Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre d'Alton | 2960 | 48.41% | 2 | 5.88% |
Axel Lin | 1184 | 19.36% | 3 | 8.82% |
Jean Delvare | 971 | 15.88% | 8 | 23.53% |
Guenter Roeck | 587 | 9.60% | 8 | 23.53% |
Ira W. Snyder | 198 | 3.24% | 1 | 2.94% |
Mark M. Hoffman | 120 | 1.96% | 3 | 8.82% |
Greg Kroah-Hartman | 54 | 0.88% | 2 | 5.88% |
Ingo Molnar | 24 | 0.39% | 1 | 2.94% |
Yani Ioannou | 5 | 0.08% | 1 | 2.94% |
Julia Lawall | 5 | 0.08% | 1 | 2.94% |
Alexey Dobriyan | 3 | 0.05% | 1 | 2.94% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.94% |
Steven Cole | 1 | 0.02% | 1 | 2.94% |
Frans Meulenbroeks | 1 | 0.02% | 1 | 2.94% |
Total | 6115 | 34 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Based on lm75.c and lm85.c * Supports adm1030 / adm1031 * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org> * Reworked by Jean Delvare <jdelvare@suse.de> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> /* Following macros takes channel parameter starting from 0 to 2 */ #define ADM1031_REG_FAN_SPEED(nr) (0x08 + (nr)) #define ADM1031_REG_FAN_DIV(nr) (0x20 + (nr)) #define ADM1031_REG_PWM (0x22) #define ADM1031_REG_FAN_MIN(nr) (0x10 + (nr)) #define ADM1031_REG_FAN_FILTER (0x23) #define ADM1031_REG_TEMP_OFFSET(nr) (0x0d + (nr)) #define ADM1031_REG_TEMP_MAX(nr) (0x14 + 4 * (nr)) #define ADM1031_REG_TEMP_MIN(nr) (0x15 + 4 * (nr)) #define ADM1031_REG_TEMP_CRIT(nr) (0x16 + 4 * (nr)) #define ADM1031_REG_TEMP(nr) (0x0a + (nr)) #define ADM1031_REG_AUTO_TEMP(nr) (0x24 + (nr)) #define ADM1031_REG_STATUS(nr) (0x2 + (nr)) #define ADM1031_REG_CONF1 0x00 #define ADM1031_REG_CONF2 0x01 #define ADM1031_REG_EXT_TEMP 0x06 #define ADM1031_CONF1_MONITOR_ENABLE 0x01 /* Monitoring enable */ #define ADM1031_CONF1_PWM_INVERT 0x08 /* PWM Invert */ #define ADM1031_CONF1_AUTO_MODE 0x80 /* Auto FAN */ #define ADM1031_CONF2_PWM1_ENABLE 0x01 #define ADM1031_CONF2_PWM2_ENABLE 0x02 #define ADM1031_CONF2_TACH1_ENABLE 0x04 #define ADM1031_CONF2_TACH2_ENABLE 0x08 #define ADM1031_CONF2_TEMP_ENABLE(chan) (0x10 << (chan)) #define ADM1031_UPDATE_RATE_MASK 0x1c #define ADM1031_UPDATE_RATE_SHIFT 2 /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; enum chips { adm1030, adm1031 }; typedef u8 auto_chan_table_t[8][2]; /* Each client has this additional data */ struct adm1031_data { struct i2c_client *client; const struct attribute_group *groups[3]; struct mutex update_lock; int chip_type; char valid; /* !=0 if following fields are valid */ unsigned long last_updated; /* In jiffies */ unsigned int update_interval; /* In milliseconds */ /* * The chan_select_table contains the possible configurations for * auto fan control. */ const auto_chan_table_t *chan_select_table; u16 alarm; u8 conf1; u8 conf2; u8 fan[2]; u8 fan_div[2]; u8 fan_min[2]; u8 pwm[2]; u8 old_pwm[2]; s8 temp[3]; u8 ext_temp[3]; u8 auto_temp[3]; u8 auto_temp_min[3]; u8 auto_temp_off[3]; u8 auto_temp_max[3]; s8 temp_offset[3]; s8 temp_min[3]; s8 temp_max[3]; s8 temp_crit[3]; }; static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static inline int adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value) { return i2c_smbus_write_byte_data(client, reg, value); } static struct adm1031_data *adm1031_update_device(struct device *dev) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long next_update; int chan; mutex_lock(&data->update_lock); next_update = data->last_updated + msecs_to_jiffies(data->update_interval); if (time_after(jiffies, next_update) || !data->valid) { dev_dbg(&client->dev, "Starting adm1031 update\n"); for (chan = 0; chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) { u8 oldh, newh; oldh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); data->ext_temp[chan] = adm1031_read_value(client, ADM1031_REG_EXT_TEMP); newh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); if (newh != oldh) { data->ext_temp[chan] = adm1031_read_value(client, ADM1031_REG_EXT_TEMP); #ifdef DEBUG oldh = adm1031_read_value(client, ADM1031_REG_TEMP(chan)); /* oldh is actually newer */ if (newh != oldh) dev_warn(&client->dev, "Remote temperature may be wrong.