_DP_RXSTATUS_LEN) { drm_dbg_kms(&i915->drm, "Read bstatus from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port, u8 msg_id, bool *msg_ready) { u8 rx_status; int ret; *msg_ready = false; ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); if (ret < 0) return ret; switch (msg_id) { case HDCP_2_2_AKE_SEND_HPRIME: if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status)) *msg_ready = true; break; case HDCP_2_2_AKE_SEND_PAIRING_INFO: if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status)) *msg_ready = true; break; case HDCP_2_2_REP_SEND_RECVID_LIST: if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) *msg_ready = true; break; default: DRM_ERROR("Unidentified msg_id: %d\n", msg_id); return -EINVAL; } return 0; } static ssize_t intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port, const struct hdcp2_dp_msg_data *hdcp2_msg_data) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); struct intel_dp *dp = &intel_dig_port->dp; struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; u8 msg_id = hdcp2_msg_data->msg_id; int ret, timeout; bool msg_ready = false; if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired) timeout = hdcp2_msg_data->timeout2; else timeout = hdcp2_msg_data->timeout; /* * There is no way to detect the CERT, LPRIME and STREAM_READY * availability. So Wait for timeout and read the msg. */ if (!hdcp2_msg_data->msg_detectable) { mdelay(timeout); ret = 0; } else { /* * As we want to check the msg availability at timeout, Ignoring * the timeout at wait for CP_IRQ. */ intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout); ret = hdcp2_detect_msg_availability(intel_dig_port, msg_id, &msg_ready); if (!msg_ready) ret = -ETIMEDOUT; } if (ret) drm_dbg_kms(&i915->drm, "msg_id %d, ret %d, timeout(mSec): %d\n", hdcp2_msg_data->msg_id, ret, timeout); return ret; } static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id) { int i; for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++) if (hdcp2_dp_msg_data[i].msg_id == msg_id) return &hdcp2_dp_msg_data[i]; return NULL; } static int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port, void *buf, size_t size) { struct intel_dp *dp = &intel_dig_port->dp; struct intel_hdcp *hdcp = &dp->attached_connector->hdcp; unsigned int offset; u8 *byte = buf; ssize_t ret, bytes_to_write, len; const struct hdcp2_dp_msg_data *hdcp2_msg_data; hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte); if (!hdcp2_msg_data) return -EINVAL; offset = hdcp2_msg_data->offset; /* No msg_id in DP HDCP2.2 msgs */ bytes_to_write = size - 1; byte++; hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count); while (bytes_to_write) { len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ? DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write; ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, offset, (void *)byte, len); if (ret < 0) return ret; bytes_to_write -= ret; byte += ret; offset += ret; } return size; } static ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port) { u8 rx_info[HDCP_2_2_RXINFO_LEN]; u32 dev_cnt; ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_HDCP_2_2_REG_RXINFO_OFFSET, (void *)rx_info, HDCP_2_2_RXINFO_LEN); if (ret != HDCP_2_2_RXINFO_LEN) return ret >= 0 ? -EIO : ret; dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 | HDCP_2_2_DEV_COUNT_LO(rx_info[1])); if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT) dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT; ret = sizeof(struct hdcp2_rep_send_receiverid_list) - HDCP_2_2_RECEIVER_IDS_MAX_LEN + (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN); return ret; } static int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port, u8 msg_id, void *buf, size_t size) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); unsigned int offset; u8 *byte = buf; ssize_t ret, bytes_to_recv, len; const struct hdcp2_dp_msg_data *hdcp2_msg_data; hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id); if (!hdcp2_msg_data) return -EINVAL; offset = hdcp2_msg_data->offset; ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data); if (ret < 0) return ret; if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) { ret = get_receiver_id_list_size(intel_dig_port); if (ret < 0) return ret; size = ret; } bytes_to_recv = size - 1; /* DP adaptation msgs has no msg_id */ byte++; while (bytes_to_recv) { len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ? DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset, (void *)byte, len); if (ret < 0) { drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n", msg_id, ret); return ret; } bytes_to_recv -= ret; byte += ret; offset += ret; } byte = buf; *byte = msg_id; return size; } static int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port, bool is_repeater, u8 content_type) { int ret; struct hdcp2_dp_errata_stream_type stream_type_msg; if (is_repeater) return 0; /* * Errata for DP: As Stream type is used for encryption, Receiver * should be communicated with stream