Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Masaki Ota | 3885 | 95.45% | 9 | 42.86% |
Christophe Jaillet | 87 | 2.14% | 4 | 19.05% |
Benjamin Tissoires | 72 | 1.77% | 1 | 4.76% |
Axel Lin | 10 | 0.25% | 1 | 4.76% |
Caiyuan Xie | 8 | 0.20% | 1 | 4.76% |
Kai-Heng Feng | 2 | 0.05% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.05% | 1 | 4.76% |
Artem Borisov | 2 | 0.05% | 1 | 4.76% |
Jiada Wang | 1 | 0.02% | 1 | 4.76% |
Jiri Kosina | 1 | 0.02% | 1 | 4.76% |
Total | 4070 | 21 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2016 Masaki Ota <masaki.ota@jp.alps.com> */ #include <linux/kernel.h> #include <linux/hid.h> #include <linux/input.h> #include <linux/input/mt.h> #include <linux/module.h> #include <asm/unaligned.h> #include "hid-ids.h" /* ALPS Device Product ID */ #define HID_PRODUCT_ID_T3_BTNLESS 0xD0C0 #define HID_PRODUCT_ID_COSMO 0x1202 #define HID_PRODUCT_ID_U1_PTP_1 0x1207 #define HID_PRODUCT_ID_U1 0x1209 #define HID_PRODUCT_ID_U1_PTP_2 0x120A #define HID_PRODUCT_ID_U1_DUAL 0x120B #define HID_PRODUCT_ID_T4_BTNLESS 0x120C #define DEV_SINGLEPOINT 0x01 #define DEV_DUALPOINT 0x02 #define U1_MOUSE_REPORT_ID 0x01 /* Mouse data ReportID */ #define U1_ABSOLUTE_REPORT_ID 0x03 /* Absolute data ReportID */ #define U1_ABSOLUTE_REPORT_ID_SECD 0x02 /* FW-PTP Absolute data ReportID */ #define U1_FEATURE_REPORT_ID 0x05 /* Feature ReportID */ #define U1_SP_ABSOLUTE_REPORT_ID 0x06 /* Feature ReportID */ #define U1_FEATURE_REPORT_LEN 0x08 /* Feature Report Length */ #define U1_FEATURE_REPORT_LEN_ALL 0x0A #define U1_CMD_REGISTER_READ 0xD1 #define U1_CMD_REGISTER_WRITE 0xD2 #define U1_DEVTYPE_SP_SUPPORT 0x10 /* SP Support */ #define U1_DISABLE_DEV 0x01 #define U1_TP_ABS_MODE 0x02 #define U1_SP_ABS_MODE 0x80 #define ADDRESS_U1_DEV_CTRL_1 0x00800040 #define ADDRESS_U1_DEVICE_TYP 0x00800043 #define ADDRESS_U1_NUM_SENS_X 0x00800047 #define ADDRESS_U1_NUM_SENS_Y 0x00800048 #define ADDRESS_U1_PITCH_SENS_X 0x00800049 #define ADDRESS_U1_PITCH_SENS_Y 0x0080004A #define ADDRESS_U1_RESO_DWN_ABS 0x0080004E #define ADDRESS_U1_PAD_BTN 0x00800052 #define ADDRESS_U1_SP_BTN 0x0080009F #define T4_INPUT_REPORT_LEN sizeof(struct t4_input_report) #define T4_FEATURE_REPORT_LEN T4_INPUT_REPORT_LEN #define T4_FEATURE_REPORT_ID 7 #define T4_CMD_REGISTER_READ 0x08 #define T4_CMD_REGISTER_WRITE 0x07 #define T4_ADDRESS_BASE 0xC2C0 #define PRM_SYS_CONFIG_1 (T4_ADDRESS_BASE + 0x0002) #define T4_PRM_FEED_CONFIG_1 (T4_ADDRESS_BASE + 0x0004) #define T4_PRM_FEED_CONFIG_4 (T4_ADDRESS_BASE + 0x001A) #define T4_PRM_ID_CONFIG_3 (T4_ADDRESS_BASE + 0x00B0) #define T4_FEEDCFG4_ADVANCED_ABS_ENABLE 0x01 #define T4_I2C_ABS 0x78 #define T4_COUNT_PER_ELECTRODE 256 #define MAX_TOUCHES 5 enum dev_num { U1, T4, UNKNOWN, }; /** * struct u1_data * * @input: pointer to the kernel input device * @input2: pointer to the kernel input2 device * @hdev: pointer to the struct hid_device * * @dev_type: device type * @max_fingers: total number of fingers * @has_sp: boolean of sp existense * @sp_btn_info: button information * @x_active_len_mm: active area length of X (mm) * @y_active_len_mm: active area length of Y (mm) * @x_max: maximum x coordinate value * @y_max: maximum y coordinate value * @x_min: minimum x coordinate value * @y_min: minimum y coordinate value * @btn_cnt: number of buttons * @sp_btn_cnt: number of stick buttons */ struct alps_dev { struct input_dev *input; struct input_dev *input2; struct hid_device *hdev; enum dev_num dev_type; u8 max_fingers; u8 has_sp; u8 sp_btn_info; u32 x_active_len_mm; u32 y_active_len_mm; u32 x_max; u32 y_max; u32 x_min; u32 y_min; u32 btn_cnt; u32 sp_btn_cnt; }; struct t4_contact_data { u8 palm; u8 x_lo; u8 x_hi; u8 y_lo; u8 y_hi; }; struct t4_input_report { u8 reportID; u8 numContacts; struct t4_contact_data contact[5]; u8 button; u8 track[5]; u8 zx[5], zy[5]; u8 palmTime[5]; u8 kilroy; u16 timeStamp; }; static u16 t4_calc_check_sum(u8 *buffer, unsigned long offset, unsigned long length) { u16 sum1 = 0xFF, sum2 = 0xFF; unsigned long i = 0; if (offset + length >= 50) return 0; while (length > 0) { u32 tlen = length > 20 ? 20 : length; length -= tlen; do { sum1 += buffer[offset + i]; sum2 += sum1; i++; } while (--tlen > 0); sum1 = (sum1 & 0xFF) + (sum1 >> 8); sum2 = (sum2 & 0xFF) + (sum2 >> 8); } sum1 = (sum1 & 0xFF) + (sum1 >> 8); sum2 = (sum2 & 0xFF) + (sum2 >> 8); return(sum2 << 8 | sum1); } static int t4_read_write_register(struct hid_device *hdev, u32 address, u8 *read_val, u8 write_val, bool read_flag) { int ret; u16 check_sum; u8 *input; u8 *readbuf = NULL; input = kzalloc(T4_FEATURE_REPORT_LEN, GFP_KERNEL); if (!input) return -ENOMEM; input[0] = T4_FEATURE_REPORT_ID; if (read_flag) { input[1] = T4_CMD_REGISTER_READ; input[8] = 0x00; } else { input[1] = T4_CMD_REGISTER_WRITE; input[8] = write_val; } put_unaligned_le32(address, input + 2); input[6] = 1; input[7] = 0; /* Calculate the checksum */ check_sum = t4_calc_check_sum(input, 1, 8); input[9] = (u8)check_sum; input[10] = (u8)(check_sum >> 8); input[11] = 0; ret = hid_hw_raw_request(hdev, T4_FEATURE_REPORT_ID, input, T4_FEATURE_REPORT_LEN, HID_FEATURE_REPORT, HID_REQ_SET_REPORT); if (ret < 0) { dev_err(&hdev->dev, "failed to read command (%d)\n", ret); goto exit; } if (read_flag) { readbuf = kzalloc(T4_FEATURE_REPORT_LEN, GFP_KERNEL); if (!readbuf) { ret = -ENOMEM; goto exit; } ret = hid_hw_raw_request(hdev, T4_FEATURE_REPORT_ID, readbuf, T4_FEATURE_REPORT_LEN, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) { dev_err(&hdev->dev, "failed read register (%d)\n", ret); goto exit_readbuf; } ret = -EINVAL; if (*(u32 *)&readbuf[6] != address) { dev_err(&hdev->dev, "read register address error (%x,%x)\n", *(u32 *)&readbuf[6], address); goto exit_readbuf; } if (*(u16 *)&readbuf[10] != 1) { dev_err(&hdev->dev, "read register size error (%x)\n", *(u16 *)&readbuf[10]); goto exit_readbuf; } check_sum = t4_calc_check_sum(readbuf, 6, 7); if (*(u16 *)&readbuf[13] != check_sum) { dev_err(&hdev->dev, "read register checksum error (%x,%x)\n", *(u16 *)&readbuf[13], check_sum); goto exit_readbuf; } *read_val = readbuf[12]; } ret = 0; exit_readbuf: kfree(readbuf); exit: kfree(input); return ret; } static int u1_read_write_register(struct hid_device *hdev, u32 address, u8 *read_val, u8 write_val, bool read_flag) { int ret, i; u8 check_sum; u8 *input; u8 *readbuf; input = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL); if (!input) return -ENOMEM; input[0] = U1_FEATURE_REPORT_ID; if (read_flag) { input[1] = U1_CMD_REGISTER_READ; input[6] = 0x00; } else { input[1] = U1_CMD_REGISTER_WRITE; input[6] = write_val; } put_unaligned_le32(address, input + 2); /* Calculate the checksum */ check_sum = U1_FEATURE_REPORT_LEN_ALL; for (i = 0; i < U1_FEATURE_REPORT_LEN - 1; i++) check_sum += input[i]; input[7] = check_sum; ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, input, U1_FEATURE_REPORT_LEN, HID_FEATURE_REPORT, HID_REQ_SET_REPORT); if (ret < 0) { dev_err(&hdev->dev, "failed to read command (%d)\n", ret); goto exit; } if (read_flag) { readbuf = kzalloc(U1_FEATURE_REPORT_LEN, GFP_KERNEL); if (!readbuf) { ret = -ENOMEM; goto exit; } ret = hid_hw_raw_request(hdev, U1_FEATURE_REPORT_ID, readbuf, U1_FEATURE_REPORT_LEN, HID_FEATURE_REPORT, HID_REQ_GET_REPORT); if (ret < 0) { dev_err(&hdev->dev, "failed read register (%d)\n", ret); kfree(readbuf); goto exit; } *read_val = readbuf[6]; kfree(readbuf); } ret = 0; exit: kfree(input); return ret; } static int t4_raw_event(struct alps_dev *hdata, u8 *data, int size) { unsigned int x, y, z; int i; struct t4_input_report *p_report = (struct t4_input_report *)data; if (!data) return 0; for (i = 0; i < hdata->max_fingers; i++) { x = p_report->contact[i].x_hi << 8 | p_report->contact[i].x_lo; y = p_report->contact[i].y_hi << 8 | p_report->contact[i].y_lo; y = hdata->y_max - y + hdata->y_min; z = (p_report->contact[i].palm < 0x80 && p_report->contact[i].palm > 0) * 62; if (x == 0xffff) { x = 0; y = 0; z = 0; } input_mt_slot(hdata->input, i); input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER, z != 0); if (!z) continue; input_report_abs(hdata->input, ABS_MT_POSITION_X, x); input_report_abs(hdata->input, ABS_MT_POSITION_Y, y); input_report_abs(hdata->input, ABS_MT_PRESSURE, z); } input_mt_sync_frame(hdata->input); input_report_key(hdata->input, BTN_LEFT, p_report->button); input_sync(hdata->input); return 1; } static int u1_raw_event(struct alps_dev *hdata, u8 *data, int size) { unsigned int x, y, z; int i; short sp_x, sp_y; if (!data) return 0; switch (data[0]) { case U1_MOUSE_REPORT_ID: break; case U1_FEATURE_REPORT_ID: break; case U1_ABSOLUTE_REPORT_ID: case U1_ABSOLUTE_REPORT_ID_SECD: for (i = 0; i < hdata->max_fingers; i++) { u8 *contact = &data[i * 5]; x = get_unaligned_le16(contact + 3); y = get_unaligned_le16(contact + 5); z = contact[7] & 0x7F; input_mt_slot(hdata->input, i); if (z != 0) { input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER, 1); input_report_abs(hdata->input, ABS_MT_POSITION_X, x); input_report_abs(hdata->input, ABS_MT_POSITION_Y, y); input_report_abs(hdata->input, ABS_MT_PRESSURE, z); } else { input_mt_report_slot_inactive(hdata->input); } } input_mt_sync_frame(hdata->input); input_report_key(hdata->input, BTN_LEFT, data[1] & 0x1); input_report_key(hdata->input, BTN_RIGHT, (data[1] & 0x2)); input_report_key(hdata->input, BTN_MIDDLE, (data[1] & 0x4)); input_sync(hdata->input); return 1; case U1_SP_ABSOLUTE_REPORT_ID: sp_x = get_unaligned_le16(data+2); sp_y = get_unaligned_le16(data+4); sp_x = sp_x / 8; sp_y = sp_y / 8; input_report_rel(hdata->input2, REL_X, sp_x); input_report_rel(hdata->input2, REL_Y, sp_y); input_report_key(hdata->input2, BTN_LEFT, data[1] & 0x1); input_report_key(hdata->input2, BTN_RIGHT, (data[1] & 0x2)); input_report_key(hdata->input2, BTN_MIDDLE, (data[1] & 0x4)); input_sync(hdata->input2); return 