\n"); #endif } data->temp[chan] = newh; data->temp_offset[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_OFFSET(chan)); data->temp_min[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_MIN(chan)); data->temp_max[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_MAX(chan)); data->temp_crit[chan] = adm1031_read_value(client, ADM1031_REG_TEMP_CRIT(chan)); data->auto_temp[chan] = adm1031_read_value(client, ADM1031_REG_AUTO_TEMP(chan)); } data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1); data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2); data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0)) | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8); if (data->chip_type == adm1030) data->alarm &= 0xc0ff; for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2); chan++) { data->fan_div[chan] = adm1031_read_value(client, ADM1031_REG_FAN_DIV(chan)); data->fan_min[chan] = adm1031_read_value(client, ADM1031_REG_FAN_MIN(chan)); data->fan[chan] = adm1031_read_value(client, ADM1031_REG_FAN_SPEED(chan)); data->pwm[chan] = (adm1031_read_value(client, ADM1031_REG_PWM) >> (4 * chan)) & 0x0f; } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } #define TEMP_TO_REG(val) (((val) < 0 ? ((val - 500) / 1000) : \ ((val + 500) / 1000))) #define TEMP_FROM_REG(val) ((val) * 1000) #define TEMP_FROM_REG_EXT(val, ext) (TEMP_FROM_REG(val) + (ext) * 125) #define TEMP_OFFSET_TO_REG(val) (TEMP_TO_REG(val) & 0x8f) #define TEMP_OFFSET_FROM_REG(val) TEMP_FROM_REG((val) < 0 ? \ (val) | 0x70 : (val)) #define FAN_FROM_REG(reg, div) ((reg) ? \ (11250 * 60) / ((reg) * (div)) : 0) static int FAN_TO_REG(int reg, int div) { int tmp; tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div); return tmp > 255 ? 255 : tmp; } #define FAN_DIV_FROM_REG(reg) (1<<(((reg)&0xc0)>>6)) #define PWM_TO_REG(val) (clamp_val((val), 0, 255) >> 4) #define PWM_FROM_REG(val) ((val) << 4) #define FAN_CHAN_FROM_REG(reg) (((reg) >> 5) & 7) #define FAN_CHAN_TO_REG(val, reg) \ (((reg) & 0x1F) | (((val) << 5) & 0xe0)) #define AUTO_TEMP_MIN_TO_REG(val, reg) \ ((((val) / 500) & 0xf8) | ((reg) & 0x7)) #define AUTO_TEMP_RANGE_FROM_REG(reg) (5000 * (1 << ((reg) & 0x7))) #define AUTO_TEMP_MIN_FROM_REG(reg) (1000 * ((((reg) >> 3) & 0x1f) << 2)) #define AUTO_TEMP_MIN_FROM_REG_DEG(reg) ((((reg) >> 3) & 0x1f) << 2) #define AUTO_TEMP_OFF_FROM_REG(reg) \ (AUTO_TEMP_MIN_FROM_REG(reg) - 5000) #define AUTO_TEMP_MAX_FROM_REG(reg) \ (AUTO_TEMP_RANGE_FROM_REG(reg) + \ AUTO_TEMP_MIN_FROM_REG(reg)) static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm) { int ret; int range = val - AUTO_TEMP_MIN_FROM_REG(reg); range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm); ret = ((reg & 0xf8) | (range < 10000 ? 0 : range < 20000 ? 1 : range < 40000 ? 2 : range < 80000 ? 3 : 4)); return ret; } /* FAN auto control */ #define GET_FAN_AUTO_BITFIELD(data, idx) \ (*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2] /* * The tables below contains the possible values for the auto fan * control bitfields. the index in the table is the register value. * MSb is the auto fan control enable bit, so the four first entries * in the table disables auto fan control when both bitfields are zero. */ static const auto_chan_table_t auto_channel_select_table_adm1031 = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 2 /* 0b010 */ , 4 /* 0b100 */ }, { 2 /* 0b010 */ , 2 /* 0b010 */ }, { 4 /* 0b100 */ , 4 /* 0b100 */ }, { 7 /* 0b111 */ , 7 /* 0b111 */ }, }; static const auto_chan_table_t auto_channel_select_table_adm1030 = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 2 /* 0b10 */ , 0 }, { 0xff /* invalid */ , 0 }, { 0xff /* invalid */ , 0 }, { 3 /* 0b11 */ , 0 }, }; /* * That function checks if a bitfield is valid and returns the other bitfield * nearest match if no exact match where found. */ static int get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg) { int i; int first_match = -1, exact_match = -1; u8 other_reg_val = (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1]; if (val == 0) return 0; for (i = 0; i < 8; i++) { if ((val == (*data->chan_select_table)[i][chan]) && ((*data->chan_select_table)[i][chan ? 0 : 1] == other_reg_val)) { /* We found an exact match */ exact_match = i; break; } else if (val == (*data->chan_select_table)[i][chan] && first_match == -1) { /* * Save the first match in case of an exact match has * not been found */ first_match = i; } } if (exact_match >= 0) return exact_match; else if (first_match >= 0) return first_match; return -EINVAL; } static ssize_t fan_auto_channel_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr)); } static ssize_t fan_auto_channel_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; u8 reg; int ret; u8 old_fan_mode; ret = kstrtol(buf, 10, &val); if (ret) return ret; old_fan_mode = data->conf1; mutex_lock(&data->update_lock); ret = get_fan_auto_nearest(data, nr, val, data->conf1); if (ret < 0) { mutex_unlock(&data->update_lock); return ret; } reg = ret; data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^ (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) { if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { /* * Switch to Auto Fan Mode * Save PWM registers * Set PWM registers to 33% Both */ data->old_pwm[0] = data->pwm[0]; data->old_pwm[1] = data->pwm[1]; adm1031_write_value(client, ADM1031_REG_PWM, 0x55); } else { /* Switch to Manual Mode */ data->pwm[0] = data->old_pwm[0]; data->pwm[1] = data->old_pwm[1]; /* Restore PWM registers */ adm1031_write_value(client, ADM1031_REG_PWM, data->pwm[0] | (data->pwm[1] << 4)); } } data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1); adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0); static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1); /* Auto Temps */ static ssize_t auto_temp_off_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr])); } static ssize_t auto_temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr])); } static ssize_t auto_temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, 0, 127000); mutex_lock(&data->update_lock); data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]); adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), data->auto_temp[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t auto_temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr])); } static ssize_t auto_temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, 0, 127000); mutex_lock(&data->update_lock); data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr], data->pwm[nr]); adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0); static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0); static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0); static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1); static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1); static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1); static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2); static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2); static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2); /* pwm */ static ssize_t pwm_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr])); } static ssize_t pwm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret, reg; ret = kstrtol(buf, 10, &val); if (ret) return ret; mutex_lock(&data->update_lock); if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) && (((val>>4) & 0xf) != 5)) { /* In automatic mode, the only PWM accepted is 33% */ mutex_unlock(&data->update_lock); return -EINVAL; } data->pwm[nr] = PWM_TO_REG(val); reg = adm1031_read_value(client, ADM1031_REG_PWM); adm1031_write_value(client, ADM1031_REG_PWM, nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf) : (data->pwm[nr] & 0xf) | (reg & 0xf0)); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0); static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1); /* Fans */ /* * That function checks the cases where the fan reading is not * relevant. It is used to provide 0 as fan reading when the fan is * not supposed to run */ static int trust_fan_readings(struct adm1031_data *data, int chan) { int res = 0; if (data->conf1 & ADM1031_CONF1_AUTO_MODE) { switch (data->conf1 & 0x60) { case 0x00: /* * remote temp1 controls fan1, * remote temp2 controls fan2 */ res = data->temp[chan+1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]); break; case 0x20: /* remote temp1 controls both fans */ res = data->temp[1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]); break; case 0x40: /* remote temp2 controls both fans */ res = data->temp[2] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]); break; case 0x60: /* max controls both fans */ res = data->temp[0] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0]) || data->temp[1] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]) || (data->chip_type == adm1031 && data->temp[2] >= AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2])); break; } } else { res = data->pwm[chan] > 0; } return res; } static ssize_t fan_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); int value; value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr], FAN_DIV_FROM_REG(data->fan_div[nr])) : 0; return sprintf(buf, "%d\n", value); } static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr])); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr], FAN_DIV_FROM_REG(data->fan_div[nr]))); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; mutex_lock(&data->update_lock); if (val) { data->fan_min[nr] = FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr])); } else { data->fan_min[nr] = 0xff; } adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t fan_div_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; u8 tmp; int old_div; int new_min; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; tmp = val == 8 ? 