Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 7153 | 94.38% | 75 | 88.24% |
Michel Thierry | 295 | 3.89% | 2 | 2.35% |
Matthew Auld | 44 | 0.58% | 1 | 1.18% |
Michal Wajdeczko | 42 | 0.55% | 1 | 1.18% |
Tvrtko A. Ursulin | 34 | 0.45% | 3 | 3.53% |
Mika Kuoppala | 6 | 0.08% | 1 | 1.18% |
Daniele Ceraolo Spurio | 5 | 0.07% | 2 | 2.35% |
Total | 7579 | 85 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <linux/kthread.h> #include "gem/i915_gem_context.h" #include "intel_gt.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "i915_selftest.h" #include "selftests/i915_random.h" #include "selftests/igt_flush_test.h" #include "selftests/igt_reset.h" #include "selftests/igt_atomic.h" #include "selftests/mock_drm.h" #include "gem/selftests/mock_context.h" #include "gem/selftests/igt_gem_utils.h" #define IGT_IDLE_TIMEOUT 50 /* ms; time to wait after flushing between tests */ struct hang { struct intel_gt *gt; struct drm_i915_gem_object *hws; struct drm_i915_gem_object *obj; struct i915_gem_context *ctx; u32 *seqno; u32 *batch; }; static int hang_init(struct hang *h, struct intel_gt *gt) { void *vaddr; int err; memset(h, 0, sizeof(*h)); h->gt = gt; h->ctx = kernel_context(gt->i915); if (IS_ERR(h->ctx)) return PTR_ERR(h->ctx); GEM_BUG_ON(i915_gem_context_is_bannable(h->ctx)); h->hws = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(h->hws)) { err = PTR_ERR(h->hws); goto err_ctx; } h->obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(h->obj)) { err = PTR_ERR(h->obj); goto err_hws; } i915_gem_object_set_cache_coherency(h->hws, I915_CACHE_LLC); vaddr = i915_gem_object_pin_map(h->hws, I915_MAP_WB); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_obj; } h->seqno = memset(vaddr, 0xff, PAGE_SIZE); vaddr = i915_gem_object_pin_map(h->obj, i915_coherent_map_type(gt->i915)); if (IS_ERR(vaddr)) { err = PTR_ERR(vaddr); goto err_unpin_hws; } h->batch = vaddr; return 0; err_unpin_hws: i915_gem_object_unpin_map(h->hws); err_obj: i915_gem_object_put(h->obj); err_hws: i915_gem_object_put(h->hws); err_ctx: kernel_context_close(h->ctx); return err; } static u64 hws_address(const struct i915_vma *hws, const struct i915_request *rq) { return hws->node.start + offset_in_page(sizeof(u32)*rq->fence.context); } static int move_to_active(struct i915_vma *vma, struct i915_request *rq, unsigned int flags) { int err; i915_vma_lock(vma); err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE); if (err == 0) err = i915_vma_move_to_active(vma, rq, flags); i915_vma_unlock(vma); return err; } static struct i915_request * hang_create_request(struct hang *h, struct intel_engine_cs *engine) { struct intel_gt *gt = h->gt; struct i915_address_space *vm = i915_gem_context_get_vm_rcu(h->ctx); struct drm_i915_gem_object *obj; struct i915_request *rq = NULL; struct i915_vma *hws, *vma; unsigned int flags; void *vaddr; u32 *batch; int err; obj = i915_gem_object_create_internal(gt->i915, PAGE_SIZE); if (IS_ERR(obj)) { i915_vm_put(vm); return ERR_CAST(obj); } vaddr = i915_gem_object_pin_map(obj, i915_coherent_map_type(gt->i915)); if (IS_ERR(vaddr)) { i915_gem_object_put(obj); i915_vm_put(vm); return ERR_CAST(vaddr); } i915_gem_object_unpin_map(h->obj); i915_gem_object_put(h->obj); h->obj = obj; h->batch = vaddr; vma = i915_vma_instance(h->obj, vm, NULL); if (IS_ERR(vma)) { i915_vm_put(vm); return ERR_CAST(vma); } hws = i915_vma_instance(h->hws, vm, NULL); if (IS_ERR(hws)) { i915_vm_put(vm); return ERR_CAST(hws); } err = i915_vma_pin(vma, 0, 0, PIN_USER); if (err) { i915_vm_put(vm); return ERR_PTR(err); } err = i915_vma_pin(hws, 0, 0, PIN_USER); if (err) goto unpin_vma; rq = igt_request_alloc(h->ctx, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto unpin_hws; } err = move_to_active(vma, rq, 0); if (err) goto cancel_rq; err = move_to_active(hws, rq, 0); if (err) goto cancel_rq; batch = h->batch; if (INTEL_GEN(gt->i915) >= 8) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = upper_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_ARB_CHECK; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_ARB_CHECK; *batch++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; *batch++ = lower_32_bits(vma->node.start); *batch++ = upper_32_bits(vma->node.start); } else if (INTEL_GEN(gt->i915) >= 6) { *batch++ = MI_STORE_DWORD_IMM_GEN4; *batch++ = 0; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_ARB_CHECK; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_ARB_CHECK; *batch++ = MI_BATCH_BUFFER_START | 1 << 8; *batch++ = lower_32_bits(vma->node.start); } else if (INTEL_GEN(gt->i915) >= 4) { *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; *batch++ = 0; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_ARB_CHECK; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_ARB_CHECK; *batch++ = MI_BATCH_BUFFER_START | 2 << 6; *batch++ = lower_32_bits(vma->node.start); } else { *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; *batch++ = lower_32_bits(hws_address(hws, rq)); *batch++ = rq->fence.seqno; *batch++ = MI_ARB_CHECK; memset(batch, 0, 1024); batch += 1024 / sizeof(*batch); *batch++ = MI_ARB_CHECK; *batch++ = MI_BATCH_BUFFER_START | 2 << 6; *batch++ = lower_32_bits(vma->node.start); } *batch++ = MI_BATCH_BUFFER_END; /* not reached */ intel_gt_chipset_flush(engine->gt); if (rq->engine->emit_init_breadcrumb) { err = rq->engine->emit_init_breadcrumb(rq); if (err) goto cancel_rq; } flags = 0; if (INTEL_GEN(gt->i915) <= 5) flags |= I915_DISPATCH_SECURE; err = rq->engine->emit_bb_start(rq, vma->node.start, PAGE_SIZE, flags); cancel_rq: if (err) { i915_request_set_error_once(rq, err); i915_request_add(rq); } unpin_hws: i915_vma_unpin(hws); unpin_vma: i915_vma_unpin(vma); i915_vm_put(vm); return err ? ERR_PTR(err) : rq; } static u32 hws_seqno(const struct hang *h, const struct i915_request *rq) { return READ_ONCE(h->seqno[rq->fence.context % (PAGE_SIZE/sizeof(u32))]); } static void hang_fini(struct hang *h) { *h->batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(h->gt); i915_gem_object_unpin_map(h->obj); i915_gem_object_put(h->obj); i915_gem_object_unpin_map(h->hws); i915_gem_object_put(h->hws); kernel_context_close(h->ctx); igt_flush_test(h->gt->i915); } static bool wait_until_running(struct hang *h, struct i915_request *rq) { return !(wait_for_us(i915_seqno_passed(hws_seqno(h, rq), rq->fence.seqno), 10) && wait_for(i915_seqno_passed(hws_seqno(h, rq), rq->fence.seqno), 1000)); } static void engine_heartbeat_disable(struct intel_engine_cs *engine) { engine->props.heartbeat_interval_ms = 0; intel_engine_pm_get(engine); intel_engine_park_heartbeat(engine); } static void engine_heartbeat_enable(struct intel_engine_cs *engine) { intel_engine_pm_put(engine); engine->props.heartbeat_interval_ms = engine->defaults.heartbeat_interval_ms; } static int igt_hang_sanitycheck(void *arg) { struct intel_gt *gt = arg; struct i915_request *rq; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err; /* Basic check that we can execute our hanging batch */ err = hang_init(&h, gt); if (err) return err; for_each_engine(engine, gt, id) { struct intel_wedge_me w; long timeout; if (!intel_engine_can_store_dword(engine)) continue; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); pr_err("Failed to create request for %s, err=%d\n", engine->name, err); goto fini; } i915_request_get(rq); *h.batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(engine->gt); i915_request_add(rq); timeout = 0; intel_wedge_on_timeout(&w, gt, HZ / 10 /* 100ms */) timeout = i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); if (intel_gt_is_wedged(gt)) timeout = -EIO; i915_request_put(rq); if (timeout < 0) { err = timeout; pr_err("Wait for request failed on %s, err=%d\n", engine->name, err); goto fini; } } fini: hang_fini(&h); return err; } static bool wait_for_idle(struct intel_engine_cs *engine) { return wait_for(intel_engine_is_idle(engine), IGT_IDLE_TIMEOUT) == 