Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 1143 | 73.32% | 1 | 4.35% |
Chris Wilson | 225 | 14.43% | 11 | 47.83% |
Changbin Du | 119 | 7.63% | 2 | 8.70% |
Zhenyu Wang | 34 | 2.18% | 2 | 8.70% |
Pankaj Bharadiya | 15 | 0.96% | 1 | 4.35% |
Daniele Ceraolo Spurio | 9 | 0.58% | 2 | 8.70% |
Hang Yuan | 8 | 0.51% | 1 | 4.35% |
Tina Zhang | 3 | 0.19% | 1 | 4.35% |
Chuanxiao Dong | 2 | 0.13% | 1 | 4.35% |
Dan Carpenter | 1 | 0.06% | 1 | 4.35% |
Total | 1559 | 23 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian <kevin.tian@intel.com> * Dexuan Cui * * Contributors: * Pei Zhang <pei.zhang@intel.com> * Min He <min.he@intel.com> * Niu Bing <bing.niu@intel.com> * Yulei Zhang <yulei.zhang@intel.com> * Zhenyu Wang <zhenyuw@linux.intel.com> * Zhi Wang <zhi.a.wang@intel.com> * */ #include "i915_drv.h" #include "gt/intel_ggtt_fencing.h" #include "gvt.h" static int alloc_gm(struct intel_vgpu *vgpu, bool high_gm) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gt *gt = gvt->gt; unsigned int flags; u64 start, end, size; struct drm_mm_node *node; int ret; if (high_gm) { node = &vgpu->gm.high_gm_node; size = vgpu_hidden_sz(vgpu); start = ALIGN(gvt_hidden_gmadr_base(gvt), I915_GTT_PAGE_SIZE); end = ALIGN(gvt_hidden_gmadr_end(gvt), I915_GTT_PAGE_SIZE); flags = PIN_HIGH; } else { node = &vgpu->gm.low_gm_node; size = vgpu_aperture_sz(vgpu); start = ALIGN(gvt_aperture_gmadr_base(gvt), I915_GTT_PAGE_SIZE); end = ALIGN(gvt_aperture_gmadr_end(gvt), I915_GTT_PAGE_SIZE); flags = PIN_MAPPABLE; } mutex_lock(>->ggtt->vm.mutex); mmio_hw_access_pre(gt); ret = i915_gem_gtt_insert(>->ggtt->vm, node, size, I915_GTT_PAGE_SIZE, I915_COLOR_UNEVICTABLE, start, end, flags); mmio_hw_access_post(gt); mutex_unlock(>->ggtt->vm.mutex); if (ret) gvt_err("fail to alloc %s gm space from host\n", high_gm ? "high" : "low"); return ret; } static int alloc_vgpu_gm(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gt *gt = gvt->gt; int ret; ret = alloc_gm(vgpu, false); if (ret) return ret; ret = alloc_gm(vgpu, true); if (ret) goto out_free_aperture; gvt_dbg_core("vgpu%d: alloc low GM start %llx size %llx\n", vgpu->id, vgpu_aperture_offset(vgpu), vgpu_aperture_sz(vgpu)); gvt_dbg_core("vgpu%d: alloc high GM start %llx size %llx\n", vgpu->id, vgpu_hidden_offset(vgpu), vgpu_hidden_sz(vgpu)); return 0; out_free_aperture: mutex_lock(>->ggtt->vm.mutex); drm_mm_remove_node(&vgpu->gm.low_gm_node); mutex_unlock(>->ggtt->vm.mutex); return ret; } static void free_vgpu_gm(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gt *gt = gvt->gt; mutex_lock(>->ggtt->vm.mutex); drm_mm_remove_node(&vgpu->gm.low_gm_node); drm_mm_remove_node(&vgpu->gm.high_gm_node); mutex_unlock(>->ggtt->vm.mutex); } /** * intel_vgpu_write_fence - write fence registers owned by a vGPU * @vgpu: vGPU instance * @fence: vGPU fence register number * @value: Fence register value to be written * * This function is used to write fence registers owned by a vGPU. The vGPU * fence register number will be translated into HW fence register number. * */ void intel_vgpu_write_fence(struct intel_vgpu *vgpu, u32 fence, u64 value) { struct intel_gvt *gvt = vgpu->gvt; struct drm_i915_private *i915 = gvt->gt->i915; struct intel_uncore *uncore = gvt->gt->uncore; struct i915_fence_reg *reg; i915_reg_t fence_reg_lo, fence_reg_hi; assert_rpm_wakelock_held(uncore->rpm); if (drm_WARN_ON(&i915->drm, fence >= vgpu_fence_sz(vgpu))) return; reg = vgpu->fence.regs[fence]; if (drm_WARN_ON(&i915->drm, !reg)) return; fence_reg_lo = FENCE_REG_GEN6_LO(reg->id); fence_reg_hi = FENCE_REG_GEN6_HI(reg->id); intel_uncore_write(uncore, fence_reg_lo, 0); intel_uncore_posting_read(uncore, fence_reg_lo); intel_uncore_write(uncore, fence_reg_hi, upper_32_bits(value)); intel_uncore_write(uncore, fence_reg_lo, lower_32_bits(value)); intel_uncore_posting_read(uncore, fence_reg_lo); } static void _clear_vgpu_fence(struct intel_vgpu *vgpu) { int i; for (i = 0; i < vgpu_fence_sz(vgpu); i++) intel_vgpu_write_fence(vgpu, i, 0); } static void free_vgpu_fence(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct intel_uncore *uncore = gvt->gt->uncore; struct i915_fence_reg *reg; intel_wakeref_t wakeref; u32 i; if (drm_WARN_ON(&gvt->gt->i915->drm, !vgpu_fence_sz(vgpu))) return; wakeref = intel_runtime_pm_get(uncore->rpm); mutex_lock(&gvt->gt->ggtt->vm.mutex); _clear_vgpu_fence(vgpu); for (i = 0; i < vgpu_fence_sz(vgpu); i++) { reg = vgpu->fence.regs[i]; i915_unreserve_fence(reg); vgpu->fence.regs[i] = NULL; } mutex_unlock(&gvt->gt->ggtt->vm.mutex); intel_runtime_pm_put(uncore->rpm, wakeref); } static int alloc_vgpu_fence(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; struct intel_uncore *uncore = gvt->gt->uncore; struct i915_fence_reg *reg; intel_wakeref_t wakeref; int i; wakeref = intel_runtime_pm_get(uncore->rpm); /* Request fences from host */ mutex_lock(&gvt->gt->ggtt->vm.mutex); for (i = 0; i < vgpu_fence_sz(vgpu); i++) { reg = i915_reserve_fence(gvt->gt->ggtt); if (IS_ERR(reg)) goto out_free_fence; vgpu->fence.regs[i] = reg; } _clear_vgpu_fence(vgpu); mutex_unlock(&gvt->gt->ggtt->vm.mutex); intel_runtime_pm_put(uncore->rpm, wakeref); return 0; out_free_fence: gvt_vgpu_err("Failed to alloc fences\n"); /* Return fences to host, if fail */ for (i = 0; i < vgpu_fence_sz(vgpu); i++) { reg = vgpu->fence.regs[i]; if (!reg) continue; i915_unreserve_fence(reg); vgpu->fence.regs[i] = NULL; } mutex_unlock(&gvt->gt->ggtt->vm.mutex); intel_runtime_pm_put_unchecked(uncore->rpm); return -ENOSPC; } static void free_resource(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; gvt->gm.vgpu_allocated_low_gm_size -= vgpu_aperture_sz(vgpu); gvt->gm.vgpu_allocated_high_gm_size -= vgpu_hidden_sz(vgpu); gvt->fence.vgpu_allocated_fence_num -= vgpu_fence_sz(vgpu); } static int alloc_resource(struct intel_vgpu *vgpu, struct intel_vgpu_creation_params *param) { struct intel_gvt *gvt = vgpu->gvt; unsigned long request, avail, max, taken; const char *item; if (!param->low_gm_sz || !param->high_gm_sz || !param->fence_sz) { gvt_vgpu_err("Invalid vGPU creation params\n"); return -EINVAL; } item = "low GM space"; max = gvt_aperture_sz(gvt) - HOST_LOW_GM_SIZE; taken = gvt->gm.vgpu_allocated_low_gm_size; avail = max - taken; request = MB_TO_BYTES(param->low_gm_sz); if (request > avail) goto no_enough_resource; vgpu_aperture_sz(vgpu) = ALIGN(request, I915_GTT_PAGE_SIZE); item = "high GM space"; max = gvt_hidden_sz(gvt) - HOST_HIGH_GM_SIZE; taken = gvt->gm.vgpu_allocated_high_gm_size; avail = max - taken; request = MB_TO_BYTES(param->high_gm_sz); if (request > avail) goto no_enough_resource; vgpu_hidden_sz(vgpu) = ALIGN(request, I915_GTT_PAGE_SIZE); item = "fence"; max = gvt_fence_sz(gvt) - HOST_FENCE; taken = gvt->fence.vgpu_allocated_fence_num; avail = max - taken; request = param->fence_sz; if (request > avail) goto no_enough_resource; vgpu_fence_sz(vgpu) = request; gvt->gm.vgpu_allocated_low_gm_size += MB_TO_BYTES(param->low_gm_sz); gvt->gm.vgpu_allocated_high_gm_size += MB_TO_BYTES(param->high_gm_sz); gvt->fence.vgpu_allocated_fence_num += param->fence_sz; return 0; no_enough_resource: gvt_err("fail to allocate resource %s\n", item); gvt_err("request %luMB avail %luMB max %luMB taken %luMB\n", BYTES_TO_MB(request), BYTES_TO_MB(avail), BYTES_TO_MB(max), BYTES_TO_MB(taken)); return -ENOSPC; } /** * inte_gvt_free_vgpu_resource - free HW resource owned by a vGPU * @vgpu: a vGPU * * This function is used to free the HW resource owned by a vGPU. * */ void intel_vgpu_free_resource(struct intel_vgpu *vgpu) { free_vgpu_gm(vgpu); free_vgpu_fence(vgpu); free_resource(vgpu); } /** * intel_vgpu_reset_resource - reset resource state owned by a vGPU * @vgpu: a vGPU * * This function is used to reset resource state owned by a vGPU. * */ void intel_vgpu_reset_resource(struct intel_vgpu *vgpu) { struct intel_gvt *gvt = vgpu->gvt; intel_wakeref_t wakeref; with_intel_runtime_pm(gvt->gt->uncore->rpm, wakeref) _clear_vgpu_fence(vgpu); } /** * intel_alloc_vgpu_resource - allocate HW resource for a vGPU * @vgpu: vGPU * @param: vGPU creation params * * This function is used to allocate HW resource for a vGPU. User specifies * the resource configuration through the creation params. * * Returns: * zero on success, negative error code if failed. * */ int intel_vgpu_alloc_resource(struct intel_vgpu *vgpu, struct intel_vgpu_creation_params *param) { int ret; ret = alloc_resource(vgpu, param); if (ret) return ret; ret = alloc_vgpu_gm(vgpu); if (ret) goto out_free_resource; ret = alloc_vgpu_fence(vgpu); if (ret) goto out_free_vgpu_gm; return 0; out_free_vgpu_gm: free_vgpu_gm(vgpu); out_free_resource: free_resource(vgpu); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1