Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 7919 | 98.70% | 38 | 77.55% |
Jon Hunter | 30 | 0.37% | 2 | 4.08% |
Boris Brezillon | 15 | 0.19% | 1 | 2.04% |
Sam Ravnborg | 13 | 0.16% | 1 | 2.04% |
Maarten Lankhorst | 12 | 0.15% | 1 | 2.04% |
Sean Paul | 12 | 0.15% | 1 | 2.04% |
Alexandre Courbot | 8 | 0.10% | 1 | 2.04% |
Stephen Warren | 7 | 0.09% | 1 | 2.04% |
Thomas Zimmermann | 4 | 0.05% | 1 | 2.04% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.04% |
Daniel Vetter | 1 | 0.01% | 1 | 2.04% |
Total | 8023 | 49 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 NVIDIA Corporation */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/host1x.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <video/mipi_display.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_debugfs.h> #include <drm/drm_file.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <drm/drm_simple_kms_helper.h> #include "dc.h" #include "drm.h" #include "dsi.h" #include "mipi-phy.h" #include "trace.h" struct tegra_dsi_state { struct drm_connector_state base; struct mipi_dphy_timing timing; unsigned long period; unsigned int vrefresh; unsigned int lanes; unsigned long pclk; unsigned long bclk; enum tegra_dsi_format format; unsigned int mul; unsigned int div; }; static inline struct tegra_dsi_state * to_dsi_state(struct drm_connector_state *state) { return container_of(state, struct tegra_dsi_state, base); } struct tegra_dsi { struct host1x_client client; struct tegra_output output; struct device *dev; void __iomem *regs; struct reset_control *rst; struct clk *clk_parent; struct clk *clk_lp; struct clk *clk; struct drm_info_list *debugfs_files; unsigned long flags; enum mipi_dsi_pixel_format format; unsigned int lanes; struct tegra_mipi_device *mipi; struct mipi_dsi_host host; struct regulator *vdd; unsigned int video_fifo_depth; unsigned int host_fifo_depth; /* for ganged-mode support */ struct tegra_dsi *master; struct tegra_dsi *slave; }; static inline struct tegra_dsi * host1x_client_to_dsi(struct host1x_client *client) { return container_of(client, struct tegra_dsi, client); } static inline struct tegra_dsi *host_to_tegra(struct mipi_dsi_host *host) { return container_of(host, struct tegra_dsi, host); } static inline struct tegra_dsi *to_dsi(struct tegra_output *output) { return container_of(output, struct tegra_dsi, output); } static struct tegra_dsi_state *tegra_dsi_get_state(struct tegra_dsi *dsi) { return to_dsi_state(dsi->output.connector.state); } static inline u32 tegra_dsi_readl(struct tegra_dsi *dsi, unsigned int offset) { u32 value = readl(dsi->regs + (offset << 2)); trace_dsi_readl(dsi->dev, offset, value); return value; } static inline void tegra_dsi_writel(struct tegra_dsi *dsi, u32 value, unsigned int offset) { trace_dsi_writel(dsi->dev, offset, value); writel(value, dsi->regs + (offset << 2)); } #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } static const struct debugfs_reg32 tegra_dsi_regs[] = { DEBUGFS_REG32(DSI_INCR_SYNCPT), DEBUGFS_REG32(DSI_INCR_SYNCPT_CONTROL), DEBUGFS_REG32(DSI_INCR_SYNCPT_ERROR), DEBUGFS_REG32(DSI_CTXSW), DEBUGFS_REG32(DSI_RD_DATA), DEBUGFS_REG32(DSI_WR_DATA), DEBUGFS_REG32(DSI_POWER_CONTROL), DEBUGFS_REG32(DSI_INT_ENABLE), DEBUGFS_REG32(DSI_INT_STATUS), DEBUGFS_REG32(DSI_INT_MASK), DEBUGFS_REG32(DSI_HOST_CONTROL), DEBUGFS_REG32(DSI_CONTROL), DEBUGFS_REG32(DSI_SOL_DELAY), DEBUGFS_REG32(DSI_MAX_THRESHOLD), DEBUGFS_REG32(DSI_TRIGGER), DEBUGFS_REG32(DSI_TX_CRC), DEBUGFS_REG32(DSI_STATUS), DEBUGFS_REG32(DSI_INIT_SEQ_CONTROL), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_0), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_1), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_2), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_3), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_4), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_5), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_6), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_7), DEBUGFS_REG32(DSI_PKT_SEQ_0_LO), DEBUGFS_REG32(DSI_PKT_SEQ_0_HI), DEBUGFS_REG32(DSI_PKT_SEQ_1_LO), DEBUGFS_REG32(DSI_PKT_SEQ_1_HI), DEBUGFS_REG32(DSI_PKT_SEQ_2_LO), DEBUGFS_REG32(DSI_PKT_SEQ_2_HI), DEBUGFS_REG32(DSI_PKT_SEQ_3_LO), DEBUGFS_REG32(DSI_PKT_SEQ_3_HI), DEBUGFS_REG32(DSI_PKT_SEQ_4_LO), DEBUGFS_REG32(DSI_PKT_SEQ_4_HI), DEBUGFS_REG32(DSI_PKT_SEQ_5_LO), DEBUGFS_REG32(DSI_PKT_SEQ_5_HI), DEBUGFS_REG32(DSI_DCS_CMDS), DEBUGFS_REG32(DSI_PKT_LEN_0_1), DEBUGFS_REG32(DSI_PKT_LEN_2_3), DEBUGFS_REG32(DSI_PKT_LEN_4_5), DEBUGFS_REG32(DSI_PKT_LEN_6_7), DEBUGFS_REG32(DSI_PHY_TIMING_0), DEBUGFS_REG32(DSI_PHY_TIMING_1), DEBUGFS_REG32(DSI_PHY_TIMING_2), DEBUGFS_REG32(DSI_BTA_TIMING), DEBUGFS_REG32(DSI_TIMEOUT_0), DEBUGFS_REG32(DSI_TIMEOUT_1), DEBUGFS_REG32(DSI_TO_TALLY), DEBUGFS_REG32(DSI_PAD_CONTROL_0), DEBUGFS_REG32(DSI_PAD_CONTROL_CD), DEBUGFS_REG32(DSI_PAD_CD_STATUS), DEBUGFS_REG32(DSI_VIDEO_MODE_CONTROL), DEBUGFS_REG32(DSI_PAD_CONTROL_1), DEBUGFS_REG32(DSI_PAD_CONTROL_2), DEBUGFS_REG32(DSI_PAD_CONTROL_3), DEBUGFS_REG32(DSI_PAD_CONTROL_4), DEBUGFS_REG32(DSI_GANGED_MODE_CONTROL), DEBUGFS_REG32(DSI_GANGED_MODE_START), DEBUGFS_REG32(DSI_GANGED_MODE_SIZE), DEBUGFS_REG32(DSI_RAW_DATA_BYTE_COUNT), DEBUGFS_REG32(DSI_ULTRA_LOW_POWER_CONTROL), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_8), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_9), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_10), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_11), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_12), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_13), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_14), DEBUGFS_REG32(DSI_INIT_SEQ_DATA_15), }; static