0; } static int igt_reset_nop(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine; unsigned int reset_count, count; enum intel_engine_id id; IGT_TIMEOUT(end_time); int err = 0; /* Check that we can reset during non-user portions of requests */ reset_count = i915_reset_count(global); count = 0; do { for_each_engine(engine, gt, id) { struct intel_context *ce; int i; ce = intel_context_create(engine); if (IS_ERR(ce)) { err = PTR_ERR(ce); break; } for (i = 0; i < 16; i++) { struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } i915_request_add(rq); } intel_context_put(ce); } igt_global_reset_lock(gt); intel_gt_reset(gt, ALL_ENGINES, NULL); igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) { err = -EIO; break; } if (i915_reset_count(global) != reset_count + ++count) { pr_err("Full GPU reset not recorded!\n"); err = -EINVAL; break; } err = igt_flush_test(gt->i915); if (err) break; } while (time_before(jiffies, end_time)); pr_info("%s: %d resets\n", __func__, count); if (igt_flush_test(gt->i915)) err = -EIO; return err; } static int igt_reset_nop_engine(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; /* Check that we can engine-reset during non-user portions */ if (!intel_has_reset_engine(gt)) return 0; for_each_engine(engine, gt, id) { unsigned int reset_count, reset_engine_count, count; struct intel_context *ce; IGT_TIMEOUT(end_time); int err; ce = intel_context_create(engine); if (IS_ERR(ce)) return PTR_ERR(ce); reset_count = i915_reset_count(global); reset_engine_count = i915_reset_engine_count(global, engine); count = 0; engine_heartbeat_disable(engine); set_bit(I915_RESET_ENGINE + id, >->reset.flags); do { int i; if (!wait_for_idle(engine)) { pr_err("%s failed to idle before reset\n", engine->name); err = -EIO; break; } for (i = 0; i < 16; i++) { struct i915_request *rq; rq = intel_context_create_request(ce); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } i915_request_add(rq); } err = intel_engine_reset(engine, NULL); if (err) { pr_err("i915_reset_engine failed\n"); break; } if (i915_reset_count(global) != reset_count) { pr_err("Full GPU reset recorded! (engine reset expected)\n"); err = -EINVAL; break; } if (i915_reset_engine_count(global, engine) != reset_engine_count + ++count) { pr_err("%s engine reset not recorded!\n", engine->name); err = -EINVAL; break; } } while (time_before(jiffies, end_time)); clear_bit(I915_RESET_ENGINE + id, >->reset.flags); engine_heartbeat_enable(engine); pr_info("%s(%s): %d resets\n", __func__, engine->name, count); intel_context_put(ce); if (igt_flush_test(gt->i915)) err = -EIO; if (err) return err; } return 0; } static int __igt_reset_engine(struct intel_gt *gt, bool active) { struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err = 0; /* Check that we can issue an engine reset on an idle engine (no-op) */ if (!intel_has_reset_engine(gt)) return 0; if (active) { err = hang_init(&h, gt); if (err) return err; } for_each_engine(engine, gt, id) { unsigned int reset_count, reset_engine_count; IGT_TIMEOUT(end_time); if (active && !intel_engine_can_store_dword(engine)) continue; if (!wait_for_idle(engine)) { pr_err("%s failed to idle before reset\n", engine->name); err = -EIO; break; } reset_count = i915_reset_count(global); reset_engine_count = i915_reset_engine_count(global, engine); engine_heartbeat_disable(engine); set_bit(I915_RESET_ENGINE + id, >->reset.flags); do { if (active) { struct i915_request *rq; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); err = -EIO; break; } i915_request_put(rq); } err = intel_engine_reset(engine, NULL); if (err) { pr_err("i915_reset_engine failed\n"); break; } if (i915_reset_count(global) != reset_count) { pr_err("Full GPU reset recorded! (engine reset expected)\n"); err = -EINVAL; break; } if (i915_reset_engine_count(global, engine) != ++reset_engine_count) { pr_err("%s engine reset not recorded!