Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 4593 | 93.68% | 8 | 28.57% |
Jean Delvare | 165 | 3.37% | 5 | 17.86% |
Jonathan Cameron | 50 | 1.02% | 1 | 3.57% |
Guenter Roeck | 33 | 0.67% | 3 | 10.71% |
Julia Lawall | 27 | 0.55% | 2 | 7.14% |
Thomas Gleixner | 12 | 0.24% | 2 | 7.14% |
Joe Perches | 8 | 0.16% | 1 | 3.57% |
Al Viro | 6 | 0.12% | 1 | 3.57% |
Corey Minyard | 3 | 0.06% | 1 | 3.57% |
Tejun Heo | 3 | 0.06% | 1 | 3.57% |
Frans Meulenbroeks | 1 | 0.02% | 1 | 3.57% |
Sachin Kamat | 1 | 0.02% | 1 | 3.57% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 3.57% |
Total | 4903 | 28 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * A hwmon driver for the IBM System Director Active Energy Manager (AEM) * temperature/power/energy sensors and capping functionality. * Copyright (C) 2008 IBM * * Author: Darrick J. Wong <darrick.wong@oracle.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/ipmi.h> #include <linux/module.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/jiffies.h> #include <linux/mutex.h> #include <linux/kdev_t.h> #include <linux/spinlock.h> #include <linux/idr.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/platform_device.h> #include <linux/math64.h> #include <linux/time.h> #include <linux/err.h> #define REFRESH_INTERVAL (HZ) #define IPMI_TIMEOUT (30 * HZ) #define DRVNAME "aem" #define AEM_NETFN 0x2E #define AEM_FIND_FW_CMD 0x80 #define AEM_ELEMENT_CMD 0x81 #define AEM_FW_INSTANCE_CMD 0x82 #define AEM_READ_ELEMENT_CFG 0x80 #define AEM_READ_BUFFER 0x81 #define AEM_READ_REGISTER 0x82 #define AEM_WRITE_REGISTER 0x83 #define AEM_SET_REG_MASK 0x84 #define AEM_CLEAR_REG_MASK 0x85 #define AEM_READ_ELEMENT_CFG2 0x86 #define AEM_CONTROL_ELEMENT 0 #define AEM_ENERGY_ELEMENT 1 #define AEM_CLOCK_ELEMENT 4 #define AEM_POWER_CAP_ELEMENT 7 #define AEM_EXHAUST_ELEMENT 9 #define AEM_POWER_ELEMENT 10 #define AEM_MODULE_TYPE_ID 0x0001 #define AEM2_NUM_ENERGY_REGS 2 #define AEM2_NUM_PCAP_REGS 6 #define AEM2_NUM_TEMP_REGS 2 #define AEM2_NUM_SENSORS 14 #define AEM1_NUM_ENERGY_REGS 1 #define AEM1_NUM_SENSORS 3 /* AEM 2.x has more energy registers */ #define AEM_NUM_ENERGY_REGS AEM2_NUM_ENERGY_REGS /* AEM 2.x needs more sensor files */ #define AEM_NUM_SENSORS AEM2_NUM_SENSORS #define POWER_CAP 0 #define POWER_CAP_MAX_HOTPLUG 1 #define POWER_CAP_MAX 2 #define POWER_CAP_MIN_WARNING 3 #define POWER_CAP_MIN 4 #define POWER_AUX 5 #define AEM_DEFAULT_POWER_INTERVAL 1000 #define AEM_MIN_POWER_INTERVAL 200 #define UJ_PER_MJ 1000L static DEFINE_IDA(aem_ida); static struct platform_driver aem_driver = { .driver = { .name = DRVNAME, .bus = &platform_bus_type, } }; struct aem_ipmi_data { struct completion read_complete; struct ipmi_addr address; struct ipmi_user *user; int interface; struct kernel_ipmi_msg tx_message; long tx_msgid; void *rx_msg_data; unsigned short rx_msg_len; unsigned char rx_result; int rx_recv_type; struct device *bmc_device; }; struct aem_ro_sensor_template { char *label; ssize_t (*show)(struct device *dev, struct device_attribute *devattr, char *buf); int index; }; struct aem_rw_sensor_template { char *label; ssize_t (*show)(struct device *dev, struct device_attribute *devattr, char *buf); ssize_t (*set)(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count); int index; }; struct aem_data { struct list_head list; struct device *hwmon_dev; struct platform_device *pdev; struct mutex lock; char valid; unsigned long last_updated; /* In jiffies */ u8 ver_major; u8 ver_minor; u8 module_handle; int id; struct aem_ipmi_data ipmi; /* Function and buffer to update sensors */ void (*update)(struct aem_data *data); struct aem_read_sensor_resp *rs_resp; /* * AEM 1.x sensors: * Available sensors: * Energy meter * Power meter * * AEM 2.x sensors: * Two energy meters * Two power meters * Two temperature sensors * Six power cap registers */ /* sysfs attrs */ struct sensor_device_attribute sensors[AEM_NUM_SENSORS]; /* energy use in mJ */ u64 energy[AEM_NUM_ENERGY_REGS]; /* power sampling interval in ms */ unsigned long power_period[AEM_NUM_ENERGY_REGS]; /* Everything past here is for AEM2 only */ /* power caps in dW */ u16 pcap[AEM2_NUM_PCAP_REGS]; /* exhaust temperature in C */ u8 temp[AEM2_NUM_TEMP_REGS]; }; /* Data structures returned by the AEM