int tegra_dsi_show_regs(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_dsi *dsi = node->info_ent->data; struct drm_crtc *crtc = dsi->output.encoder.crtc; struct drm_device *drm = node->minor->dev; unsigned int i; int err = 0; drm_modeset_lock_all(drm); if (!crtc || !crtc->state->active) { err = -EBUSY; goto unlock; } for (i = 0; i < ARRAY_SIZE(tegra_dsi_regs); i++) { unsigned int offset = tegra_dsi_regs[i].offset; seq_printf(s, "%-32s %#05x %08x\n", tegra_dsi_regs[i].name, offset, tegra_dsi_readl(dsi, offset)); } unlock: drm_modeset_unlock_all(drm); return err; } static struct drm_info_list debugfs_files[] = { { "regs", tegra_dsi_show_regs, 0, NULL }, }; static int tegra_dsi_late_register(struct drm_connector *connector) { struct tegra_output *output = connector_to_output(connector); unsigned int i, count = ARRAY_SIZE(debugfs_files); struct drm_minor *minor = connector->dev->primary; struct dentry *root = connector->debugfs_entry; struct tegra_dsi *dsi = to_dsi(output); dsi->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), GFP_KERNEL); if (!dsi->debugfs_files) return -ENOMEM; for (i = 0; i < count; i++) dsi->debugfs_files[i].data = dsi; drm_debugfs_create_files(dsi->debugfs_files, count, root, minor); return 0; } static void tegra_dsi_early_unregister(struct drm_connector *connector) { struct tegra_output *output = connector_to_output(connector); unsigned int count = ARRAY_SIZE(debugfs_files); struct tegra_dsi *dsi = to_dsi(output); drm_debugfs_remove_files(dsi->debugfs_files, count, connector->dev->primary); kfree(dsi->debugfs_files); dsi->debugfs_files = NULL; } #define PKT_ID0(id) ((((id) & 0x3f) << 3) | (1 << 9)) #define PKT_LEN0(len) (((len) & 0x07) << 0) #define PKT_ID1(id) ((((id) & 0x3f) << 13) | (1 << 19)) #define PKT_LEN1(len) (((len) & 0x07) << 10) #define PKT_ID2(id) ((((id) & 0x3f) << 23) | (1 << 29)) #define PKT_LEN2(len) (((len) & 0x07) << 20) #define PKT_LP (1 << 30) #define NUM_PKT_SEQ 12 /* * non-burst mode with sync pulses */ static const u32 pkt_seq_video_non_burst_sync_pulses[NUM_PKT_SEQ] = { [ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 1] = 0, [ 2] = PKT_ID0(MIPI_DSI_V_SYNC_END) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 3] = 0, [ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 5] = 0, [ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0), [ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) | PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) | PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4), [ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) | PKT_LP, [ 9] = 0, [10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) | PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0), [11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) | PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) | PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4), }; /* * non-burst mode with sync events */ static const u32 pkt_seq_video_non_burst_sync_events[NUM_PKT_SEQ] = { [ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 1] = 0, [ 2] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 3] = 0, [ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 5] = 0, [ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) | PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3), [ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4), [ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) | PKT_LP, [ 9] = 0, [10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) | PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) | PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3), [11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4), }; static const u32 pkt_seq_command_mode[NUM_PKT_SEQ] = { [ 0] = 0, [ 1] = 0, [ 2] = 0, [ 3] = 0, [ 4] = 0, [ 5] = 0, [ 6] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(3) | PKT_LP, [ 7] = 0, [ 8] = 0, [ 9] = 0, [10] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(5) | PKT_LP, [11] = 0, }; static void tegra_dsi_set_phy_timing(struct tegra_dsi *dsi, unsigned long period, const struct mipi_dphy_timing *timing) { u32 value; value = DSI_TIMING_FIELD(timing->hsexit, period, 1) << 24 | DSI_TIMING_FIELD(timing->hstrail, period, 0) << 16 | DSI_TIMING_FIELD(timing->hszero, period, 3) << 8 | DSI_TIMING_FIELD(timing->hsprepare, period, 1); tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_0); value = DSI_TIMING_FIELD(timing->clktrail, period, 1) << 24 | DSI_TIMING_FIELD(timing->clkpost, period, 1) << 16 | DSI_TIMING_FIELD(timing->clkzero, period, 1) << 8 | DSI_TIMING_FIELD(timing->lpx, period, 1); tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_1); value = DSI_TIMING_FIELD(timing->clkprepare, period, 1) << 16 | DSI_TIMING_FIELD(timing->clkpre, period, 1) << 8 | DSI_TIMING_FIELD(0xff * period, period, 0) << 0; tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_2); value = DSI_TIMING_FIELD(timing->taget, period, 1) << 16 | DSI_TIMING_FIELD(timing->tasure, period, 1) << 8 | DSI_TIMING_FIELD(timing->tago, period, 1); tegra_dsi_writel(dsi, value, DSI_BTA_TIMING); if (dsi->slave) tegra_dsi_set_phy_timing(dsi->slave, period, timing); } static int tegra_dsi_get_muldiv(enum mipi_dsi_pixel_format format, unsigned int *mulp, unsigned int *divp) { switch (format) { case MIPI_DSI_FMT_RGB666_PACKED: case MIPI_DSI_FMT_RGB888: *mulp = 3; *divp = 1; break; case MIPI_DSI_FMT_RGB565: *mulp = 2; *divp = 1; break; case MIPI_DSI_FMT_RGB666: *mulp = 9; *divp = 4; break; default: return -EINVAL; } return 0; } static int tegra_dsi_get_format(enum mipi_dsi_pixel_format format, enum tegra_dsi_format *fmt) { switch (format) { case MIPI_DSI_FMT_RGB888: *fmt = TEGRA_DSI_FORMAT_24P; break; case MIPI_DSI_FMT_RGB666: *fmt = TEGRA_DSI_FORMAT_18NP; break; case MIPI_DSI_FMT_RGB666_PACKED: *fmt = TEGRA_DSI_FORMAT_18P; break; case MIPI_DSI_FMT_RGB565: *fmt = TEGRA_DSI_FORMAT_16P; break; default: return -EINVAL; } return 0; } static void tegra_dsi_ganged_enable(struct tegra_dsi *dsi, unsigned int start, unsigned int size) { u32 value; tegra_dsi_writel(dsi, start, DSI_GANGED_MODE_START); tegra_dsi_writel(dsi, size << 16 | size, DSI_GANGED_MODE_SIZE); value = DSI_GANGED_MODE_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_GANGED_MODE_CONTROL); } static void tegra_dsi_enable(struct tegra_dsi *dsi) { u32 value; value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value |= DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); if (dsi->slave) tegra_dsi_enable(dsi->slave); } static unsigned int tegra_dsi_get_lanes(struct tegra_dsi *dsi) { if (dsi->master) return dsi->master->lanes + dsi->lanes; if (dsi->slave) return dsi->lanes + dsi->slave->lanes; return dsi->lanes; } static void tegra_dsi_configure(struct tegra_dsi *dsi, unsigned int pipe, const struct drm_display_mode *mode) { unsigned int hact, hsw, hbp, hfp, i, mul, div; struct tegra_dsi_state *state; const u32 *pkt_seq; u32 value; /* XXX: pass in state into this function? */ if (dsi->master) state = tegra_dsi_get_state(dsi->master); else state = tegra_dsi_get_state(dsi); mul = state->mul; div = state->div; if (dsi->flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) { DRM_DEBUG_KMS("Non-burst video mode with sync pulses\n"); pkt_seq = pkt_seq_video_non_burst_sync_pulses; } else if (dsi->flags & MIPI_DSI_MODE_VIDEO) { DRM_DEBUG_KMS("Non-burst video mode with sync events\n"); pkt_seq = pkt_seq_video_non_burst_sync_events; } else { DRM_DEBUG_KMS("Command mode\n"); pkt_seq = pkt_seq_command_mode; } value = DSI_CONTROL_CHANNEL(0) | DSI_CONTROL_FORMAT(state->format) | DSI_CONTROL_LANES(dsi->lanes - 1) | DSI_CONTROL_SOURCE(pipe); tegra_dsi_writel(dsi, value, DSI_CONTROL); tegra_dsi_writel(dsi, dsi->video_fifo_depth, DSI_MAX_THRESHOLD); value = DSI_HOST_CONTROL_HS; tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL); value = tegra_dsi_readl(dsi, DSI_CONTROL); if (dsi->flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) value |= DSI_CONTROL_HS_CLK_CTRL; value &= ~DSI_CONTROL_TX_TRIG(3); /* enable DCS commands for command mode */ if (dsi->flags & MIPI_DSI_MODE_VIDEO) value &= ~DSI_CONTROL_DCS_ENABLE; else value |= DSI_CONTROL_DCS_ENABLE; value |= DSI_CONTROL_VIDEO_ENABLE; value &= ~DSI_CONTROL_HOST_ENABLE; tegra_dsi_writel(dsi, value, DSI_CONTROL); for (i = 0; i < NUM_PKT_SEQ; i++) tegra_dsi_writel(dsi, pkt_seq[i], DSI_PKT_SEQ_0_LO + i); if (dsi->flags & MIPI_DSI_MODE_VIDEO) { /* horizontal active pixels */ hact = mode->hdisplay * mul / div; /* horizontal sync width */ hsw = (mode->hsync_end - mode->hsync_start) * mul / div; /* horizontal back porch */ hbp = (mode->htotal - mode->hsync_end) * mul / div; if ((dsi->flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) == 0) hbp += hsw; /* horizontal front porch */ hfp = (mode->hsync_start - mode->hdisplay) * mul / div; /* subtract packet overhead */ hsw -= 10; hbp -= 14; hfp -= 8; tegra_dsi_writel(dsi, hsw << 16 | 0, DSI_PKT_LEN_0_1); tegra_dsi_writel(dsi, hact << 16 | hbp, DSI_PKT_LEN_2_3); tegra_dsi_writel(dsi, hfp, DSI_PKT_LEN_4_5); tegra_dsi_writel(dsi, 0x0f0f << 16, DSI_PKT_LEN_6_7); /* set SOL delay (for non-burst mode only) */ tegra_dsi_writel(dsi, 8 * mul / div, DSI_SOL_DELAY); /* TODO: implement ganged mode */ } else { u16 bytes; if (dsi->master || dsi->slave) { /* * For ganged mode, assume symmetric left-right mode. */ bytes = 1 + (mode->hdisplay / 