\n", engine->name); err = -EINVAL; break; } } while (time_before(jiffies, end_time)); clear_bit(I915_RESET_ENGINE + id, >->reset.flags); engine_heartbeat_enable(engine); if (err) break; err = igt_flush_test(gt->i915); if (err) break; } if (intel_gt_is_wedged(gt)) err = -EIO; if (active) hang_fini(&h); return err; } static int igt_reset_idle_engine(void *arg) { return __igt_reset_engine(arg, false); } static int igt_reset_active_engine(void *arg) { return __igt_reset_engine(arg, true); } struct active_engine { struct task_struct *task; struct intel_engine_cs *engine; unsigned long resets; unsigned int flags; }; #define TEST_ACTIVE BIT(0) #define TEST_OTHERS BIT(1) #define TEST_SELF BIT(2) #define TEST_PRIORITY BIT(3) static int active_request_put(struct i915_request *rq) { int err = 0; if (!rq) return 0; if (i915_request_wait(rq, 0, 5 * HZ) < 0) { GEM_TRACE("%s timed out waiting for completion of fence %llx:%lld\n", rq->engine->name, rq->fence.context, rq->fence.seqno); GEM_TRACE_DUMP(); intel_gt_set_wedged(rq->engine->gt); err = -EIO; } i915_request_put(rq); return err; } static int active_engine(void *data) { I915_RND_STATE(prng); struct active_engine *arg = data; struct intel_engine_cs *engine = arg->engine; struct i915_request *rq[8] = {}; struct intel_context *ce[ARRAY_SIZE(rq)]; unsigned long count; int err = 0; for (count = 0; count < ARRAY_SIZE(ce); count++) { ce[count] = intel_context_create(engine); if (IS_ERR(ce[count])) { err = PTR_ERR(ce[count]); while (--count) intel_context_put(ce[count]); return err; } } count = 0; while (!kthread_should_stop()) { unsigned int idx = count++ & (ARRAY_SIZE(rq) - 1); struct i915_request *old = rq[idx]; struct i915_request *new; new = intel_context_create_request(ce[idx]); if (IS_ERR(new)) { err = PTR_ERR(new); break; } rq[idx] = i915_request_get(new); i915_request_add(new); if (engine->schedule && arg->flags & TEST_PRIORITY) { struct i915_sched_attr attr = { .priority = i915_prandom_u32_max_state(512, &prng), }; engine->schedule(rq[idx], &attr); } err = active_request_put(old); if (err) break; cond_resched(); } for (count = 0; count < ARRAY_SIZE(rq); count++) { int err__ = active_request_put(rq[count]); /* Keep the first error */ if (!err) err = err__; intel_context_put(ce[count]); } return err; } static int __igt_reset_engines(struct intel_gt *gt, const char *test_name, unsigned int flags) { struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine, *other; enum intel_engine_id id, tmp; struct hang h; int err = 0; /* Check that issuing a reset on one engine does not interfere * with any other engine. */ if (!intel_has_reset_engine(gt)) return 0; if (flags & TEST_ACTIVE) { err = hang_init(&h, gt); if (err) return err; if (flags & TEST_PRIORITY) h.ctx->sched.priority = 1024; } for_each_engine(engine, gt, id) { struct active_engine threads[I915_NUM_ENGINES] = {}; unsigned long device = i915_reset_count(global); unsigned long count = 0, reported; IGT_TIMEOUT(end_time); if (flags & TEST_ACTIVE && !intel_engine_can_store_dword(engine)) continue; if (!wait_for_idle(engine)) { pr_err("i915_reset_engine(%s:%s): failed to idle before reset\n", engine->name, test_name); err = -EIO; break; } memset(threads, 0, sizeof(threads)); for_each_engine(other, gt, tmp) { struct task_struct *tsk; threads[tmp].resets = i915_reset_engine_count(global, other); if (!(flags & TEST_OTHERS)) continue; if (other == engine && !(flags & TEST_SELF)) continue; threads[tmp].engine = other; threads[tmp].flags = flags; tsk = kthread_run(active_engine, &threads[tmp], "igt/%s", other->name); if (IS_ERR(tsk)) { err = PTR_ERR(tsk); goto unwind; } threads[tmp].task = tsk; get_task_struct(tsk); } yield(); /* start all threads before we begin */ engine_heartbeat_disable(engine); set_bit(I915_RESET_ENGINE + id, >->reset.flags); do { struct i915_request *rq = NULL; if (flags & TEST_ACTIVE) { rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); break; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); err = -EIO; break; } } err = intel_engine_reset(engine, NULL); if (err) { pr_err("i915_reset_engine(%s:%s): failed, err=%d\n", engine->name, test_name, err); break; } count++; if (rq) { if (i915_request_wait(rq, 0, HZ / 5) < 0) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("i915_reset_engine(%s:%s):" " failed to complete request after reset\n", engine->name, test_name); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); err = -EIO; break; } i915_request_put(rq); } if (!