0xc0 : val == 4 ? 0x80 : val == 2 ? 0x40 : val == 1 ? 0x00 : 0xff; if (tmp == 0xff) return -EINVAL; mutex_lock(&data->update_lock); /* Get fresh readings */ data->fan_div[nr] = adm1031_read_value(client, ADM1031_REG_FAN_DIV(nr)); data->fan_min[nr] = adm1031_read_value(client, ADM1031_REG_FAN_MIN(nr)); /* Write the new clock divider and fan min */ old_div = FAN_DIV_FROM_REG(data->fan_div[nr]); data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]); new_min = data->fan_min[nr] * old_div / val; data->fan_min[nr] = new_min > 0xff ? 0xff : new_min; adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr), data->fan_div[nr]); adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]); /* Invalidate the cache: fan speed is no longer valid */ data->valid = 0; mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1); /* Temps */ static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); int ext; ext = nr == 0 ? ((data->ext_temp[nr] >> 6) & 0x3) * 2 : (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7)); return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext)); } static ssize_t temp_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_OFFSET_FROM_REG(data->temp_offset[nr])); } static ssize_t temp_min_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr])); } static ssize_t temp_max_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr])); } static ssize_t temp_crit_show(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr])); } static ssize_t temp_offset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, -15000, 15000); mutex_lock(&data->update_lock); data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr), data->temp_offset[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_min_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, -55000, 127000); mutex_lock(&data->update_lock); data->temp_min[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr), data->temp_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, -55000, 127000); mutex_lock(&data->update_lock); data->temp_max[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr), data->temp_max[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t temp_crit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int nr = to_sensor_dev_attr(attr)->index; long val; int ret; ret = kstrtol(buf, 10, &val); if (ret) return ret; val = clamp_val(val, -55000, 127000); mutex_lock(&data->update_lock); data->temp_crit[nr] = TEMP_TO_REG(val); adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr), data->temp_crit[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2); /* Alarms */ static ssize_t alarms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", data->alarm); } static DEVICE_ATTR_RO(alarms); static ssize_t alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { int bitnr = to_sensor_dev_attr(attr)->index; struct adm1031_data *data = adm1031_update_device(dev); return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1); static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2); static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3); static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5); static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9); static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10); static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11); static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12); static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13); static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14); /* Update Interval */ static const unsigned int update_intervals[] = { 16000, 8000, 4000, 2000, 1000, 500, 250, 125, }; static ssize_t update_interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct adm1031_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->update_interval); } static ssize_t update_interval_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct adm1031_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int i, err; u8 reg; err = kstrtoul(buf, 10, &val); if (err) return err; /* * Find the nearest update interval from the table. * Use it to determine the matching update rate. */ for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) { if (val >= update_intervals[i]) break; } /* if not found, we point to the last entry (lowest update interval) */ /* set the new update rate while preserving other settings */ reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); reg &= ~ADM1031_UPDATE_RATE_MASK; reg |= i << ADM1031_UPDATE_RATE_SHIFT; adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg); mutex_lock(&data->update_lock); data->update_interval = update_intervals[i]; mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR_RW(update_interval); static struct attribute *adm1031_attributes[] = { &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_div.