Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Auld | 2054 | 99.32% | 1 | 25.00% |
Chris Wilson | 14 | 0.68% | 3 | 75.00% |
Total | 2068 | 4 |
/* SPDX-License-Identifier: MIT */ /* * Copyright © 2020 Intel Corporation * * Please try to maintain the following order within this file unless it makes * sense to do otherwise. From top to bottom: * 1. typedefs * 2. #defines, and macros * 3. structure definitions * 4. function prototypes * * Within each section, please try to order by generation in ascending order, * from top to bottom (ie. gen6 on the top, gen8 on the bottom). */ #ifndef __INTEL_GTT_H__ #define __INTEL_GTT_H__ #include <linux/io-mapping.h> #include <linux/kref.h> #include <linux/mm.h> #include <linux/pagevec.h> #include <linux/scatterlist.h> #include <linux/workqueue.h> #include <drm/drm_mm.h> #include "gt/intel_reset.h" #include "i915_selftest.h" #include "i915_vma_types.h" #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) #if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT) #define DBG(...) trace_printk(__VA_ARGS__) #else #define DBG(...) #endif #define NALLOC 3 /* 1 normal, 1 for concurrent threads, 1 for preallocation */ #define I915_GTT_PAGE_SIZE_4K BIT_ULL(12) #define I915_GTT_PAGE_SIZE_64K BIT_ULL(16) #define I915_GTT_PAGE_SIZE_2M BIT_ULL(21) #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M #define I915_GTT_PAGE_MASK -I915_GTT_PAGE_SIZE #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE #define I915_FENCE_REG_NONE -1 #define I915_MAX_NUM_FENCES 32 /* 32 fences + sign bit for FENCE_REG_NONE */ #define I915_MAX_NUM_FENCE_BITS 6 typedef u32 gen6_pte_t; typedef u64 gen8_pte_t; #define ggtt_total_entries(ggtt) ((ggtt)->vm.total >> PAGE_SHIFT) #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len))) #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1) #define I915_PDES 512 #define I915_PDE_MASK (I915_PDES - 1) /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */ #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0)) #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr) #define GEN6_PTE_CACHE_LLC (2 << 1) #define GEN6_PTE_UNCACHED (1 << 1) #define GEN6_PTE_VALID REG_BIT(0) #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t)) #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE) #define GEN6_PD_ALIGN (PAGE_SIZE * 16) #define GEN6_PDE_SHIFT 22 #define GEN6_PDE_VALID REG_BIT(0) #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT)) #define GEN7_PTE_CACHE_L3_LLC (3 << 1) #define BYT_PTE_SNOOPED_BY_CPU_CACHES REG_BIT(2) #define BYT_PTE_WRITEABLE REG_BIT(1) /* * Cacheability Control is a 4-bit value. The low three bits are stored in bits * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE. */ #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \ (((bits) & 0x8) << (11 - 3))) #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2) #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3) #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8) #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb) #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7) #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6) #define HSW_PTE_UNCACHED (0) #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0)) #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr) /* * GEN8 32b style address is defined as a 3 level page table: * 31:30 | 29:21 | 20:12 | 11:0 * PDPE | PDE | PTE | offset * The difference as compared to normal x86 3 level page table is the PDPEs are * programmed via register. * * GEN8 48b style address is defined as a 4 level page table: * 47:39 | 38:30 | 29:21 | 20:12 | 11:0 * PML4E | PDPE | PDE | PTE | offset */ #define GEN8_3LVL_PDPES 4 #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD) #define PPAT_CACHED_PDE 0 /* WB LLC */ #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */ #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */ #define CHV_PPAT_SNOOP REG_BIT(6) #define GEN8_PPAT_AGE(x) ((x)<<4) #define