(flags & TEST_SELF) && !wait_for_idle(engine)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("i915_reset_engine(%s:%s):" " failed to idle after reset\n", engine->name, test_name); intel_engine_dump(engine, &p, "%s\n", engine->name); err = -EIO; break; } } while (time_before(jiffies, end_time)); clear_bit(I915_RESET_ENGINE + id, >->reset.flags); engine_heartbeat_enable(engine); pr_info("i915_reset_engine(%s:%s): %lu resets\n", engine->name, test_name, count); reported = i915_reset_engine_count(global, engine); reported -= threads[engine->id].resets; if (reported != count) { pr_err("i915_reset_engine(%s:%s): reset %lu times, but reported %lu\n", engine->name, test_name, count, reported); if (!err) err = -EINVAL; } unwind: for_each_engine(other, gt, tmp) { int ret; if (!threads[tmp].task) continue; ret = kthread_stop(threads[tmp].task); if (ret) { pr_err("kthread for other engine %s failed, err=%d\n", other->name, ret); if (!err) err = ret; } put_task_struct(threads[tmp].task); if (other->uabi_class != engine->uabi_class && threads[tmp].resets != i915_reset_engine_count(global, other)) { pr_err("Innocent engine %s was reset (count=%ld)\n", other->name, i915_reset_engine_count(global, other) - threads[tmp].resets); if (!err) err = -EINVAL; } } if (device != i915_reset_count(global)) { pr_err("Global reset (count=%ld)!\n", i915_reset_count(global) - device); if (!err) err = -EINVAL; } if (err) break; err = igt_flush_test(gt->i915); if (err) break; } if (intel_gt_is_wedged(gt)) err = -EIO; if (flags & TEST_ACTIVE) hang_fini(&h); return err; } static int igt_reset_engines(void *arg) { static const struct { const char *name; unsigned int flags; } phases[] = { { "idle", 0 }, { "active", TEST_ACTIVE }, { "others-idle", TEST_OTHERS }, { "others-active", TEST_OTHERS | TEST_ACTIVE }, { "others-priority", TEST_OTHERS | TEST_ACTIVE | TEST_PRIORITY }, { "self-priority", TEST_OTHERS | TEST_ACTIVE | TEST_PRIORITY | TEST_SELF, }, { } }; struct intel_gt *gt = arg; typeof(*phases) *p; int err; for (p = phases; p->name; p++) { if (p->flags & TEST_PRIORITY) { if (!(gt->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) continue; } err = __igt_reset_engines(arg, p->name, p->flags); if (err) return err; } return 0; } static u32 fake_hangcheck(struct intel_gt *gt, intel_engine_mask_t mask) { u32 count = i915_reset_count(>->i915->gpu_error); intel_gt_reset(gt, mask, NULL); return count; } static int igt_reset_wait(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine = gt->engine[RCS0]; struct i915_request *rq; unsigned int reset_count; struct hang h; long timeout; int err; if (!engine || !intel_engine_can_store_dword(engine)) return 0; /* Check that we detect a stuck waiter and issue a reset */ igt_global_reset_lock(gt); err = hang_init(&h, gt); if (err) goto unlock; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto fini; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); err = -EIO; goto out_rq; } reset_count = fake_hangcheck(gt, ALL_ENGINES); timeout = i915_request_wait(rq, 0, 10); if (timeout < 0) { pr_err("i915_request_wait failed on a stuck request: err=%ld\n", timeout); err = timeout; goto out_rq; } if (i915_reset_count(global) == reset_count) { pr_err("No GPU reset recorded!