type for the decryption of the * content. * Repeater will be communicated with stream type as a part of it's * auth later in time. */ stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE; stream_type_msg.stream_type = content_type; ret = intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg, sizeof(stream_type_msg)); return ret < 0 ? ret : 0; } static int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port) { u8 rx_status; int ret; ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status); if (ret) return ret; if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status)) ret = HDCP_REAUTH_REQUEST; else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status)) ret = HDCP_LINK_INTEGRITY_FAILURE; else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status)) ret = HDCP_TOPOLOGY_CHANGE; return ret; } static int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port, bool *capable) { u8 rx_caps[3]; int ret; *capable = false; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_HDCP_2_2_REG_RX_CAPS_OFFSET, rx_caps, HDCP_2_2_RXCAPS_LEN); if (ret != HDCP_2_2_RXCAPS_LEN) return ret >= 0 ? -EIO : ret; if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL && HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2])) *capable = true; return 0; } static const struct intel_hdcp_shim intel_dp_hdcp_shim = { .write_an_aksv = intel_dp_hdcp_write_an_aksv, .read_bksv = intel_dp_hdcp_read_bksv, .read_bstatus = intel_dp_hdcp_read_bstatus, .repeater_present = intel_dp_hdcp_repeater_present, .read_ri_prime = intel_dp_hdcp_read_ri_prime, .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, .toggle_signalling = intel_dp_hdcp_toggle_signalling, .check_link = intel_dp_hdcp_check_link, .hdcp_capable = intel_dp_hdcp_capable, .write_2_2_msg = intel_dp_hdcp2_write_msg, .read_2_2_msg = intel_dp_hdcp2_read_msg, .config_stream_type = intel_dp_hdcp2_config_stream_type, .check_2_2_link = intel_dp_hdcp2_check_link, .hdcp_2_2_capable = intel_dp_hdcp2_capable, .protocol = HDCP_PROTOCOL_DP, }; static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); lockdep_assert_held(&dev_priv->pps_mutex); if (!edp_have_panel_vdd(intel_dp)) return; /* * The VDD bit needs a power domain reference, so if the bit is * already enabled when we boot or resume, grab this reference and * schedule a vdd off, so we don't hold on to the reference * indefinitely. */ drm_dbg_kms(&dev_priv->drm, "VDD left on by BIOS, adjusting state tracking\n"); intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port)); edp_panel_vdd_schedule_off(intel_dp); } static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum pipe pipe; if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, encoder->port, &pipe)) return pipe; return INVALID_PIPE; } void intel_dp_encoder_reset(struct drm_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder)); struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); intel_wakeref_t wakeref; if (!HAS_DDI(dev_priv)) intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); if (lspcon->active) lspcon_resume(lspcon); intel_dp->reset_link_params = true; if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && !intel_dp_is_edp(intel_dp)) return; with_pps_lock(intel_dp, wakeref) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->active_pipe = vlv_active_pipe(intel_dp); if (intel_dp_is_edp(intel_dp)) { /* * Reinit the power sequencer, in case BIOS did * something nasty with it. */ intel_dp_pps_init(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); } } } static int intel_modeset_tile_group(struct intel_atomic_state *state, int tile_group_id) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct drm_connector_list_iter conn_iter; struct drm_connector *connector; int ret = 0; drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; if (!connector->has_tile || connector->tile_group->id != tile_group_id) continue; conn_state = drm_atomic_get_connector_state(&state->base, connector); if (IS_ERR(conn_state)) { ret = PTR_ERR(conn_state); break; } crtc = to_intel_crtc(conn_state->crtc); if (!crtc) continue; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) break; } drm_connector_list_iter_end(&conn_iter); return ret; } static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; if (transcoders == 0) return 0; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; int ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->hw.enable) continue; if (!