1; } return 0; } static int alps_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *data, int size) { int ret = 0; struct alps_dev *hdata = hid_get_drvdata(hdev); switch (hdev->product) { case HID_PRODUCT_ID_T4_BTNLESS: ret = t4_raw_event(hdata, data, size); break; default: ret = u1_raw_event(hdata, data, size); break; } return ret; } static int __maybe_unused alps_post_reset(struct hid_device *hdev) { int ret = -1; struct alps_dev *data = hid_get_drvdata(hdev); switch (data->dev_type) { case T4: ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_1, NULL, T4_I2C_ABS, false); if (ret < 0) { dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_1 (%d)\n", ret); goto exit; } ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_4, NULL, T4_FEEDCFG4_ADVANCED_ABS_ENABLE, false); if (ret < 0) { dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_4 (%d)\n", ret); goto exit; } break; case U1: ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1, NULL, U1_TP_ABS_MODE | U1_SP_ABS_MODE, false); if (ret < 0) { dev_err(&hdev->dev, "failed to change TP mode (%d)\n", ret); goto exit; } break; default: break; } exit: return ret; } static int __maybe_unused alps_post_resume(struct hid_device *hdev) { return alps_post_reset(hdev); } static int u1_init(struct hid_device *hdev, struct alps_dev *pri_data) { int ret; u8 tmp, dev_ctrl, sen_line_num_x, sen_line_num_y; u8 pitch_x, pitch_y, resolution; /* Device initialization */ ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1, &dev_ctrl, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_DEV_CTRL_1 (%d)\n", ret); goto exit; } dev_ctrl &= ~U1_DISABLE_DEV; dev_ctrl |= U1_TP_ABS_MODE; ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1, NULL, dev_ctrl, false); if (ret < 0) { dev_err(&hdev->dev, "failed to change TP mode (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_X, &sen_line_num_x, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_NUM_SENS_X (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_NUM_SENS_Y, &sen_line_num_y, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_NUM_SENS_Y (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_X, &pitch_x, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_PITCH_SENS_X (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_PITCH_SENS_Y, &pitch_y, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_PITCH_SENS_Y (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_RESO_DWN_ABS, &resolution, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_RESO_DWN_ABS (%d)\n", ret); goto exit; } pri_data->x_active_len_mm = (pitch_x * (sen_line_num_x - 1)) / 10; pri_data->y_active_len_mm = (pitch_y * (sen_line_num_y - 1)) / 10; pri_data->x_max = (resolution << 2) * (sen_line_num_x - 1); pri_data->x_min = 1; pri_data->y_max = (resolution << 2) * (sen_line_num_y - 1); pri_data->y_min = 1; ret = u1_read_write_register(hdev, ADDRESS_U1_PAD_BTN, &tmp, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_PAD_BTN (%d)\n", ret); goto exit; } if ((tmp & 0x0F) == (tmp & 0xF0) >> 4) { pri_data->btn_cnt = (tmp & 0x0F); } else { /* Button pad */ pri_data->btn_cnt = 1; } pri_data->has_sp = 0; /* Check StickPointer device */ ret = u1_read_write_register(hdev, ADDRESS_U1_DEVICE_TYP, &tmp, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_DEVICE_TYP (%d)\n", ret); goto exit; } if (tmp & U1_DEVTYPE_SP_SUPPORT) { dev_ctrl |= U1_SP_ABS_MODE; ret = u1_read_write_register(hdev, ADDRESS_U1_DEV_CTRL_1, NULL, dev_ctrl, false); if (ret < 0) { dev_err(&hdev->dev, "failed SP mode (%d)\n", ret); goto exit; } ret = u1_read_write_register(hdev, ADDRESS_U1_SP_BTN, &pri_data->sp_btn_info, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed U1_SP_BTN (%d)\n", ret); goto exit; } pri_data->has_sp = 1; } pri_data->max_fingers = 5; exit: return ret; } static int T4_init(struct hid_device *hdev, struct alps_dev *pri_data) { int ret; u8 tmp, sen_line_num_x, sen_line_num_y; ret = t4_read_write_register(hdev, T4_PRM_ID_CONFIG_3, &tmp, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed T4_PRM_ID_CONFIG_3 (%d)\n", ret); goto exit; } sen_line_num_x = 16 + ((tmp & 0x0F) | (tmp & 0x08 ? 0xF0 : 0)); sen_line_num_y = 12 + (((tmp & 0xF0) >> 4) | (tmp & 0x80 ? 0xF0 : 0)); pri_data->x_max = sen_line_num_x * T4_COUNT_PER_ELECTRODE; pri_data->x_min = T4_COUNT_PER_ELECTRODE; pri_data->y_max = sen_line_num_y * T4_COUNT_PER_ELECTRODE; pri_data->y_min = T4_COUNT_PER_ELECTRODE; pri_data->x_active_len_mm = pri_data->y_active_len_mm = 0; pri_data->btn_cnt = 1; ret = t4_read_write_register(hdev, PRM_SYS_CONFIG_1, &tmp, 0, true); if (ret < 0) { dev_err(&hdev->dev, "failed PRM_SYS_CONFIG_1 (%d)\n", ret); goto exit; } tmp |= 0x02; ret = t4_read_write_register(hdev, PRM_SYS_CONFIG_1, NULL, tmp, false); if (ret < 0) { dev_err(&hdev->dev, "failed PRM_SYS_CONFIG_1 (%d)\n", ret); goto exit; } ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_1, NULL, T4_I2C_ABS, false); if (ret < 0) { dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_1 (%d)\n", ret); goto exit; } ret = t4_read_write_register(hdev, T4_PRM_FEED_CONFIG_4, NULL, T4_FEEDCFG4_ADVANCED_ABS_ENABLE, false); if (ret < 0) { dev_err(&hdev->dev, "failed T4_PRM_FEED_CONFIG_4 (%d)\n", ret); goto exit; } pri_data->max_fingers = 5; pri_data->has_sp = 0; exit: return ret; } static int alps_sp_open(struct input_dev *dev) { struct hid_device *hid = input_get_drvdata(dev); return hid_hw_open(hid); } static void alps_sp_close(struct input_dev *dev) { struct hid_device *hid = input_get_drvdata(dev); hid_hw_close(hid); } static int alps_input_configured(struct hid_device *hdev, struct hid_input *hi) { struct alps_dev *data = hid_get_drvdata(hdev); struct input_dev *input = hi->input, *input2; int ret; int res_x, res_y, i; data->input = input; hid_dbg(hdev, "Opening low level driver\n"); ret = hid_hw_open(hdev); if (ret) return ret; /* Allow incoming hid reports */ hid_device_io_start(hdev); switch (data->dev_type) { case T4: ret = T4_init(hdev, data); break; case U1: ret = u1_init(hdev, data); break; default: break; } if (ret) goto exit; __set_bit(EV_ABS, input->evbit); input_set_abs_params(input, ABS_MT_POSITION_X, data->x_min, data->x_max, 0, 0); input_set_abs_params(input, ABS_MT_POSITION_Y, data->y_min, data->y_max, 0, 0); if (data->x_active_len_mm && data->y_active_len_mm) { res_x = (data->x_max - 1) / data->x_active_len_mm; res_y = (data->y_max - 1) / data->y_active_len_mm; input_abs_set_res(input, ABS_MT_POSITION_X, res_x); input_abs_set_res(input, ABS_MT_POSITION_Y, res_y); } input_set_abs_params(input, ABS_MT_PRESSURE, 