2) * mul / div; } else { /* 1 byte (DCS command) + pixel data */ bytes = 1 + mode->hdisplay * mul / div; } tegra_dsi_writel(dsi, 0, DSI_PKT_LEN_0_1); tegra_dsi_writel(dsi, bytes << 16, DSI_PKT_LEN_2_3); tegra_dsi_writel(dsi, bytes << 16, DSI_PKT_LEN_4_5); tegra_dsi_writel(dsi, 0, DSI_PKT_LEN_6_7); value = MIPI_DCS_WRITE_MEMORY_START << 8 | MIPI_DCS_WRITE_MEMORY_CONTINUE; tegra_dsi_writel(dsi, value, DSI_DCS_CMDS); /* set SOL delay */ if (dsi->master || dsi->slave) { unsigned long delay, bclk, bclk_ganged; unsigned int lanes = state->lanes; /* SOL to valid, valid to FIFO and FIFO write delay */ delay = 4 + 4 + 2; delay = DIV_ROUND_UP(delay * mul, div * lanes); /* FIFO read delay */ delay = delay + 6; bclk = DIV_ROUND_UP(mode->htotal * mul, div * lanes); bclk_ganged = DIV_ROUND_UP(bclk * lanes / 2, lanes); value = bclk - bclk_ganged + delay + 20; } else { /* TODO: revisit for non-ganged mode */ value = 8 * mul / div; } tegra_dsi_writel(dsi, value, DSI_SOL_DELAY); } if (dsi->slave) { tegra_dsi_configure(dsi->slave, pipe, mode); /* * TODO: Support modes other than symmetrical left-right * split. */ tegra_dsi_ganged_enable(dsi, 0, mode->hdisplay / 2); tegra_dsi_ganged_enable(dsi->slave, mode->hdisplay / 2, mode->hdisplay / 2); } } static int tegra_dsi_wait_idle(struct tegra_dsi *dsi, unsigned long timeout) { u32 value; timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { value = tegra_dsi_readl(dsi, DSI_STATUS); if (value & DSI_STATUS_IDLE) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static void tegra_dsi_video_disable(struct tegra_dsi *dsi) { u32 value; value = tegra_dsi_readl(dsi, DSI_CONTROL); value &= ~DSI_CONTROL_VIDEO_ENABLE; tegra_dsi_writel(dsi, value, DSI_CONTROL); if (dsi->slave) tegra_dsi_video_disable(dsi->slave); } static void tegra_dsi_ganged_disable(struct tegra_dsi *dsi) { tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_START); tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_SIZE); tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_CONTROL); } static int tegra_dsi_pad_enable(struct tegra_dsi *dsi) { u32 value; value = DSI_PAD_CONTROL_VS1_PULLDN(0) | DSI_PAD_CONTROL_VS1_PDIO(0); tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_0); return 0; } static int tegra_dsi_pad_calibrate(struct tegra_dsi *dsi) { u32 value; /* * XXX Is this still needed? The module reset is deasserted right * before this function is called. */ tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_0); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_1); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_2); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_3); tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_4); /* start calibration */ tegra_dsi_pad_enable(dsi); value = DSI_PAD_SLEW_UP(0x7) | DSI_PAD_SLEW_DN(0x7) | DSI_PAD_LP_UP(0x1) | DSI_PAD_LP_DN(0x1) | DSI_PAD_OUT_CLK(0x0); tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_2); value = DSI_PAD_PREEMP_PD_CLK(0x3) | DSI_PAD_PREEMP_PU_CLK(0x3) | DSI_PAD_PREEMP_PD(0x03) | DSI_PAD_PREEMP_PU(0x3); tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_3); return tegra_mipi_calibrate(dsi->mipi); } static void tegra_dsi_set_timeout(struct tegra_dsi *dsi, unsigned long bclk, unsigned int vrefresh) { unsigned int timeout; u32 value; /* one frame high-speed transmission timeout */ timeout = (bclk / vrefresh) / 512; value = DSI_TIMEOUT_LRX(0x2000) | DSI_TIMEOUT_HTX(timeout); tegra_dsi_writel(dsi, value, DSI_TIMEOUT_0); /* 2 ms peripheral timeout for panel */ timeout = 2 * bclk / 512 * 1000; value = DSI_TIMEOUT_PR(timeout) | DSI_TIMEOUT_TA(0x2000); tegra_dsi_writel(dsi, value, DSI_TIMEOUT_1); value = DSI_TALLY_TA(0) | DSI_TALLY_LRX(0) | DSI_TALLY_HTX(0); tegra_dsi_writel(dsi, value, DSI_TO_TALLY); if (dsi->slave) tegra_dsi_set_timeout(dsi->slave, bclk, vrefresh); } static void tegra_dsi_disable(struct tegra_dsi *dsi) { u32 value; if (dsi->slave) { tegra_dsi_ganged_disable(dsi->slave); tegra_dsi_ganged_disable(dsi); } value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value &= ~DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); if (dsi->slave) tegra_dsi_disable(dsi->slave); usleep_range(5000, 10000); } static void tegra_dsi_soft_reset(struct tegra_dsi *dsi) { u32 value; value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value &= ~DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); usleep_range(300, 1000); value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value |= DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); usleep_range(300, 1000); value = tegra_dsi_readl(dsi, DSI_TRIGGER); if (value) tegra_dsi_writel(dsi, 0, DSI_TRIGGER); if (dsi->slave) tegra_dsi_soft_reset(dsi->slave); } static void tegra_dsi_connector_reset(struct drm_connector *connector) { struct tegra_dsi_state *state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return; if (connector->state) { __drm_atomic_helper_connector_destroy_state(connector->state); kfree(connector->state); } __drm_atomic_helper_connector_reset(connector, &state->base); } static