(transcoders & BIT(crtc_state->cpu_transcoder))) continue; crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); if (ret) return ret; transcoders &= ~BIT(crtc_state->cpu_transcoder); } drm_WARN_ON(&dev_priv->drm, transcoders != 0); return 0; } static int intel_modeset_synced_crtcs(struct intel_atomic_state *state, struct drm_connector *connector) { const struct drm_connector_state *old_conn_state = drm_atomic_get_old_connector_state(&state->base, connector); const struct intel_crtc_state *old_crtc_state; struct intel_crtc *crtc; u8 transcoders; crtc = to_intel_crtc(old_conn_state->crtc); if (!crtc) return 0; old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); if (!old_crtc_state->hw.active) return 0; transcoders = old_crtc_state->sync_mode_slaves_mask; if (old_crtc_state->master_transcoder != INVALID_TRANSCODER) transcoders |= BIT(old_crtc_state->master_transcoder); return intel_modeset_affected_transcoders(state, transcoders); } static int intel_dp_connector_atomic_check(struct drm_connector *conn, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(conn->dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); int ret; ret = intel_digital_connector_atomic_check(conn, &state->base); if (ret) return ret; /* * We don't enable port sync on BDW due to missing w/as and * due to not having adjusted the modeset sequence appropriately. */ if (INTEL_GEN(dev_priv) < 9) return 0; if (!intel_connector_needs_modeset(state, conn)) return 0; if (conn->has_tile) { ret = intel_modeset_tile_group(state, conn->tile_group->id); if (ret) return ret; } return intel_modeset_synced_crtcs(state, conn); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .force = intel_dp_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_dp_connector_register, .early_unregister = intel_dp_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .detect_ctx = intel_dp_detect, .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .atomic_check = intel_dp_connector_atomic_check, }; static const struct drm_encoder_funcs intel_dp_enc_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_dp_encoder_destroy, }; static bool intel_edp_have_power(struct intel_dp *intel_dp) { intel_wakeref_t wakeref; bool have_power = false; with_pps_lock(intel_dp, wakeref) { have_power = edp_have_panel_power(intel_dp) && edp_have_panel_vdd(intel_dp); } return have_power; } enum irqreturn intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) { struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev); struct intel_dp *intel_dp = &intel_dig_port->dp; if (intel_dig_port->base.type == INTEL_OUTPUT_EDP && (long_hpd || !intel_edp_have_power(intel_dp))) { /* * vdd off can generate a long/short pulse on eDP which * would require vdd on to handle it, and thus we * would end up in an endless cycle of * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..." */ drm_dbg_kms(&i915->drm, "ignoring %s hpd on eDP [ENCODER:%d:%s]\n", long_hpd ? "long" : "short", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name); return IRQ_HANDLED; } drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n", intel_dig_port->base.base.base.id, intel_dig_port->base.base.name, long_hpd ? "long" : "short"); if (long_hpd) { intel_dp->reset_link_params = true; return IRQ_NONE; } if (intel_dp->is_mst) { switch (intel_dp_check_mst_status(intel_dp)) { case -EINVAL: /* * If we were in MST mode, and device is not * there, get out of MST mode */ drm_dbg_kms(&i915->drm, "MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); return IRQ_NONE; case 1: return IRQ_NONE; default: break; } } if (!intel_dp->is_mst) { bool handled; handled = intel_dp_short_pulse(intel_dp); if (!handled) return IRQ_NONE; } return IRQ_HANDLED; } /* check the VBT to see whether the eDP is on another port */ bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) { /* * eDP not supported on g4x. so bail out early just * for a bit extra safety in case the VBT is bonkers. */ if (INTEL_GEN(dev_priv) < 5) return false; if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) return true; return intel_bios_is_port_edp(dev_priv, port); } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); enum port port = dp_to_dig_port(intel_dp)->base.port; if (!IS_G4X(dev_priv) && port != PORT_A) intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); if (HAS_GMCH(dev_priv)) drm_connector_attach_max_bpc_property(connector, 6, 10); else if (INTEL_GEN(dev_priv) >= 5) drm_connector_attach_max_bpc_property(connector, 6, 12); intel_attach_colorspace_property(connector); if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11) drm_object_attach_property(&connector->base, connector->dev->mode_config.hdr_output_metadata_property, 0); if (intel_dp_is_edp(intel_dp)) { u32 allowed_scalers; allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); if (!HAS_GMCH(dev_priv)) allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); drm_connector_attach_scaling_mode_property(connector, allowed_scalers); connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; } } static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) { intel_dp->panel_power_off_time = ktime_get_boottime(); intel_dp->last_power_on = jiffies; intel_dp->last_backlight_off = jiffies; } static void intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 pp_on, pp_off, pp_ctl; struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); pp_ctl = ilk_get_pp_control(intel_dp); /* Ensure PPS is unlocked */ if (!HAS_DDI(dev_priv)) intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); pp_on = intel_de_read(dev_priv, regs.pp_on); pp_off = intel_de_read(dev_priv, regs.pp_off); /* Pull timing values out of registers */ seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on); seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on); seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off); seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off); if (i915_mmio_reg_valid(regs.pp_div)) { u32 pp_div; pp_div = intel_de_read(dev_priv, regs.pp_div); seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000; } else { seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000; } } static void intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) { DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", state_name, seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); } static void intel_pps_verify_state(struct intel_dp *intel_dp) { struct edp_power_seq hw; struct edp_power_seq *sw = &intel_dp->pps_delays; intel_pps_readout_hw_state(intel_dp, &hw); if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { DRM_ERROR("PPS state mismatch\n"); intel_pps_dump_state("sw", sw); intel_pps_dump_state("hw", &hw); } } static void intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct edp_power_seq cur, vbt, spec, *final = &intel_dp->pps_delays; lockdep_assert_held(&dev_priv->pps_mutex); /* already initialized? */ if (final->t11_t12 != 0) return; intel_pps_readout_hw_state(intel_dp, &cur); intel_pps_dump_state("cur", &cur); vbt = dev_priv->vbt.edp.pps; /* On Toshiba Satellite P50-C-18C system the VBT T12 delay * of 500ms appears to be too short. Ocassionally the panel * just fails to power back on. Increasing the delay to 800ms * seems sufficient to avoid this problem. */ if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); drm_dbg_kms(&dev_priv->drm, "Increasing T12 panel delay as per the quirk to %d\n", vbt.t11_t12); } /* T11_T12 delay is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ vbt.t11_t12 += 100 * 10; /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of * our hw here, which are all in 100usec. */ spec.t1_t3 = 210 * 10; spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ spec.t10 = 500 * 10; /* This one is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ spec.t11_t12 = (510 + 100) * 10; intel_pps_dump_state("vbt", &vbt); /* Use the max of the register settings and vbt. If both are * unset, fall back to the spec limits. */ #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ spec.field : \ max(cur.field, vbt.field)) assign_final(t1_t3); assign_final(t8); assign_final(t9); assign_final(t10); assign_final(t11_t12); #undef assign_final #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) intel_dp->panel_power_up_delay = get_delay(t1_t3); intel_dp->backlight_on_delay = get_delay(t8); intel_dp->backlight_off_delay = get_delay(t9); intel_dp->panel_power_down_delay = get_delay(t10); intel_dp->panel_power_cycle_delay = get_delay(t11_t12); #undef get_delay drm_dbg_kms(&dev_priv->drm, "panel power up delay %d, power down delay %d, power cycle delay %d\n", intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, intel_dp->panel_power_cycle_delay); drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n", intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); /* * We override the HW backlight delays to 1 because we do manual waits * on them. For T8, even BSpec recommends doing it. For T9, if we * don't do this, we'll end up waiting for the backlight off delay * twice: once when we do the manual sleep, and once when we disable * the panel and wait for the PP_STATUS bit to become zero. */ final->t8 = 1; final->t9 = 1; /* * HW has only a 100msec granularity for t11_t12 so round it up * accordingly. */ final->t11_t12 = roundup(final->t11_t12, 100 * 10); } static void intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, bool force_disable_vdd) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 pp_on, pp_off, port_sel = 0; int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000; struct pps_registers regs; enum port port = dp_to_dig_port(intel_dp)->base.port; const struct edp_power_seq *seq = &intel_dp->pps_delays; lockdep_assert_held(&dev_priv->pps_mutex); intel_pps_get_registers(intel_dp, ®s); /* * On some VLV machines the BIOS can leave the VDD * enabled even on power sequencers which aren't * hooked up to any port. This would mess up the * power domain tracking the first time we pick * one of these power sequencers for use since * edp_panel_vdd_on() would notice that the VDD was * already on and therefore wouldn't grab the power * domain reference. Disable VDD first to avoid this. * This also avoids spuriously turning the VDD on as * soon as the new power sequencer gets initialized. */ if (force_disable_vdd) { u32 pp = ilk_get_pp_control(intel_dp); drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON, "Panel power already on\n"); if (pp & EDP_FORCE_VDD) drm_dbg_kms(&dev_priv->drm, "VDD already on, disabling first\n"); pp &= ~EDP_FORCE_VDD; intel_de_write(dev_priv, regs.pp_ctrl, pp); } pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) | REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8); pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) | REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10); /* Haswell doesn't have any port selection bits for the panel * power sequencer any more. */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { port_sel = PANEL_PORT_SELECT_VLV(port); } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { switch (port) { case PORT_A: port_sel = PANEL_PORT_SELECT_DPA; break; case PORT_C: port_sel = PANEL_PORT_SELECT_DPC; break; case PORT_D: port_sel = PANEL_PORT_SELECT_DPD; break; default: MISSING_CASE(port); break; } } pp_on |= port_sel; intel_de_write(dev_priv, regs.pp_on, pp_on); intel_de_write(dev_priv, regs.pp_off, pp_off); /* * Compute the divisor for the pp clock, simply match the Bspec formula. */ if (i915_mmio_reg_valid(regs.pp_div)) { intel_de_write(dev_priv, regs.pp_div, REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000))); } else { u32 pp_ctl; pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl); pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK; pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)); intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl); } drm_dbg_kms(&dev_priv->drm, "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", intel_de_read(dev_priv, regs.pp_on), intel_de_read(dev_priv, regs.pp_off), i915_mmio_reg_valid(regs.pp_div) ? intel_de_read(dev_priv, regs.pp_div) : (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK)); } static void intel_dp_pps_init(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_initial_power_sequencer_setup(intel_dp); } else { intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, false); } } /** * intel_dp_set_drrs_state - program registers for RR switch to take effect * @dev_priv: i915 device * @crtc_state: a pointer to the active intel_crtc_state * @refresh_rate: RR to be programmed * * This function gets called when refresh rate (RR) has to be changed from * one frequency to another. Switches can be between high and low RR * supported by the panel or to any other RR based on media playback (in * this case, RR value needs to be passed from user space). * * The caller of this function needs to take a lock on dev_priv->drrs. */ static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state, int refresh_rate) { struct intel_dp *intel_dp = dev_priv->drrs.dp; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc); enum drrs_refresh_rate_type index = DRRS_HIGH_RR; if (refresh_rate <= 0) { drm_dbg_kms(&dev_priv->drm, "Refresh rate should be positive non-zero.\n"); return; } if (intel_dp == NULL) { drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n"); return; } if (!intel_crtc) { drm_dbg_kms(&dev_priv->drm, "DRRS: intel_crtc not initialized\n"); return; } if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n"); return; } if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == refresh_rate) index = DRRS_LOW_RR; if (index == dev_priv->drrs.refresh_rate_type) { drm_dbg_kms(&dev_priv->drm, "DRRS requested for previously set RR...ignoring\n"); return; } if (!crtc_state->hw.active) { drm_dbg_kms(&dev_priv->drm, "eDP encoder disabled. CRTC not Active\n"); return; } if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { switch (index) { case DRRS_HIGH_RR: intel_dp_set_m_n(crtc_state, M1_N1); break; case DRRS_LOW_RR: intel_dp_set_m_n(crtc_state, M2_N2); break; case DRRS_MAX_RR: default: drm_err(&dev_priv->drm, "Unsupported refreshrate type\n"); } } else if (INTEL_GEN(dev_priv) > 6) { i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); u32 val; val = intel_de_read(dev_priv, reg); if (index > DRRS_HIGH_RR) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val |= PIPECONF_EDP_RR_MODE_SWITCH; } else { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val &= ~PIPECONF_EDP_RR_MODE_SWITCH; } intel_de_write(dev_priv, reg, val); } dev_priv->drrs.refresh_rate_type = index; drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n", refresh_rate); } /** * intel_edp_drrs_enable - init drrs struct if supported * @intel_dp: DP struct * @crtc_state: A pointer to the active crtc state. * * Initializes frontbuffer_bits and drrs.dp */ void intel_edp_drrs_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!crtc_state->has_drrs) { drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n"); return; } if (dev_priv->psr.enabled) { drm_dbg_kms(&dev_priv->drm, "PSR enabled. Not enabling DRRS.