0, 64, 0, 0); input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER); __set_bit(EV_KEY, input->evbit); if (data->btn_cnt == 1) __set_bit(INPUT_PROP_BUTTONPAD, input->propbit); for (i = 0; i < data->btn_cnt; i++) __set_bit(BTN_LEFT + i, input->keybit); /* Stick device initialization */ if (data->has_sp) { input2 = input_allocate_device(); if (!input2) { ret = -ENOMEM; goto exit; } data->input2 = input2; input2->phys = input->phys; input2->name = "DualPoint Stick"; input2->id.bustype = BUS_I2C; input2->id.vendor = input->id.vendor; input2->id.product = input->id.product; input2->id.version = input->id.version; input2->dev.parent = input->dev.parent; input_set_drvdata(input2, hdev); input2->open = alps_sp_open; input2->close = alps_sp_close; __set_bit(EV_KEY, input2->evbit); data->sp_btn_cnt = (data->sp_btn_info & 0x0F); for (i = 0; i < data->sp_btn_cnt; i++) __set_bit(BTN_LEFT + i, input2->keybit); __set_bit(EV_REL, input2->evbit); __set_bit(REL_X, input2->relbit); __set_bit(REL_Y, input2->relbit); __set_bit(INPUT_PROP_POINTER, input2->propbit); __set_bit(INPUT_PROP_POINTING_STICK, input2->propbit); if (input_register_device(data->input2)) { input_free_device(input2); goto exit; } } exit: hid_device_io_stop(hdev); hid_hw_close(hdev); return ret; } static int alps_input_mapping(struct hid_device *hdev, struct hid_input *hi, struct hid_field *field, struct hid_usage *usage, unsigned long **bit, int *max) { return -1; } static int alps_probe(struct hid_device *hdev, const struct hid_device_id *id) { struct alps_dev *data = NULL; int ret; data = devm_kzalloc(&hdev->dev, sizeof(struct alps_dev), GFP_KERNEL); if (!data) return -ENOMEM; data->hdev = hdev; hid_set_drvdata(hdev, data); hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS; ret = hid_parse(hdev); if (ret) { hid_err(hdev, "parse failed\n"); return ret; } switch (hdev->product) { case HID_DEVICE_ID_ALPS_T4_BTNLESS: data->dev_type = T4; break; case HID_DEVICE_ID_ALPS_U1_DUAL: case HID_DEVICE_ID_ALPS_U1: case HID_DEVICE_ID_ALPS_U1_UNICORN_LEGACY: data->dev_type = U1; break; default: data->dev_type = UNKNOWN; } ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); if (ret) { hid_err(hdev, "hw start failed\n"); return ret; } return 0; } static void alps_remove(struct hid_device *hdev) { hid_hw_stop(hdev); } static const struct hid_device_id alps_id[] = { { HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY, USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1_DUAL) }, { HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY, USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_U1) }, { HID_DEVICE(HID_BUS_ANY, HID_GROUP_ANY, USB_VENDOR_ID_ALPS_JP, HID_DEVICE_ID_ALPS_T4_BTNLESS) }, { } }; MODULE_DEVICE_TABLE(hid, alps_id); static struct hid_driver alps_driver = { .name = "hid-alps", .id_table = alps_id, .probe = alps_probe, .remove = alps_remove, .raw_event = alps_raw_event, .input_mapping = alps_input_mapping, .input_configured = alps_input_configured, #ifdef CONFIG_PM .resume = alps_post_resume, .reset_resume = alps_post_reset, #endif }; module_hid_driver(alps_driver); MODULE_AUTHOR("Masaki Ota <masaki.ota@jp.alps.com>"); MODULE_DESCRIPTION("ALPS HID driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1