\n"); err = -EINVAL; goto out_rq; } out_rq: i915_request_put(rq); fini: hang_fini(&h); unlock: igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) return -EIO; return err; } struct evict_vma { struct completion completion; struct i915_vma *vma; }; static int evict_vma(void *data) { struct evict_vma *arg = data; struct i915_address_space *vm = arg->vma->vm; struct drm_mm_node evict = arg->vma->node; int err; complete(&arg->completion); mutex_lock(&vm->mutex); err = i915_gem_evict_for_node(vm, &evict, 0); mutex_unlock(&vm->mutex); return err; } static int evict_fence(void *data) { struct evict_vma *arg = data; int err; complete(&arg->completion); /* Mark the fence register as dirty to force the mmio update. */ err = i915_gem_object_set_tiling(arg->vma->obj, I915_TILING_Y, 512); if (err) { pr_err("Invalid Y-tiling settings; err:%d\n", err); return err; } err = i915_vma_pin(arg->vma, 0, 0, PIN_GLOBAL | PIN_MAPPABLE); if (err) { pr_err("Unable to pin vma for Y-tiled fence; err:%d\n", err); return err; } err = i915_vma_pin_fence(arg->vma); i915_vma_unpin(arg->vma); if (err) { pr_err("Unable to pin Y-tiled fence; err:%d\n", err); return err; } i915_vma_unpin_fence(arg->vma); return 0; } static int __igt_reset_evict_vma(struct intel_gt *gt, struct i915_address_space *vm, int (*fn)(void *), unsigned int flags) { struct intel_engine_cs *engine = gt->engine[RCS0]; struct drm_i915_gem_object *obj; struct task_struct *tsk = NULL; struct i915_request *rq; struct evict_vma arg; struct hang h; unsigned int pin_flags; int err; if (!gt->ggtt->num_fences && flags & EXEC_OBJECT_NEEDS_FENCE) return 0; if (!engine || !intel_engine_can_store_dword(engine)) return 0; /* Check that we can recover an unbind stuck on a hanging request */ err = hang_init(&h, gt); if (err) return err; obj = i915_gem_object_create_internal(gt->i915, SZ_1M); if (IS_ERR(obj)) { err = PTR_ERR(obj); goto fini; } if (flags & EXEC_OBJECT_NEEDS_FENCE) { err = i915_gem_object_set_tiling(obj, I915_TILING_X, 512); if (err) { pr_err("Invalid X-tiling settings; err:%d\n", err); goto out_obj; } } arg.vma = i915_vma_instance(obj, vm, NULL); if (IS_ERR(arg.vma)) { err = PTR_ERR(arg.vma); goto out_obj; } rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out_obj; } pin_flags = i915_vma_is_ggtt(arg.vma) ? PIN_GLOBAL : PIN_USER; if (flags & EXEC_OBJECT_NEEDS_FENCE) pin_flags |= PIN_MAPPABLE; err = i915_vma_pin(arg.vma, 0, 0, pin_flags); if (err) { i915_request_add(rq); goto out_obj; } if (flags & EXEC_OBJECT_NEEDS_FENCE) { err = i915_vma_pin_fence(arg.vma); if (err) { pr_err("Unable to pin X-tiled fence; err:%d\n", err); i915_vma_unpin(arg.vma); i915_request_add(rq); goto out_obj; } } i915_vma_lock(arg.vma); err = i915_request_await_object(rq, arg.vma->obj, flags & EXEC_OBJECT_WRITE); if (err == 0) err = i915_vma_move_to_active(arg.vma, rq, flags); i915_vma_unlock(arg.vma); if (flags & EXEC_OBJECT_NEEDS_FENCE) i915_vma_unpin_fence(arg.vma); i915_vma_unpin(arg.vma); i915_request_get(rq); i915_request_add(rq); if (err) goto out_rq; if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); goto out_reset; } init_completion(&arg.completion); tsk = kthread_run(fn, &arg, "igt/evict_vma"); if (IS_ERR(tsk)) { err = PTR_ERR(tsk); tsk = NULL; goto out_reset; } get_task_struct(tsk); wait_for_completion(&arg.completion); if (wait_for(!list_empty(&rq->fence.cb_list), 10)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("igt/evict_vma kthread did not wait\n"); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); goto out_reset; } out_reset: igt_global_reset_lock(gt); fake_hangcheck(gt, rq->engine->mask); igt_global_reset_unlock(gt); if (tsk) { struct intel_wedge_me w; /* The reset, even indirectly, should take less than 10ms. */ intel_wedge_on_timeout(&w, gt, HZ / 10 /* 100ms */) err = kthread_stop(tsk); put_task_struct(tsk); } out_rq: i915_request_put(rq); out_obj: i915_gem_object_put(obj); fini: hang_fini(&h); if (intel_gt_is_wedged(gt)) return -EIO; return err; } static int igt_reset_evict_ggtt(void *arg) { struct intel_gt *gt = arg; return __igt_reset_evict_vma(gt, >->ggtt->vm, evict_vma, EXEC_OBJECT_WRITE); } static