\n"); return; } mutex_lock(&dev_priv->drrs.mutex); if (dev_priv->drrs.dp) { drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n"); goto unlock; } dev_priv->drrs.busy_frontbuffer_bits = 0; dev_priv->drrs.dp = intel_dp; unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_disable - Disable DRRS * @intel_dp: DP struct * @old_crtc_state: Pointer to old crtc_state. * */ void intel_edp_drrs_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!old_crtc_state->has_drrs) return; mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, old_crtc_state, intel_dp->attached_connector->panel.fixed_mode->vrefresh); dev_priv->drrs.dp = NULL; mutex_unlock(&dev_priv->drrs.mutex); cancel_delayed_work_sync(&dev_priv->drrs.work); } static void intel_edp_drrs_downclock_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), drrs.work.work); struct intel_dp *intel_dp; mutex_lock(&dev_priv->drrs.mutex); intel_dp = dev_priv->drrs.dp; if (!intel_dp) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. */ if (dev_priv->drrs.busy_frontbuffer_bits) goto unlock; if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, intel_dp->attached_connector->panel.downclock_mode->vrefresh); } unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_invalidate - Disable Idleness DRRS * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called everytime rendering on the given planes start. * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; /* invalidate means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_flush - Restart Idleness DRRS * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called every time rendering on the given planes has * completed or flip on a crtc is completed. So DRRS should be upclocked * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, * if no other planes are dirty. * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; /* flush means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); /* * flush also means no more activity hence schedule downclock, if all * other fbs are quiescent too */ if (!dev_priv->drrs.busy_frontbuffer_bits) schedule_delayed_work(&dev_priv->drrs.work, msecs_to_jiffies(1000)); mutex_unlock(&dev_priv->drrs.mutex); } /** * DOC: Display Refresh Rate Switching (DRRS) * * Display Refresh Rate Switching (DRRS) is a power conservation feature * which enables swtching between low and high refresh rates, * dynamically, based on the usage scenario. This feature is applicable * for internal panels. * * Indication that the panel supports DRRS is given by the panel EDID, which * would list multiple refresh rates for one resolution. * * DRRS is of 2 types - static and seamless. * Static DRRS involves changing refresh rate (RR) by doing a full modeset * (may appear as a blink on screen) and is used in dock-undock scenario. * Seamless DRRS involves changing RR without any visual effect to the user * and can be used during normal system usage. This is done by programming * certain registers. * * Support for static/seamless DRRS may be indicated in the VBT based on * inputs from the panel spec. * * DRRS saves power by switching to low RR based on usage scenarios. * * The implementation is based on frontbuffer tracking implementation. When * there is a disturbance on the screen triggered by user activity or a periodic * system activity, DRRS is disabled (RR is changed to high RR). When there is * no movement on screen, after a timeout of 1 second, a switch to low RR is * made. * * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() * and intel_edp_drrs_flush() are called. * * DRRS can be further extended to support other internal panels and also * the scenario of video playback wherein RR is set based on the rate * requested by userspace. */ /** * intel_dp_drrs_init - Init basic DRRS work and mutex. * @connector: eDP connector * @fixed_mode: preferred mode of panel * * This function is called only once at driver load to initialize basic * DRRS stuff. * * Returns: * Downclock mode if panel supports it, else return NULL. * DRRS support is determined by the presence of downclock mode (apart * from VBT setting). */ static struct drm_display_mode * intel_dp_drrs_init(struct intel_connector *connector, struct drm_display_mode *fixed_mode) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct drm_display_mode *downclock_mode = NULL; INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); mutex_init(&dev_priv->drrs.mutex); if (INTEL_GEN(dev_priv) <= 6) { drm_dbg_kms(&dev_priv->drm, "DRRS supported for Gen7 and above\n"); return NULL; } if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n"); return NULL; } downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode); if (!downclock_mode) { drm_dbg_kms(&dev_priv->drm, "Downclock mode is not found. DRRS not supported\n"); return NULL; } dev_priv->drrs.type = dev_priv->vbt.drrs_type; dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; drm_dbg_kms(&dev_priv->drm, "seamless DRRS supported for eDP panel.\n"); return downclock_mode; } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct drm_device *dev = &dev_priv->drm; struct drm_connector *connector = &intel_connector->base; struct drm_display_mode *fixed_mode = NULL; struct drm_display_mode *downclock_mode = NULL; bool has_dpcd; enum pipe pipe = INVALID_PIPE; intel_wakeref_t wakeref; struct edid *edid; if (!intel_dp_is_edp(intel_dp)) return true; INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); /* * On IBX/CPT we may get here with LVDS already registered. Since the * driver uses the only internal power sequencer available for both * eDP and LVDS bail out early in this case to prevent interfering * with an already powered-on LVDS power sequencer. */ if (intel_get_lvds_encoder(dev_priv)) { drm_WARN_ON(dev, !