Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Skeggs | 3115 | 94.42% | 8 | 44.44% |
Ilia Mirkin | 108 | 3.27% | 3 | 16.67% |
Stephen Chandler Paul | 30 | 0.91% | 3 | 16.67% |
Thomas Zimmermann | 23 | 0.70% | 2 | 11.11% |
Maarten Lankhorst | 15 | 0.45% | 1 | 5.56% |
Peteris Rudzusiks | 8 | 0.24% | 1 | 5.56% |
Total | 3299 | 18 |
/* * Copyright 2018 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "head.h" #include "base.h" #include "core.h" #include "curs.h" #include "ovly.h" #include <nvif/class.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_vblank.h> #include "nouveau_connector.h" void nv50_head_flush_clr(struct nv50_head *head, struct nv50_head_atom *asyh, bool flush) { union nv50_head_atom_mask clr = { .mask = asyh->clr.mask & ~(flush ? 0 : asyh->set.mask), }; if (clr.olut) head->func->olut_clr(head); if (clr.core) head->func->core_clr(head); if (clr.curs) head->func->curs_clr(head); } void nv50_head_flush_set(struct nv50_head *head, struct nv50_head_atom *asyh) { if (asyh->set.view ) head->func->view (head, asyh); if (asyh->set.mode ) head->func->mode (head, asyh); if (asyh->set.core ) head->func->core_set(head, asyh); if (asyh->set.olut ) { asyh->olut.offset = nv50_lut_load(&head->olut, asyh->olut.buffer, asyh->state.gamma_lut, asyh->olut.load); head->func->olut_set(head, asyh); } if (asyh->set.curs ) head->func->curs_set(head, asyh); if (asyh->set.base ) head->func->base (head, asyh); if (asyh->set.ovly ) head->func->ovly (head, asyh); if (asyh->set.dither ) head->func->dither (head, asyh); if (asyh->set.procamp) head->func->procamp (head, asyh); if (asyh->set.or ) head->func->or (head, asyh); } static void nv50_head_atomic_check_procamp(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { const int vib = asyc->procamp.color_vibrance - 100; const int hue = asyc->procamp.vibrant_hue - 90; const int adj = (vib > 0) ? 50 : 0; asyh->procamp.sat.cos = ((vib * 2047 + adj) / 100) & 0xfff; asyh->procamp.sat.sin = ((hue * 2047) / 100) & 0xfff; asyh->set.procamp = true; } static void nv50_head_atomic_check_dither(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { u32 mode = 0x00; if (asyc->dither.mode == DITHERING_MODE_AUTO) { if (asyh->base.depth > asyh->or.bpc * 3) mode = DITHERING_MODE_DYNAMIC2X2; } else { mode = asyc->dither.mode; } if (asyc->dither.depth == DITHERING_DEPTH_AUTO) { if (asyh->or.bpc >= 8) mode |= DITHERING_DEPTH_8BPC; } else { mode |= asyc->dither.depth; } asyh->dither.enable = mode; asyh->dither.bits = mode >> 1; asyh->dither.mode = mode >> 3; asyh->set.dither = true; } static void nv50_head_atomic_check_view(struct nv50_head_atom *armh, struct nv50_head_atom *asyh, struct nouveau_conn_atom *asyc) { struct drm_connector *connector = asyc->state.connector; struct drm_display_mode *omode = &asyh->state.adjusted_mode; struct drm_display_mode *umode = &asyh->state.mode; int mode = asyc->scaler.mode; struct edid *edid; int umode_vdisplay, omode_hdisplay, omode_vdisplay; if (connector->edid_blob_ptr) edid = (struct edid *)connector->edid_blob_ptr->data; else edid = NULL; if (!asyc->scaler.full) { if (mode == DRM_MODE_SCALE_NONE) omode = umode; } else { /* Non-EDID LVDS/eDP mode. */ mode = DRM_MODE_SCALE_FULLSCREEN; } /* For the user-specified mode, we must ignore doublescan and * the like, but honor frame packing. */ umode_vdisplay = umode->vdisplay; if ((umode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) umode_vdisplay += umode->vtotal; asyh->view.iW = umode->hdisplay; asyh->view.iH = umode_vdisplay; /* For the output mode, we can just use the stock helper. */ drm_mode_get_hv_timing(omode, &omode_hdisplay, &omode_vdisplay); asyh->view.oW = omode_hdisplay; asyh->view.oH = omode_vdisplay; /* Add overscan compensation if necessary, will keep the aspect * ratio the same as the backend mode unless overridden by the * user setting both hborder and vborder properties. */ if ((asyc->scaler.underscan.mode == UNDERSCAN_ON || (asyc->scaler.underscan.mode == UNDERSCAN_AUTO && drm_detect_hdmi_monitor(edid)))) { u32 bX = asyc->scaler.underscan.hborder; u32 bY = asyc->scaler.underscan.vborder; u32 r = (asyh->view.oH << 19) / asyh->view.oW; if (bX) { asyh->view.oW -= (bX * 2); if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } else { asyh->view.oW -= (asyh->view.oW >> 4) + 32; if (bY) asyh->view.oH -= (bY * 2); else asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } } /* Handle CENTER/ASPECT scaling, taking into account the areas * removed already for overscan compensation. */ switch (mode) { case DRM_MODE_SCALE_CENTER: /* NOTE: This will cause scaling when the input is * larger than the output. */ asyh->view.oW = min(asyh->view.iW, asyh->view.oW); asyh->view.oH = min(asyh->view.iH, asyh->view.oH); break; case DRM_MODE_SCALE_ASPECT: /* Determine whether the scaling should be on width or on * height. This is done by comparing the aspect ratios of the * sizes. If the output AR is larger than input AR, that means * we want to change the width (letterboxed on the * left/right), otherwise on the height (letterboxed on the * top/bottom). * * E.g. 4:3 (1.333) AR image displayed on a 16:10 (1.6) AR * screen will have letterboxes on the left/right. However a * 16:9 (1.777) AR image on that same screen will have * letterboxes on the top/bottom. * * inputAR = iW / iH; outputAR = oW / oH * outputAR > inputAR is equivalent to oW * iH > iW * oH */ if (asyh->view.oW * asyh->view.iH > asyh->view.iW * asyh->view.oH) { /* Recompute output width, i.e. left/right letterbox */ u32 r = (asyh->view.iW << 19) / asyh->view.iH; asyh->view.oW = ((asyh->view.oH * r) + (r / 2)) >> 19; } else { /* Recompute output height, i.e. top/bottom letterbox */ u32 r = (asyh->view.iH << 19) / asyh->view.iW; asyh->view.oH = ((asyh->view.oW * r) + (r / 2)) >> 19; } break; default: break; } asyh->set.view = true; } static int nv50_head_atomic_check_lut(struct nv50_head *head, struct nv50_head_atom *asyh) { struct nv50_disp *disp = nv50_disp(head->base.base.dev); struct drm_property_blob *olut = asyh->state.gamma_lut; int size; /* Determine whether core output LUT should be enabled. */ if (olut) { /* Check if any window(s) have stolen the core output LUT * to as an input LUT for legacy gamma + I8 colour format. */ if (asyh->wndw.olut) { /* If any window has stolen the core output LUT, * all of them must. */ if (asyh->wndw.olut != asyh->wndw.mask) return -EINVAL; olut = NULL; } } if (!olut) { if (!head->func->olut_identity) { asyh->olut.handle = 0; return 0; } size = 0; } else { size = drm_color_lut_size(olut); } if (!head->func->olut(head, asyh, size)) { DRM_DEBUG_KMS("Invalid olut\n"); return -EINVAL; } asyh->olut.handle = disp->core->chan.vram.handle; asyh->olut.buffer = !asyh->olut.buffer; return 0; } static void nv50_head_atomic_check_mode(struct nv50_head *head, struct nv50_head_atom *asyh) { struct drm_display_mode *mode = &asyh->state.adjusted_mode; struct nv50_head_mode *m = &asyh->mode; u32 blankus; drm_mode_set_crtcinfo(mode, CRTC_INTERLACE_HALVE_V | CRTC_STEREO_DOUBLE); /* * DRM modes are defined in terms of a repeating interval * starting with the active display area. The hardware modes * are defined in terms of a repeating interval