struct drm_connector_state * tegra_dsi_connector_duplicate_state(struct drm_connector *connector) { struct tegra_dsi_state *state = to_dsi_state(connector->state); struct tegra_dsi_state *copy; copy = kmemdup(state, sizeof(*state), GFP_KERNEL); if (!copy) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, ©->base); return ©->base; } static const struct drm_connector_funcs tegra_dsi_connector_funcs = { .reset = tegra_dsi_connector_reset, .detect = tegra_output_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = tegra_output_connector_destroy, .atomic_duplicate_state = tegra_dsi_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = tegra_dsi_late_register, .early_unregister = tegra_dsi_early_unregister, }; static enum drm_mode_status tegra_dsi_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { return MODE_OK; } static const struct drm_connector_helper_funcs tegra_dsi_connector_helper_funcs = { .get_modes = tegra_output_connector_get_modes, .mode_valid = tegra_dsi_connector_mode_valid, }; static void tegra_dsi_unprepare(struct tegra_dsi *dsi) { int err; if (dsi->slave) tegra_dsi_unprepare(dsi->slave); err = tegra_mipi_disable(dsi->mipi); if (err < 0) dev_err(dsi->dev, "failed to disable MIPI calibration: %d\n", err); err = host1x_client_suspend(&dsi->client); if (err < 0) dev_err(dsi->dev, "failed to suspend: %d\n", err); } static void tegra_dsi_encoder_disable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_dsi *dsi = to_dsi(output); u32 value; int err; if (output->panel) drm_panel_disable(output->panel); tegra_dsi_video_disable(dsi); /* * The following accesses registers of the display controller, so make * sure it's only executed when the output is attached to one. */ if (dc) { value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value &= ~DSI_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_commit(dc); } err = tegra_dsi_wait_idle(dsi, 100); if (err < 0) dev_dbg(dsi->dev, "failed to idle DSI: %d\n", err); tegra_dsi_soft_reset(dsi); if (output->panel) drm_panel_unprepare(output->panel); tegra_dsi_disable(dsi); tegra_dsi_unprepare(dsi); } static int tegra_dsi_prepare(struct tegra_dsi *dsi) { int err; err = host1x_client_resume(&dsi->client); if (err < 0) { dev_err(dsi->dev, "failed to resume: %d\n", err); return err; } err = tegra_mipi_enable(dsi->mipi); if (err < 0) dev_err(dsi->dev, "failed to enable MIPI calibration: %d\n", err); err = tegra_dsi_pad_calibrate(dsi); if (err < 0) dev_err(dsi->dev, "MIPI calibration failed: %d\n", err); if (dsi->slave) tegra_dsi_prepare(dsi->slave); return 0; } static void tegra_dsi_encoder_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_dsi *dsi = to_dsi(output); struct tegra_dsi_state *state; u32 value; int err; err = tegra_dsi_prepare(dsi); if (err < 0) { dev_err(dsi->dev, "failed to prepare: %d\n", err); return; } state = tegra_dsi_get_state(dsi); tegra_dsi_set_timeout(dsi, state->bclk, state->vrefresh); /* * The D-PHY timing fields are expressed in byte-clock cycles, so * multiply the period by 8. */ tegra_dsi_set_phy_timing(dsi, state->period * 8, &state->timing); if (output->panel) drm_panel_prepare(output->panel); tegra_dsi_configure(dsi, dc->pipe, mode); /* enable display controller */ value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value |= DSI_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_commit(dc); /* enable DSI controller */ tegra_dsi_enable(dsi); if (output->panel) drm_panel_enable(output->panel); } static int tegra_dsi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_dsi_state *state = to_dsi_state(conn_state); struct tegra_dc *dc = to_tegra_dc(conn_state->crtc); struct tegra_dsi *dsi = to_dsi(output); unsigned int scdiv; unsigned long plld; int err; state->pclk = crtc_state->mode.clock * 1000; err = tegra_dsi_get_muldiv(dsi->format, &state->mul, &state->div); if (err < 0) return err; state->lanes = tegra_dsi_get_lanes(dsi); err = tegra_dsi_get_format(dsi->format, &state->format); if (err < 0) return err; state->vrefresh = drm_mode_vrefresh(&crtc_state->mode); /* compute byte clock */ state->bclk = (state->pclk * state->mul) / (state->div * state->lanes); DRM_DEBUG_KMS("mul: %u, div: %u, lanes: %u\n", state->mul, state->div, state->lanes); DRM_DEBUG_KMS("format: %u, vrefresh: %u\n", state->format, state->vrefresh); DRM_DEBUG_KMS("bclk: %lu\n", state->bclk); /* * Compute bit clock and round up to the next MHz. */ plld = DIV_ROUND_UP(state->bclk * 8, USEC_PER_SEC) * USEC_PER_SEC; state->period = DIV_ROUND_CLOSEST(NSEC_PER_SEC, plld); err = mipi_dphy_timing_get_default(&state->timing, state->period); if (err < 0) return err; err = mipi_dphy_timing_validate(&state->timing, state->period); if (err < 0) { dev_err(dsi->dev, "failed to validate D-PHY timing: %d\n", err); return err; } /* * We divide the frequency by two here, but we make up for that by * setting the shift clock divider (further below) to half of the * correct value. */ plld /= 2; /* * Derive pixel clock from bit clock using the shift