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); drm_info(&dev_priv->drm, "LVDS was detected, not registering eDP\n"); return false; } with_pps_lock(intel_dp, wakeref) { intel_dp_init_panel_power_timestamps(intel_dp); intel_dp_pps_init(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); } /* Cache DPCD and EDID for edp. */ has_dpcd = intel_edp_init_dpcd(intel_dp); if (!has_dpcd) { /* if this fails, presume the device is a ghost */ drm_info(&dev_priv->drm, "failed to retrieve link info, disabling eDP\n"); goto out_vdd_off; } mutex_lock(&dev->mode_config.mutex); edid = drm_get_edid(connector, &intel_dp->aux.ddc); if (edid) { if (drm_add_edid_modes(connector, edid)) { drm_connector_update_edid_property(connector, edid); intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid); } else { kfree(edid); edid = ERR_PTR(-EINVAL); } } else { edid = ERR_PTR(-ENOENT); } intel_connector->edid = edid; fixed_mode = intel_panel_edid_fixed_mode(intel_connector); if (fixed_mode) downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode); /* fallback to VBT if available for eDP */ if (!fixed_mode) fixed_mode = intel_panel_vbt_fixed_mode(intel_connector); mutex_unlock(&dev->mode_config.mutex); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { intel_dp->edp_notifier.notifier_call = edp_notify_handler; register_reboot_notifier(&intel_dp->edp_notifier); /* * Figure out the current pipe for the initial backlight setup. * If the current pipe isn't valid, try the PPS pipe, and if that * fails just assume pipe A. */ pipe = vlv_active_pipe(intel_dp); if (pipe != PIPE_A && pipe != PIPE_B) pipe = intel_dp->pps_pipe; if (pipe != PIPE_A && pipe != PIPE_B) pipe = PIPE_A; drm_dbg_kms(&dev_priv->drm, "using pipe %c for initial backlight setup\n", pipe_name(pipe)); } intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); intel_connector->panel.backlight.power = intel_edp_backlight_power; intel_panel_setup_backlight(connector, pipe); if (fixed_mode) { drm_connector_set_panel_orientation_with_quirk(connector, dev_priv->vbt.orientation, fixed_mode->hdisplay, fixed_mode->vdisplay); } return true; out_vdd_off: cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ with_pps_lock(intel_dp, wakeref) edp_panel_vdd_off_sync(intel_dp); return false; } static void intel_dp_modeset_retry_work_fn(struct work_struct *work) { struct intel_connector *intel_connector; struct drm_connector *connector; intel_connector = container_of(work, typeof(*intel_connector), modeset_retry_work); connector = &intel_connector->base; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* Grab the locks before changing connector property*/ mutex_lock(&connector->dev->mode_config.mutex); /* Set connector link status to BAD and send a Uevent to notify * userspace to do a modeset. */ drm_connector_set_link_status_property(connector, DRM_MODE_LINK_STATUS_BAD); mutex_unlock(&connector->dev->mode_config.mutex); /* Send Hotplug uevent so userspace can reprobe */ drm_kms_helper_hotplug_event(connector->dev); } bool intel_dp_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &intel_dig_port->dp; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_encoder->port; enum phy phy = intel_port_to_phy(dev_priv, port); int type; /* Initialize the work for modeset in case of link train failure */ INIT_WORK(&intel_connector->modeset_retry_work, intel_dp_modeset_retry_work_fn); if (drm_WARN(dev, intel_dig_port->max_lanes < 1, "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n", intel_dig_port->max_lanes, intel_encoder->base.base.id, intel_encoder->base.name)) return false; intel_dp_set_source_rates(intel_dp); intel_dp->reset_link_params = true; intel_dp->pps_pipe = INVALID_PIPE; intel_dp->active_pipe = INVALID_PIPE; /* Preserve the current hw state. */ intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (intel_dp_is_port_edp(dev_priv, port)) { /* * Currently we don't support eDP on TypeC ports, although in * theory it could work on TypeC legacy ports. */ drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy)); type = DRM_MODE_CONNECTOR_eDP; } else { type = DRM_MODE_CONNECTOR_DisplayPort; } if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->active_pipe = vlv_active_pipe(intel_dp); /* * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but * for DP the encoder type can be set by the caller to * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. */ if (type == DRM_MODE_CONNECTOR_eDP) intel_encoder->type = INTEL_OUTPUT_EDP; /* eDP only on port B and/or C on vlv/chv */ if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp_is_edp(intel_dp) && port != PORT_B && port != PORT_C)) return false; drm_dbg_kms(&dev_priv->drm, "Adding %s connector on [ENCODER:%d:%s]\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", intel_encoder->base.base.id, intel_encoder->base.name); drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); if (!HAS_GMCH(dev_priv)) connector->interlace_allowed = true; connector->doublescan_allowed = 0; if (INTEL_GEN(dev_priv) >= 11) connector->ycbcr_420_allowed = true; intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); intel_connector->polled = DRM_CONNECTOR_POLL_HPD; intel_dp_aux_init(intel_dp); intel_connector_attach_encoder(intel_connector, intel_encoder); if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; /* init MST on ports that can support it */ intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id); if (!intel_edp_init_connector(intel_dp, intel_connector)) { intel_dp_aux_fini(intel_dp); intel_dp_mst_encoder_cleanup(intel_dig_port); goto fail; } intel_dp_add_properties(intel_dp, connector); if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); if (ret) drm_dbg_kms(&dev_priv->drm, "HDCP init failed, skipping.\n"); } /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G45(dev_priv)) { u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); intel_de_write(dev_priv, PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } return true; fail: drm_connector_cleanup(connector); return false; } bool intel_dp_init(struct drm_i915_private *dev_priv, i915_reg_t output_reg, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return false; intel_connector = intel_connector_alloc(); if (!intel_connector) goto err_connector_alloc; intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port))) goto err_encoder_init; intel_encoder->hotplug = intel_dp_hotplug; intel_encoder->compute_config = intel_dp_compute_config; intel_encoder->get_hw_state = intel_dp_get_hw_state; intel_encoder->get_config = intel_dp_get_config; intel_encoder->update_pipe = intel_panel_update_backlight; intel_encoder->suspend = intel_dp_encoder_suspend; if (IS_CHERRYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; intel_encoder->pre_enable = chv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = chv_post_disable_dp; intel_encoder->post_pll_disable = chv_dp_post_pll_disable; } else if (IS_VALLEYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; intel_encoder->pre_enable = vlv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = vlv_post_disable_dp; } else { intel_encoder->pre_enable = g4x_pre_enable_dp; intel_encoder->enable = g4x_enable_dp; intel_encoder->disable = g4x_disable_dp; intel_encoder->post_disable = g4x_post_disable_dp; } if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) intel_dig_port->dp.set_link_train = cpt_set_link_train; else intel_dig_port->dp.set_link_train = g4x_set_link_train; if (IS_CHERRYVIEW(dev_priv)) intel_dig_port->dp.set_signal_levels = chv_set_signal_levels; else if (IS_VALLEYVIEW(dev_priv)) intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels; else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels; else if (IS_GEN(dev_priv, 6) && port == PORT_A) intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels; else intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels; intel_dig_port->dp.output_reg = output_reg; intel_dig_port->max_lanes = 4; intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port); intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port); intel_encoder->type = INTEL_OUTPUT_DP; intel_encoder->power_domain = intel_port_to_power_domain(port); if (IS_CHERRYVIEW(dev_priv)) { if (port == PORT_D) intel_encoder->pipe_mask = BIT(PIPE_C); else intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B); } else { intel_encoder->pipe_mask = ~0; } intel_encoder->cloneable = 0; intel_encoder->port = port; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; if (HAS_GMCH(dev_priv)) { if (IS_GM45(dev_priv)) intel_dig_port->connected = gm45_digital_port_connected; else intel_dig_port->connected = g4x_digital_port_connected; } else { if (port == PORT_A) intel_dig_port->connected = ilk_digital_port_connected; else intel_dig_port->connected = ibx_digital_port_connected; } if (port != PORT_A) intel_infoframe_init(intel_dig_port); intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port); if (!intel_dp_init_connector(intel_dig_port, intel_connector)) goto err_init_connector; return true; err_init_connector: drm_encoder_cleanup(encoder); err_encoder_init: kfree(intel_connector); err_connector_alloc: kfree(intel_dig_port); return false; } void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp->can_mst) continue; if (intel_dp->is_mst) drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); } } void intel_dp_mst_resume(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; int ret; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(encoder); if (!intel_dp->can_mst) continue; ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr, true); if (ret) { intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, false); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1