GEN8_PPAT_LLCeLLC (3<<2) #define GEN8_PPAT_LLCELLC (2<<2) #define GEN8_PPAT_LLC (1<<2) #define GEN8_PPAT_WB (3<<0) #define GEN8_PPAT_WT (2<<0) #define GEN8_PPAT_WC (1<<0) #define GEN8_PPAT_UC (0<<0) #define GEN8_PPAT_ELLC_OVERRIDE (0<<2) #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8)) #define GEN8_PDE_IPS_64K BIT(11) #define GEN8_PDE_PS_2M BIT(7) struct i915_fence_reg; #define for_each_sgt_daddr(__dp, __iter, __sgt) \ __for_each_sgt_daddr(__dp, __iter, __sgt, I915_GTT_PAGE_SIZE) struct i915_page_dma { struct page *page; union { dma_addr_t daddr; /* * For gen6/gen7 only. This is the offset in the GGTT * where the page directory entries for PPGTT begin */ u32 ggtt_offset; }; }; struct i915_page_scratch { struct i915_page_dma base; u64 encode; }; struct i915_page_table { struct i915_page_dma base; atomic_t used; }; struct i915_page_directory { struct i915_page_table pt; spinlock_t lock; void *entry[512]; }; #define __px_choose_expr(x, type, expr, other) \ __builtin_choose_expr( \ __builtin_types_compatible_p(typeof(x), type) || \ __builtin_types_compatible_p(typeof(x), const type), \ ({ type __x = (type)(x); expr; }), \ other) #define px_base(px) \ __px_choose_expr(px, struct i915_page_dma *, __x, \ __px_choose_expr(px, struct i915_page_scratch *, &__x->base, \ __px_choose_expr(px, struct i915_page_table *, &__x->base, \ __px_choose_expr(px, struct i915_page_directory *, &__x->pt.base, \ (void)0)))) #define px_dma(px) (px_base(px)->daddr) #define px_pt(px) \ __px_choose_expr(px, struct i915_page_table *, __x, \ __px_choose_expr(px, struct i915_page_directory *, &__x->pt, \ (void)0)) #define px_used(px) (&px_pt(px)->used) enum i915_cache_level; struct drm_i915_file_private; struct drm_i915_gem_object; struct i915_vma; struct intel_gt; struct i915_vma_ops { /* Map an object into an address space with the given cache flags. */ int (*bind_vma)(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); /* * Unmap an object from an address space. This usually consists of * setting the valid PTE entries to a reserved scratch page. */ void (*unbind_vma)(struct i915_vma *vma); int (*set_pages)(struct i915_vma *vma); void (*clear_pages)(struct i915_vma *vma); }; struct pagestash { spinlock_t lock; struct pagevec pvec; }; void stash_init(struct pagestash *stash); struct i915_address_space { struct kref ref; struct rcu_work rcu; struct drm_mm mm; struct intel_gt *gt; struct drm_i915_private *i915; struct device *dma; /* * Every address space belongs to a struct file - except for the global * GTT that is owned by the driver (and so @file is set to NULL). In * principle, no information should leak from one context to another * (or between files/processes etc) unless explicitly shared by the * owner. Tracking the owner is important in order to free up per-file * objects along with the file, to aide resource tracking, and to * assign blame. */ struct drm_i915_file_private *file; u64 total; /* size addr space maps (ex. 2GB for ggtt) */ u64 reserved; /* size addr space reserved */ unsigned int bind_async_flags; /* * Each active user context has its own address space (in full-ppgtt). * Since the vm may be shared between multiple contexts, we count how * many contexts keep us "open". Once open hits zero, we are closed * and do not allow any new attachments, and proceed to shutdown our * vma and page directories. */ atomic_t open; struct mutex mutex; /* protects vma and our lists */ #define VM_CLASS_GGTT 0 #define VM_CLASS_PPGTT 1 struct i915_page_scratch scratch[4]; unsigned int scratch_order; unsigned int top; /** * List of vma currently bound. */ struct list_head bound_list; struct pagestash free_pages; /* Global GTT */ bool is_ggtt:1; /* Some systems require uncached updates of the page directories */ bool pt_kmap_wc:1; /* Some systems support read-only mappings for GGTT and/or PPGTT */ bool has_read_only:1; u64 (*pte_encode)(dma_addr_t addr, enum i915_cache_level level, u32 