clock divider. * Note that this is only half of what we would expect, but we need * that to make up for the fact that we divided the bit clock by a * factor of two above. * * It's not clear exactly why this is necessary, but the display is * not working properly otherwise. Perhaps the PLLs cannot generate * frequencies sufficiently high. */ scdiv = ((8 * state->mul) / (state->div * state->lanes)) - 2; err = tegra_dc_state_setup_clock(dc, crtc_state, dsi->clk_parent, plld, scdiv); if (err < 0) { dev_err(output->dev, "failed to setup CRTC state: %d\n", err); return err; } return err; } static const struct drm_encoder_helper_funcs tegra_dsi_encoder_helper_funcs = { .disable = tegra_dsi_encoder_disable, .enable = tegra_dsi_encoder_enable, .atomic_check = tegra_dsi_encoder_atomic_check, }; static int tegra_dsi_init(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->host); struct tegra_dsi *dsi = host1x_client_to_dsi(client); int err; /* Gangsters must not register their own outputs. */ if (!dsi->master) { dsi->output.dev = client->dev; drm_connector_init(drm, &dsi->output.connector, &tegra_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_helper_add(&dsi->output.connector, &tegra_dsi_connector_helper_funcs); dsi->output.connector.dpms = DRM_MODE_DPMS_OFF; drm_simple_encoder_init(drm, &dsi->output.encoder, DRM_MODE_ENCODER_DSI); drm_encoder_helper_add(&dsi->output.encoder, &tegra_dsi_encoder_helper_funcs); drm_connector_attach_encoder(&dsi->output.connector, &dsi->output.encoder); drm_connector_register(&dsi->output.connector); err = tegra_output_init(drm, &dsi->output); if (err < 0) dev_err(dsi->dev, "failed to initialize output: %d\n", err); dsi->output.encoder.possible_crtcs = 0x3; } return 0; } static int tegra_dsi_exit(struct host1x_client *client) { struct tegra_dsi *dsi = host1x_client_to_dsi(client); tegra_output_exit(&dsi->output); return 0; } static int tegra_dsi_runtime_suspend(struct host1x_client *client) { struct tegra_dsi *dsi = host1x_client_to_dsi(client); struct device *dev = client->dev; int err; if (dsi->rst) { err = reset_control_assert(dsi->rst); if (err < 0) { dev_err(dev, "failed to assert reset: %d\n", err); return err; } } usleep_range(1000, 2000); clk_disable_unprepare(dsi->clk_lp); clk_disable_unprepare(dsi->clk); regulator_disable(dsi->vdd); pm_runtime_put_sync(dev); return 0; } static int tegra_dsi_runtime_resume(struct host1x_client *client) { struct tegra_dsi *dsi = host1x_client_to_dsi(client); struct device *dev = client->dev; int err; err = pm_runtime_get_sync(dev); if (err < 0) { dev_err(dev, "failed to get runtime PM: %d\n", err); return err; } err = regulator_enable(dsi->vdd); if (err < 0) { dev_err(dev, "failed to enable VDD supply: %d\n", err); goto put_rpm; } err = clk_prepare_enable(dsi->clk); if (err < 0) { dev_err(dev, "cannot enable DSI clock: %d\n", err); goto disable_vdd; } err = clk_prepare_enable(dsi->clk_lp); if (err < 0) { dev_err(dev, "cannot enable low-power clock: %d\n", err); goto disable_clk; } usleep_range(1000, 2000); if (dsi->rst) { err = reset_control_deassert(dsi->rst); if (err < 0) { dev_err(dev, "cannot assert reset: %d\n", err); goto disable_clk_lp; } } return 0; disable_clk_lp: clk_disable_unprepare(dsi->clk_lp); disable_clk: clk_disable_unprepare(dsi->clk); disable_vdd: regulator_disable(dsi->vdd); put_rpm: pm_runtime_put_sync(dev); return err; } static const struct host1x_client_ops dsi_client_ops = { .init = tegra_dsi_init, .exit = tegra_dsi_exit, .suspend = tegra_dsi_runtime_suspend, .resume = tegra_dsi_runtime_resume, }; static int tegra_dsi_setup_clocks(struct tegra_dsi *dsi) { struct clk *parent; int err; parent = clk_get_parent(dsi->clk); if (!parent) return -EINVAL; err = clk_set_parent(parent, dsi->clk_parent); if (err < 0) return err; return 0; } static const char * const error_report[16] = { "SoT Error", "SoT Sync Error", "EoT Sync Error", "Escape Mode Entry Command Error", "Low-Power Transmit Sync Error", "Peripheral Timeout Error", "False Control Error", "Contention Detected", "ECC Error, single-bit", "ECC Error, multi-bit", "Checksum Error", "DSI Data Type Not Recognized", "DSI VC ID Invalid", "Invalid Transmission Length", "Reserved", "DSI Protocol Violation", }; static ssize_t tegra_dsi_read_response(struct tegra_dsi *dsi, const struct mipi_dsi_msg *msg, size_t count) { u8 *rx = msg->rx_buf; unsigned int i, j, k; size_t size = 0; u16 errors; u32 value; /* read and parse packet header */ value = tegra_dsi_readl(dsi, DSI_RD_DATA); switch (value & 0x3f) { case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: errors = (value >> 8) & 0xffff; dev_dbg(dsi->dev, "Acknowledge and error report: %04x\n", errors); for (i = 0; i < ARRAY_SIZE(error_report); i++) if (errors & BIT(i)) dev_dbg(dsi->dev, " %2u: %s\n", i, error_report[i]); break; case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: rx[0] = (value >> 8) & 0xff; size = 1; break; case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: rx[0] = (value >> 8) & 0xff; rx[1] = (value >> 16) & 0xff; size = 2; break; case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE: size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff); break; case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE: size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff); break; default: dev_err(dsi->dev, "unhandled response type: %02x\n", value & 0x3f); return -EPROTO; } size = min(size, msg->rx_len); if (msg->rx_buf && size > 0) { for (i = 0, j = 0; i < count - 1; i++, j += 4) { u8 *rx = msg->rx_buf + j; value = tegra_dsi_readl(dsi, DSI_RD_DATA); for (k = 0; k < 4 && (j + k) < msg->rx_len; k++) rx[j + k] = (value >> (k << 3)) & 0xff; } } return size; } static int tegra_dsi_transmit(struct tegra_dsi *dsi, unsigned long timeout) { tegra_dsi_writel(dsi, DSI_TRIGGER_HOST, DSI_TRIGGER); timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { u32 value = tegra_dsi_readl(dsi, DSI_TRIGGER); if ((value & DSI_TRIGGER_HOST) == 0) return 0; usleep_range(1000, 2000); } DRM_DEBUG_KMS("timeout waiting for transmission to complete\n"); return -ETIMEDOUT; } static int tegra_dsi_wait_for_response(struct tegra_dsi *dsi, unsigned long timeout) { timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { u32 value = tegra_dsi_readl(dsi, DSI_STATUS); u8 count = value & 0x1f; if (count > 0) return count; usleep_range(1000, 2000); } DRM_DEBUG_KMS("peripheral returned no data\n"); return -ETIMEDOUT; } static void tegra_dsi_writesl(struct tegra_dsi *dsi, unsigned long offset, const void *buffer, size_t size) { const u8 *buf = buffer; size_t i, j; u32 value; for (j = 0; j < size; j += 4) { value = 0; for (i = 0; i < 4 && j + i < size; i++) value |= buf[j + i] << (i << 3); tegra_dsi_writel(dsi, value, DSI_WR_DATA); } } static ssize_t tegra_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct tegra_dsi *dsi = host_to_tegra(host); struct mipi_dsi_packet packet; const u8 *header; size_t count; ssize_t err; u32 value; err = mipi_dsi_create_packet(&packet, msg); if (err < 0) return err; header = packet.header; /* maximum FIFO depth is 1920 words */ if (packet.size > dsi->video_fifo_depth * 4) return -ENOSPC; /* reset underflow/overflow flags */ value = tegra_dsi_readl(dsi, DSI_STATUS); if (value & (DSI_STATUS_UNDERFLOW | DSI_STATUS_OVERFLOW)) { value = DSI_HOST_CONTROL_FIFO_RESET; tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL); usleep_range(10, 20); } value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL); value |= DSI_POWER_CONTROL_ENABLE; tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL); usleep_range(5000, 10000); value = DSI_HOST_CONTROL_CRC_RESET | DSI_HOST_CONTROL_TX_TRIG_HOST | DSI_HOST_CONTROL_CS | DSI_HOST_CONTROL_ECC; if ((msg->flags & MIPI_DSI_MSG_USE_LPM) == 0) value |= DSI_HOST_CONTROL_HS; /* * The host FIFO has a maximum of 64 words, so larger transmissions * need to use the video FIFO. */ if (packet.size > dsi->host_fifo_depth * 4) value |= DSI_HOST_CONTROL_FIFO_SEL; tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL); /* * For reads and messages with explicitly requested ACK, generate a * BTA sequence after the transmission of the packet. */ if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) || (msg->rx_buf && msg->rx_len > 0)) { value = tegra_dsi_readl(dsi, DSI_HOST_CONTROL); value |= DSI_HOST_CONTROL_PKT_BTA; tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL); } value = DSI_CONTROL_LANES(0) | DSI_CONTROL_HOST_ENABLE; tegra_dsi_writel(dsi, value, DSI_CONTROL); /* write packet header, ECC is generated by hardware */ value = header[2] << 16 | header[1] << 8 | header[0]; tegra_dsi_writel(dsi, value, DSI_WR_DATA); /* write payload (if any) */ if (packet.payload_length > 0) tegra_dsi_writesl(dsi, DSI_WR_DATA, packet.payload, packet.payload_length); err = tegra_dsi_transmit(dsi, 250); if (err < 0) return err; if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) || (msg->rx_buf && msg->rx_len > 0)) { err = tegra_dsi_wait_for_response(dsi, 250); if (err < 0) return err; count = err; value = tegra_dsi_readl(dsi, DSI_RD_DATA); switch (value) { case 0x84: /* dev_dbg(dsi->dev, "ACK\n"); */ break; case 0x87: /* dev_dbg(dsi->dev, "ESCAPE\n"); */ break; default: dev_err(dsi->dev, "unknown status: %08x\n", value); break; } if (count > 1) { err = tegra_dsi_read_response(dsi, msg, count); if (err < 0) dev_err(dsi->dev, "failed to parse response: %zd\n", err); else { /* * For read commands, return the number of * bytes returned by the peripheral. */ count = err; } } } else { /* * For write commands, we have transmitted the 4-byte header * plus the variable-length payload. */ count = 4 + packet.payload_length; } return count; } static int tegra_dsi_ganged_setup(struct tegra_dsi *dsi) { struct clk *parent; int err; /* make sure both DSI controllers share the same PLL */ parent = clk_get_parent(dsi->slave->clk); if (!parent) return -EINVAL; err = clk_set_parent(parent, dsi->clk_parent); if (err < 0) return err; return 0; } static int tegra_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct tegra_dsi *dsi = host_to_tegra(host); dsi->flags = device->mode_flags; dsi->format = device->format; dsi->lanes = device->lanes; if (dsi->slave) { int err; dev_dbg(dsi->dev, "attaching dual-channel device %s\n", dev_name(&device->dev)); err = tegra_dsi_ganged_setup(dsi); if (err < 0) { dev_err(dsi->dev, "failed to set up ganged mode: %d\n", err); return err; } } /* * Slaves don't have a panel associated with them, so they provide * merely the second channel. */ if (!dsi->master) { struct tegra_output *output = &dsi->output; output->panel = of_drm_find_panel(device->dev.of_node); if (IS_ERR(output->panel)) output->panel = NULL; if (output->panel && output->connector.dev) { drm_panel_attach(output->panel, &output->connector); drm_helper_hpd_irq_event(output->connector.dev); } } return 0; } static int tegra_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct tegra_dsi *dsi = host_to_tegra(host); struct tegra_output *output = &dsi->output; if (output->panel && &device->dev == output->panel->dev) { output->panel = NULL; if (output->connector.dev) drm_helper_hpd_irq_event(output->connector.dev); } return 0; } static const struct mipi_dsi_host_ops tegra_dsi_host_ops = { .attach = tegra_dsi_host_attach, .detach = tegra_dsi_host_detach, .transfer = tegra_dsi_host_transfer, }; static int tegra_dsi_ganged_probe(struct tegra_dsi *dsi) { struct device_node *np; np = of_parse_phandle(dsi->dev->of_node, "nvidia,ganged-mode", 0); if (np) { struct platform_device *gangster = of_find_device_by_node(np); dsi->slave = platform_get_drvdata(gangster); of_node_put(np); if (!dsi->slave) return -EPROBE_DEFER; dsi->slave->master = dsi; } return 0; } static int tegra_dsi_probe(struct platform_device *pdev) { struct tegra_dsi *dsi; struct resource *regs; int err; dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->output.dev = dsi->dev = &pdev->dev; dsi->video_fifo_depth = 1920; dsi->host_fifo_depth = 64; err = tegra_dsi_ganged_probe(dsi); if (err < 0) return err; err = tegra_output_probe(&dsi->output); if (err < 0) return err; dsi->output.connector.polled = DRM_CONNECTOR_POLL_HPD; /* * Assume these values by default. When a DSI peripheral driver * attaches to the DSI host, the parameters will be taken from * the attached device. */ dsi->flags = MIPI_DSI_MODE_VIDEO; dsi->format = MIPI_DSI_FMT_RGB888; dsi->lanes = 4; if (!pdev->dev.pm_domain) { dsi->rst = devm_reset_control_get(&pdev->dev, "dsi"); if (IS_ERR(dsi->rst)) return PTR_ERR(dsi->rst); } dsi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dsi->clk)) { dev_err(&pdev->dev, "cannot get DSI clock\n"); return PTR_ERR(dsi->clk); } dsi->clk_lp = devm_clk_get(&pdev->dev, "lp"); if (IS_ERR(dsi->clk_lp)) { dev_err(&pdev->dev, "cannot get low-power clock\n"); return PTR_ERR(dsi->clk_lp); } dsi->clk_parent = devm_clk_get(&pdev->dev, "parent"); if (IS_ERR(dsi->clk_parent)) { dev_err(&pdev->dev, "cannot get parent clock\n"); return PTR_ERR(dsi->clk_parent); } dsi->vdd = devm_regulator_get(&pdev->dev, "avdd-dsi-csi"); if (IS_ERR(dsi->vdd)) { dev_err(&pdev->dev, "cannot get VDD supply\n"); return PTR_ERR(dsi->vdd); } err = tegra_dsi_setup_clocks(dsi); if (err < 0) { dev_err(&pdev->dev, "cannot setup clocks\n"); return err; } regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->regs = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(dsi->regs)) return PTR_ERR(dsi->regs); dsi->mipi = tegra_mipi_request(&pdev->dev); if (IS_ERR(dsi->mipi)) return PTR_ERR(dsi->mipi); dsi->host.ops = &tegra_dsi_host_ops; dsi->host.dev = &pdev->dev; err = mipi_dsi_host_register(&dsi->host); if (err < 0) { dev_err(&pdev->dev, "failed to register DSI host: %d\n", err); goto mipi_free; } platform_set_drvdata(pdev, dsi); pm_runtime_enable(&pdev->dev); INIT_LIST_HEAD(&dsi->client.list); dsi->client.ops = &dsi_client_ops; dsi->client.dev = &pdev->dev; err = host1x_client_register(&dsi->client); if (err < 0) { dev_err(&pdev->dev, "failed to register host1x client: %d\n", err); goto unregister; } return 0; unregister: mipi_dsi_host_unregister(&dsi->host); mipi_free: tegra_mipi_free(dsi->mipi); return err; } static int tegra_dsi_remove(struct platform_device *pdev) { struct tegra_dsi *dsi = platform_get_drvdata(pdev); int err; pm_runtime_disable(&pdev->dev); err = host1x_client_unregister(&dsi->client); if (err < 0) { dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", err); return err; } tegra_output_remove(&dsi->output); mipi_dsi_host_unregister(&dsi->host); tegra_mipi_free(dsi->mipi); return 0; } static const struct of_device_id tegra_dsi_of_match[] = { { .compatible = "nvidia,tegra210-dsi", }, { .compatible = "nvidia,tegra132-dsi", }, { .compatible = "nvidia,tegra124-dsi", }, { .compatible = "nvidia,tegra114-dsi", }, { }, }; MODULE_DEVICE_TABLE(of, tegra_dsi_of_match); struct platform_driver tegra_dsi_driver = { .driver = { .name = "tegra-dsi", .of_match_table = tegra_dsi_of_match, }, .probe = tegra_dsi_probe, .remove = tegra_dsi_remove, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1