int igt_reset_evict_ppgtt(void *arg) { struct intel_gt *gt = arg; struct i915_ppgtt *ppgtt; int err; /* aliasing == global gtt locking, covered above */ if (INTEL_PPGTT(gt->i915) < INTEL_PPGTT_FULL) return 0; ppgtt = i915_ppgtt_create(gt); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); err = __igt_reset_evict_vma(gt, &ppgtt->vm, evict_vma, EXEC_OBJECT_WRITE); i915_vm_put(&ppgtt->vm); return err; } static int igt_reset_evict_fence(void *arg) { struct intel_gt *gt = arg; return __igt_reset_evict_vma(gt, >->ggtt->vm, evict_fence, EXEC_OBJECT_NEEDS_FENCE); } static int wait_for_others(struct intel_gt *gt, struct intel_engine_cs *exclude) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { if (engine == exclude) continue; if (!wait_for_idle(engine)) return -EIO; } return 0; } static int igt_reset_queue(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine; enum intel_engine_id id; struct hang h; int err; /* Check that we replay pending requests following a hang */ igt_global_reset_lock(gt); err = hang_init(&h, gt); if (err) goto unlock; for_each_engine(engine, gt, id) { struct i915_request *prev; IGT_TIMEOUT(end_time); unsigned int count; if (!intel_engine_can_store_dword(engine)) continue; prev = hang_create_request(&h, engine); if (IS_ERR(prev)) { err = PTR_ERR(prev); goto fini; } i915_request_get(prev); i915_request_add(prev); count = 0; do { struct i915_request *rq; unsigned int reset_count; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto fini; } i915_request_get(rq); i915_request_add(rq); /* * XXX We don't handle resetting the kernel context * very well. If we trigger a device reset twice in * quick succession while the kernel context is * executing, we may end up skipping the breadcrumb. * This is really only a problem for the selftest as * normally there is a large interlude between resets * (hangcheck), or we focus on resetting just one * engine and so avoid repeatedly resetting innocents. */ err = wait_for_others(gt, engine); if (err) { pr_err("%s(%s): Failed to idle other inactive engines after device reset\n", __func__, engine->name); i915_request_put(rq); i915_request_put(prev); GEM_TRACE_DUMP(); intel_gt_set_wedged(gt); goto fini; } if (!wait_until_running(&h, prev)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s(%s): Failed to start request %llx, at %x\n", __func__, engine->name, prev->fence.seqno, hws_seqno(&h, prev)); intel_engine_dump(engine, &p, "%s\n", engine->name); i915_request_put(rq); i915_request_put(prev); intel_gt_set_wedged(gt); err = -EIO; goto fini; } reset_count = fake_hangcheck(gt, BIT(id)); if (prev->fence.error != -EIO) { pr_err("GPU reset not recorded on hanging request [fence.error=%d]!\n", prev->fence.error); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto fini; } if (rq->fence.error) { pr_err("Fence error status not zero [%d] after unrelated reset\n", rq->fence.error); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto fini; } if (i915_reset_count(global) == reset_count) { pr_err("No GPU reset recorded!\n"); i915_request_put(rq); i915_request_put(prev); err = -EINVAL; goto fini; } i915_request_put(prev); prev = rq; count++; } while (time_before(jiffies, end_time)); pr_info("%s: Completed %d resets\n", engine->name, count); *h.batch = MI_BATCH_BUFFER_END; intel_gt_chipset_flush(engine->gt); i915_request_put(prev); err = igt_flush_test(gt->i915); if (err) break; } fini: hang_fini(&h); unlock: igt_global_reset_unlock(gt); if (intel_gt_is_wedged(gt)) return -EIO; return err; } static int igt_handle_error(void *arg) { struct intel_gt *gt = arg; struct i915_gpu_error *global = >->i915->gpu_error; struct intel_engine_cs *engine = gt->engine[RCS0]; struct hang h; struct i915_request *rq; struct i915_gpu_coredump *error; int err; /* Check that we can issue a global GPU and engine reset */ if (!intel_has_reset_engine(gt)) return 0; if (!engine || !intel_engine_can_store_dword(engine)) return 