flags); /* Create a valid PTE */ #define PTE_READ_ONLY BIT(0) int (*allocate_va_range)(struct i915_address_space *vm, u64 start, u64 length); void (*clear_range)(struct i915_address_space *vm, u64 start, u64 length); void (*insert_page)(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 flags); void (*insert_entries)(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); void (*cleanup)(struct i915_address_space *vm); struct i915_vma_ops vma_ops; I915_SELFTEST_DECLARE(struct fault_attr fault_attr); I915_SELFTEST_DECLARE(bool scrub_64K); }; /* * The Graphics Translation Table is the way in which GEN hardware translates a * Graphics Virtual Address into a Physical Address. In addition to the normal * collateral associated with any va->pa translations GEN hardware also has a * portion of the GTT which can be mapped by the CPU and remain both coherent * and correct (in cases like swizzling). That region is referred to as GMADR in * the spec. */ struct i915_ggtt { struct i915_address_space vm; struct io_mapping iomap; /* Mapping to our CPU mappable region */ struct resource gmadr; /* GMADR resource */ resource_size_t mappable_end; /* End offset that we can CPU map */ /** "Graphics Stolen Memory" holds the global PTEs */ void __iomem *gsm; void (*invalidate)(struct i915_ggtt *ggtt); /** PPGTT used for aliasing the PPGTT with the GTT */ struct i915_ppgtt *alias; bool do_idle_maps; int mtrr; /** Bit 6 swizzling required for X tiling */ u32 bit_6_swizzle_x; /** Bit 6 swizzling required for Y tiling */ u32 bit_6_swizzle_y; u32 pin_bias; unsigned int num_fences; struct i915_fence_reg *fence_regs; struct list_head fence_list; /** * List of all objects in gtt_space, currently mmaped by userspace. * All objects within this list must also be on bound_list. */ struct list_head userfault_list; /* Manual runtime pm autosuspend delay for user GGTT mmaps */ struct intel_wakeref_auto userfault_wakeref; struct mutex error_mutex; struct drm_mm_node error_capture; struct drm_mm_node uc_fw; }; struct i915_ppgtt { struct i915_address_space vm; struct i915_page_directory *pd; }; #define i915_is_ggtt(vm) ((vm)->is_ggtt) static inline bool i915_vm_is_4lvl(const struct i915_address_space *vm) { return (vm->total - 1) >> 32; } static inline bool i915_vm_has_scratch_64K(struct i915_address_space *vm) { return vm->scratch_order == get_order(I915_GTT_PAGE_SIZE_64K); } static inline bool i915_vm_has_cache_coloring(struct i915_address_space *vm) { return i915_is_ggtt(vm) && vm->mm.color_adjust; } static inline struct i915_ggtt * i915_vm_to_ggtt(struct i915_address_space *vm) { BUILD_BUG_ON(offsetof(struct i915_ggtt, vm)); GEM_BUG_ON(!i915_is_ggtt(vm)); return container_of(vm, struct i915_ggtt, vm); } static inline struct i915_ppgtt * i915_vm_to_ppgtt(struct i915_address_space *vm) { BUILD_BUG_ON(offsetof(struct i915_ppgtt, vm)); GEM_BUG_ON(i915_is_ggtt(vm)); return container_of(vm, struct i915_ppgtt, vm); } static inline struct i915_address_space * i915_vm_get(struct i915_address_space *vm) { kref_get(&vm->ref); return vm; } void i915_vm_release(struct kref *kref); static inline void i915_vm_put(struct i915_address_space *vm) { kref_put(&vm->ref, i915_vm_release); } static inline struct i915_address_space * i915_vm_open(struct i915_address_space *vm) { GEM_BUG_ON(!atomic_read(&vm->open)); atomic_inc(&vm->open); return i915_vm_get(vm); } static inline bool i915_vm_tryopen(struct i915_address_space *vm) { if (atomic_add_unless(&vm->open, 1, 0)) return i915_vm_get(vm); return false; } void __i915_vm_close(struct i915_address_space *vm); static inline void i915_vm_close(struct i915_address_space *vm) { GEM_BUG_ON(!atomic_read(&vm->open)); __i915_vm_close(vm); i915_vm_put(vm); } void i915_address_space_init(struct i915_address_space *vm, int subclass); void i915_address_space_fini(struct i915_address_space *vm); static inline u32 i915_pte_index(u64 address, unsigned int pde_shift) { const u32 mask = NUM_PTE(pde_shift) - 