starting one * unit (pixel or line) into the sync pulse. So, add bias. */ m->h.active = mode->crtc_htotal; m->h.synce = mode->crtc_hsync_end - mode->crtc_hsync_start - 1; m->h.blanke = mode->crtc_hblank_end - mode->crtc_hsync_start - 1; m->h.blanks = m->h.blanke + mode->crtc_hdisplay; m->v.active = mode->crtc_vtotal; m->v.synce = mode->crtc_vsync_end - mode->crtc_vsync_start - 1; m->v.blanke = mode->crtc_vblank_end - mode->crtc_vsync_start - 1; m->v.blanks = m->v.blanke + mode->crtc_vdisplay; /*XXX: Safe underestimate, even "0" works */ blankus = (m->v.active - mode->crtc_vdisplay - 2) * m->h.active; blankus *= 1000; blankus /= mode->crtc_clock; m->v.blankus = blankus; if (mode->flags & DRM_MODE_FLAG_INTERLACE) { m->v.blank2e = m->v.active + m->v.blanke; m->v.blank2s = m->v.blank2e + mode->crtc_vdisplay; m->v.active = (m->v.active * 2) + 1; m->interlace = true; } else { m->v.blank2e = 0; m->v.blank2s = 1; m->interlace = false; } m->clock = mode->crtc_clock; asyh->or.nhsync = !!(mode->flags & DRM_MODE_FLAG_NHSYNC); asyh->or.nvsync = !!(mode->flags & DRM_MODE_FLAG_NVSYNC); asyh->set.or = head->func->or != NULL; asyh->set.mode = true; } static int nv50_head_atomic_check(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct nouveau_drm *drm = nouveau_drm(crtc->dev); struct nv50_head *head = nv50_head(crtc); struct nv50_head_atom *armh = nv50_head_atom(crtc->state); struct nv50_head_atom *asyh = nv50_head_atom(state); struct nouveau_conn_atom *asyc = NULL; struct drm_connector_state *conns; struct drm_connector *conn; int i; NV_ATOMIC(drm, "%s atomic_check %d\n", crtc->name, asyh->state.active); if (asyh->state.active) { for_each_new_connector_in_state(asyh->state.state, conn, conns, i) { if (conns->crtc == crtc) { asyc = nouveau_conn_atom(conns); break; } } if (armh->state.active) { if (asyc) { if (asyh->state.mode_changed) asyc->set.scaler = true; if (armh->base.depth != asyh->base.depth) asyc->set.dither = true; } } else { if (asyc) asyc->set.mask = ~0; asyh->set.mask = ~0; asyh->set.or = head->func->or != NULL; } if (asyh->state.mode_changed || asyh->state.connectors_changed) nv50_head_atomic_check_mode(head, asyh); if (asyh->state.color_mgmt_changed || memcmp(&armh->wndw, &asyh->wndw, sizeof(asyh->wndw))) { int ret = nv50_head_atomic_check_lut(head, asyh); if (ret) return ret; asyh->olut.visible = asyh->olut.handle != 0; } if (asyc) { if (asyc->set.scaler) nv50_head_atomic_check_view(armh, asyh, asyc); if (asyc->set.dither) nv50_head_atomic_check_dither(armh, asyh, asyc); if (asyc->set.procamp) nv50_head_atomic_check_procamp(armh, asyh, asyc); } if (head->func->core_calc) { head->func->core_calc(head, asyh); if (!asyh->core.visible) asyh->olut.visible = false; } asyh->set.base = armh->base.cpp != asyh->base.cpp; asyh->set.ovly = armh->ovly.cpp != asyh->ovly.cpp; } else { asyh->olut.visible = false; asyh->core.visible = false; asyh->curs.visible = false; asyh->base.cpp = 0; asyh->ovly.cpp = 0; } if (!drm_atomic_crtc_needs_modeset(&asyh->state)) { if (asyh->core.visible) { if (memcmp(&armh->core, &asyh->core, sizeof(asyh->core))) asyh->set.core = true; } else if (armh->core.visible) { asyh->clr.core = true; } if (asyh->curs.visible) { if (memcmp(&armh->curs, &asyh->curs, sizeof(asyh->curs))) asyh->set.curs = true; } else if (armh->curs.visible) { asyh->clr.curs = true; } if (asyh->olut.visible) { if (memcmp(&armh->olut, &asyh->olut, sizeof(asyh->olut))) asyh->set.olut = true; } else if (armh->olut.visible) { asyh->clr.olut = true; } } else { asyh->clr.olut = armh->olut.visible; asyh->clr.core = armh->core.visible; asyh->clr.curs = armh->curs.visible; asyh->set.olut = asyh->olut.visible; asyh->set.core = asyh->core.visible; asyh->set.curs = asyh->curs.visible; } if (asyh->clr.mask || asyh->set.mask) nv50_atom(asyh->state.state)->lock_core = true; return 0; } static const struct drm_crtc_helper_funcs nv50_head_help = { .atomic_check = nv50_head_atomic_check, .get_scanout_position = nouveau_display_scanoutpos, }; static void nv50_head_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct nv50_head_atom *asyh = nv50_head_atom(state); __drm_atomic_helper_crtc_destroy_state(&asyh->state); kfree(asyh); } static struct drm_crtc_state * nv50_head_atomic_duplicate_state(struct drm_crtc *crtc) { struct nv50_head_atom *armh = nv50_head_atom(crtc->state); struct nv50_head_atom *asyh; if (!(asyh = kmalloc(sizeof(*asyh), GFP_KERNEL))) return NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &asyh->state); asyh->wndw = armh->wndw; asyh->view = armh->view; asyh->mode = armh->mode; asyh->olut = armh->olut; asyh->core = armh->core; asyh->curs = armh->curs; asyh->base = armh->base; asyh->ovly = armh->ovly; asyh->dither = armh->dither; asyh->procamp = armh->procamp; asyh->or = armh->or; asyh->dp = armh->dp; asyh->clr.mask = 0; asyh->set.mask = 0; return &asyh->state; } static void nv50_head_reset(struct drm_crtc *crtc) { struct nv50_head_atom *asyh; if (WARN_ON(!(asyh = kzalloc(sizeof(*asyh), GFP_KERNEL)))) return; if (crtc->state) nv50_head_atomic_destroy_state(crtc, crtc->state); __drm_atomic_helper_crtc_reset(crtc, &asyh->state); } static void nv50_head_destroy(struct drm_crtc *crtc) { struct nv50_head *head = nv50_head(crtc); nv50_lut_fini(&head->olut); drm_crtc_cleanup(crtc); kfree(head); } static const struct drm_crtc_funcs nv50_head_func = { .reset = nv50_head_reset, .gamma_set = drm_atomic_helper_legacy_gamma_set, .destroy = nv50_head_destroy, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = nv50_head_atomic_duplicate_state, .atomic_destroy_state = nv50_head_atomic_destroy_state, .enable_vblank = nouveau_display_vblank_enable, .disable_vblank = nouveau_display_vblank_disable, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, }; struct nv50_head * nv50_head_create(struct drm_device *dev, int index) { struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_head *head; struct nv50_wndw *base, *ovly, *curs; struct drm_crtc *crtc; int ret; head = kzalloc(sizeof(*head), GFP_KERNEL); if (!head) return ERR_PTR(-ENOMEM); head->func = disp->core->func->head; head->base.index = index; if (disp->disp->object.oclass < GV100_DISP) { ret = nv50_base_new(drm, head->base.index, &base); ret = nv50_ovly_new(drm, head->base.index, &ovly); } else { ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_PRIMARY, head->base.index * 2 + 0, &base); ret = nv50_wndw_new(drm, DRM_PLANE_TYPE_OVERLAY, head->base.index * 2 + 1, &ovly); } if (ret == 0) ret = nv50_curs_new(drm, head->base.index, &curs); if (ret) { kfree(head); return ERR_PTR(ret); } crtc = &head->base.base; drm_crtc_init_with_planes(dev, crtc, &base->plane, &curs->plane, &nv50_head_func, "head-%d", head->base.index); drm_crtc_helper_add(crtc, &nv50_head_help); /* Keep the legacy gamma size at 256 to avoid compatibility issues */ drm_mode_crtc_set_gamma_size(crtc, 256); drm_crtc_enable_color_mgmt(crtc, base->func->ilut_size, disp->disp->object.oclass >= GF110_DISP, head->func->olut_size); if (head->func->olut_set) { ret = nv50_lut_init(disp, &drm->client.mmu, &head->olut); if (ret) { nv50_head_destroy(crtc); return ERR_PTR(ret); } } return head; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1