0; err = hang_init(&h, gt); if (err) return err; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto err_fini; } i915_request_get(rq); i915_request_add(rq); if (!wait_until_running(&h, rq)) { struct drm_printer p = drm_info_printer(gt->i915->drm.dev); pr_err("%s: Failed to start request %llx, at %x\n", __func__, rq->fence.seqno, hws_seqno(&h, rq)); intel_engine_dump(rq->engine, &p, "%s\n", rq->engine->name); intel_gt_set_wedged(gt); err = -EIO; goto err_request; } /* Temporarily disable error capture */ error = xchg(&global->first_error, (void *)-1); intel_gt_handle_error(gt, engine->mask, 0, NULL); xchg(&global->first_error, error); if (rq->fence.error != -EIO) { pr_err("Guilty request not identified!\n"); err = -EINVAL; goto err_request; } err_request: i915_request_put(rq); err_fini: hang_fini(&h); return err; } static int __igt_atomic_reset_engine(struct intel_engine_cs *engine, const struct igt_atomic_section *p, const char *mode) { struct tasklet_struct * const t = &engine->execlists.tasklet; int err; GEM_TRACE("i915_reset_engine(%s:%s) under %s\n", engine->name, mode, p->name); tasklet_disable(t); p->critical_section_begin(); err = intel_engine_reset(engine, NULL); p->critical_section_end(); tasklet_enable(t); if (err) pr_err("i915_reset_engine(%s:%s) failed under %s\n", engine->name, mode, p->name); return err; } static int igt_atomic_reset_engine(struct intel_engine_cs *engine, const struct igt_atomic_section *p) { struct i915_request *rq; struct hang h; int err; err = __igt_atomic_reset_engine(engine, p, "idle"); if (err) return err; err = hang_init(&h, engine->gt); if (err) return err; rq = hang_create_request(&h, engine); if (IS_ERR(rq)) { err = PTR_ERR(rq); goto out; } i915_request_get(rq); i915_request_add(rq); if (wait_until_running(&h, rq)) { err = __igt_atomic_reset_engine(engine, p, "active"); } else { pr_err("%s(%s): Failed to start request %llx, at %x\n", __func__, engine->name, rq->fence.seqno, hws_seqno(&h, rq)); intel_gt_set_wedged(engine->gt); err = -EIO; } if (err == 0) { struct intel_wedge_me w; intel_wedge_on_timeout(&w, engine->gt, HZ / 20 /* 50ms */) i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT); if (intel_gt_is_wedged(engine->gt)) err = -EIO; } i915_request_put(rq); out: hang_fini(&h); return err; } static int igt_reset_engines_atomic(void *arg) { struct intel_gt *gt = arg; const typeof(*igt_atomic_phases) *p; int err = 0; /* Check that the engines resets are usable from atomic context */ if (!intel_has_reset_engine(gt)) return 0; if (intel_uc_uses_guc_submission(>->uc)) return 0; igt_global_reset_lock(gt); /* Flush any requests before we get started and check basics */ if (!igt_force_reset(gt)) goto unlock; for (p = igt_atomic_phases; p->name; p++) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) { err = igt_atomic_reset_engine(engine, p); if (err) goto out; } } out: /* As we poke around the guts, do a full reset before continuing. */ igt_force_reset(gt); unlock: igt_global_reset_unlock(gt); return err; } int intel_hangcheck_live_selftests(struct drm_i915_private *i915) { static const struct i915_subtest tests[] = { SUBTEST(igt_hang_sanitycheck), SUBTEST(igt_reset_nop), SUBTEST(igt_reset_nop_engine), SUBTEST(igt_reset_idle_engine), SUBTEST(igt_reset_active_engine), SUBTEST(igt_reset_engines), SUBTEST(igt_reset_engines_atomic), SUBTEST(igt_reset_queue), SUBTEST(igt_reset_wait), SUBTEST(igt_reset_evict_ggtt), SUBTEST(igt_reset_evict_ppgtt), SUBTEST(igt_reset_evict_fence), SUBTEST(igt_handle_error), }; struct intel_gt *gt = &i915->gt; intel_wakeref_t wakeref; int err; if (!intel_has_gpu_reset(gt)) return 0; if (intel_gt_is_wedged(gt)) return -EIO; /* we're long past hope of a successful reset */ wakeref = intel_runtime_pm_get(gt->uncore->rpm); err = intel_gt_live_subtests(tests, gt); intel_runtime_pm_put(gt->uncore->rpm, wakeref); return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1