1; return (address >> PAGE_SHIFT) & mask; } /* * Helper to counts the number of PTEs within the given length. This count * does not cross a page table boundary, so the max value would be * GEN6_PTES for GEN6, and GEN8_PTES for GEN8. */ static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift) { const u64 mask = ~((1ULL << pde_shift) - 1); u64 end; GEM_BUG_ON(length == 0); GEM_BUG_ON(offset_in_page(addr | length)); end = addr + length; if ((addr & mask) != (end & mask)) return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift); return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift); } static inline u32 i915_pde_index(u64 addr, u32 shift) { return (addr >> shift) & I915_PDE_MASK; } static inline struct i915_page_table * i915_pt_entry(const struct i915_page_directory * const pd, const unsigned short n) { return pd->entry[n]; } static inline struct i915_page_directory * i915_pd_entry(const struct i915_page_directory * const pdp, const unsigned short n) { return pdp->entry[n]; } static inline dma_addr_t i915_page_dir_dma_addr(const struct i915_ppgtt *ppgtt, const unsigned int n) { struct i915_page_dma *pt = ppgtt->pd->entry[n]; return px_dma(pt ?: px_base(&ppgtt->vm.scratch[ppgtt->vm.top])); } void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt); int i915_ggtt_probe_hw(struct drm_i915_private *i915); int i915_ggtt_init_hw(struct drm_i915_private *i915); int i915_ggtt_enable_hw(struct drm_i915_private *i915); void i915_ggtt_enable_guc(struct i915_ggtt *ggtt); void i915_ggtt_disable_guc(struct i915_ggtt *ggtt); int i915_init_ggtt(struct drm_i915_private *i915); void i915_ggtt_driver_release(struct drm_i915_private *i915); static inline bool i915_ggtt_has_aperture(const struct i915_ggtt *ggtt) { return ggtt->mappable_end > 0; } int i915_ppgtt_init_hw(struct intel_gt *gt); struct i915_ppgtt *i915_ppgtt_create(struct intel_gt *gt); void i915_ggtt_suspend(struct i915_ggtt *gtt); void i915_ggtt_resume(struct i915_ggtt *ggtt); int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p); void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p); #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) void fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count); #define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64)) #define fill32_px(px, v) do { \ u64 v__ = lower_32_bits(v); \ fill_px((px), v__ << 32 | v__); \ } while (0) int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp); void cleanup_scratch_page(struct i915_address_space *vm); void free_scratch(struct i915_address_space *vm); struct i915_page_table *alloc_pt(struct i915_address_space *vm); struct i915_page_directory *alloc_pd(struct i915_address_space *vm); struct i915_page_directory *__alloc_pd(size_t sz); void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd); #define free_px(vm, px) free_pd(vm, px_base(px)) void __set_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_dma * const to, u64 (*encode)(const dma_addr_t, const enum i915_cache_level)); #define set_pd_entry(pd, idx, to) \ __set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode) void clear_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, const struct i915_page_scratch * const scratch); bool release_pd_entry(struct i915_page_directory * const pd, const unsigned short idx, struct i915_page_table * const pt, const struct i915_page_scratch * const scratch); void gen6_ggtt_invalidate(struct i915_ggtt *ggtt); int ggtt_set_pages(struct i915_vma *vma); int ppgtt_set_pages(struct i915_vma *vma); void clear_pages(struct i915_vma *vma); void gtt_write_workarounds(struct intel_gt *gt); void setup_private_pat(struct intel_uncore *uncore); static inline struct sgt_dma { struct scatterlist *sg; dma_addr_t dma, max; } sgt_dma(struct i915_vma *vma) { struct scatterlist *sg = vma->pages->sgl; dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma){ sg, addr, addr + sg->length }; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1