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan1_fault.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_auto_fan1_channel.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_offset.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_offset.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_auto_temp1_off.dev_attr.attr, &sensor_dev_attr_auto_temp1_min.dev_attr.attr, &sensor_dev_attr_auto_temp1_max.dev_attr.attr, &sensor_dev_attr_auto_temp2_off.dev_attr.attr, &sensor_dev_attr_auto_temp2_min.dev_attr.attr, &sensor_dev_attr_auto_temp2_max.dev_attr.attr, &sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr, &dev_attr_update_interval.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group adm1031_group = { .attrs = adm1031_attributes, }; static struct attribute *adm1031_attributes_opt[] = { &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan2_div.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan2_fault.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_auto_fan2_channel.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_offset.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_auto_temp3_off.dev_attr.attr, &sensor_dev_attr_auto_temp3_min.dev_attr.attr, &sensor_dev_attr_auto_temp3_max.dev_attr.attr, &sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr, NULL }; static const struct attribute_group adm1031_group_opt = { .attrs = adm1031_attributes_opt, }; /* Return 0 if detection is successful, -ENODEV otherwise */ static int adm1031_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; const char *name; int id, co; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; id = i2c_smbus_read_byte_data(client, 0x3d); co = i2c_smbus_read_byte_data(client, 0x3e); if (!((id == 0x31 || id == 0x30) && co == 0x41)) return -ENODEV; name = (id == 0x30) ? "adm1030" : "adm1031"; strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static void adm1031_init_client(struct i2c_client *client) { unsigned int read_val; unsigned int mask; int i; struct adm1031_data *data = i2c_get_clientdata(client); mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE); if (data->chip_type == adm1031) { mask |= (ADM1031_CONF2_PWM2_ENABLE | ADM1031_CONF2_TACH2_ENABLE); } /* Initialize the ADM1031 chip (enables fan speed reading ) */ read_val = adm1031_read_value(client, ADM1031_REG_CONF2); if ((read_val | mask) != read_val) adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask); read_val = adm1031_read_value(client, ADM1031_REG_CONF1); if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) { adm1031_write_value(client, ADM1031_REG_CONF1, read_val | ADM1031_CONF1_MONITOR_ENABLE); } /* Read the chip's update rate */ mask = ADM1031_UPDATE_RATE_MASK; read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER); i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT; /* Save it as update interval */ data->update_interval = update_intervals[i]; } static int adm1031_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device *hwmon_dev; struct adm1031_data *data; data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); data->client = client; data->chip_type = id->driver_data; mutex_init(&data->update_lock); if (data->chip_type == adm1030) data->chan_select_table = &auto_channel_select_table_adm1030; else data->chan_select_table = &auto_channel_select_table_adm1031; /* Initialize the ADM1031 chip */ adm1031_init_client(client); /* sysfs hooks */ data->groups[0] = &adm1031_group; if (data->chip_type == adm1031) data->groups[1] = &adm1031_group_opt; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adm1031_id[] = { { "adm1030", adm1030 }, { "adm1031", adm1031 }, { } }; MODULE_DEVICE_TABLE(i2c, adm1031_id); static struct i2c_driver adm1031_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adm1031", }, .probe = adm1031_probe, .id_table = adm1031_id, .detect = adm1031_detect, .address_list = normal_i2c, }; module_i2c_driver(adm1031_driver); MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>"); MODULE_DESCRIPTION("ADM1031/ADM1030 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1