firmware */ struct aem_iana_id { u8 bytes[3]; }; static struct aem_iana_id system_x_id = { .bytes = {0x4D, 0x4F, 0x00} }; /* These are used to find AEM1 instances */ struct aem_find_firmware_req { struct aem_iana_id id; u8 rsvd; __be16 index; __be16 module_type_id; } __packed; struct aem_find_firmware_resp { struct aem_iana_id id; u8 num_instances; } __packed; /* These are used to find AEM2 instances */ struct aem_find_instance_req { struct aem_iana_id id; u8 instance_number; __be16 module_type_id; } __packed; struct aem_find_instance_resp { struct aem_iana_id id; u8 num_instances; u8 major; u8 minor; u8 module_handle; u16 record_id; } __packed; /* These are used to query sensors */ struct aem_read_sensor_req { struct aem_iana_id id; u8 module_handle; u8 element; u8 subcommand; u8 reg; u8 rx_buf_size; } __packed; struct aem_read_sensor_resp { struct aem_iana_id id; u8 bytes[]; } __packed; /* Data structures to talk to the IPMI layer */ struct aem_driver_data { struct list_head aem_devices; struct ipmi_smi_watcher bmc_events; struct ipmi_user_hndl ipmi_hndlrs; }; static void aem_register_bmc(int iface, struct device *dev); static void aem_bmc_gone(int iface); static void aem_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data); static void aem_remove_sensors(struct aem_data *data); static int aem1_find_sensors(struct aem_data *data); static int aem2_find_sensors(struct aem_data *data); static void update_aem1_sensors(struct aem_data *data); static void update_aem2_sensors(struct aem_data *data); static struct aem_driver_data driver_data = { .aem_devices = LIST_HEAD_INIT(driver_data.aem_devices), .bmc_events = { .owner = THIS_MODULE, .new_smi = aem_register_bmc, .smi_gone = aem_bmc_gone, }, .ipmi_hndlrs = { .ipmi_recv_hndl = aem_msg_handler, }, }; /* Functions to talk to the IPMI layer */ /* Initialize IPMI address, message buffers and user data */ static int aem_init_ipmi_data(struct aem_ipmi_data *data, int iface, struct device *bmc) { int err; init_completion(&data->read_complete); data->bmc_device = bmc; /* Initialize IPMI address */ data->address.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; data->address.channel = IPMI_BMC_CHANNEL; data->address.data[0] = 0; data->interface = iface; /* Initialize message buffers */ data->tx_msgid = 0; data->tx_message.netfn = AEM_NETFN; /* Create IPMI messaging interface user */ err = ipmi_create_user(data->interface, &driver_data.ipmi_hndlrs, data, &data->user); if (err < 0) { dev_err(bmc, "Unable to register user with IPMI interface %d\n", data->interface); return err; } return 0; } /* Send an IPMI command */ static int aem_send_message(struct aem_ipmi_data *data) { int err; err = ipmi_validate_addr(&data->address, sizeof(data->address)); if (err) goto out; data->tx_msgid++; err = ipmi_request_settime(data->user, &data->address, data->tx_msgid, &data->tx_message, data, 0, 0, 0); if (err) goto out1; return 0; out1: dev_err(data->bmc_device, "request_settime=%x\n", err); return err; out: dev_err(data->bmc_device, "validate_addr=%x\n", err); return err; } /* Dispatch IPMI messages to callers */ static void aem_msg_handler(struct ipmi_recv_msg *msg, void *user_msg_data) { unsigned short rx_len; struct aem_ipmi_data *data = user_msg_data; if (msg->msgid != data->tx_msgid) { dev_err(data->bmc_device, "Mismatch between received msgid (%02x) and transmitted msgid (%02x)!\n", (int)msg->msgid, (int)data->tx_msgid); ipmi_free_recv_msg(msg); return; } data->rx_recv_type = msg->recv_type; if (msg->msg.data_len > 0) data->rx_result = msg->msg.data[0]; else data->rx_result = IPMI_UNKNOWN_ERR_COMPLETION_CODE; if (msg->msg.data_len > 1) { rx_len = msg->msg.data_len - 1; if (data->rx_msg_len < rx_len) rx_len = data->rx_msg_len; data->rx_msg_len = rx_len; memcpy(data->rx_msg_data, msg->msg.data + 1, data->rx_msg_len); } else data->rx_msg_len = 0; ipmi_free_recv_msg(msg); complete(&data->read_complete); } /* Sensor support functions */ /* Read a sensor value; must be called with data->lock held */ static int aem_read_sensor(struct aem_data *data, u8 elt, u8 reg, void *buf, size_t size) { int rs_size, res; struct aem_read_sensor_req rs_req; /* Use preallocated rx buffer */ struct aem_read_sensor_resp *rs_resp = data->rs_resp; struct aem_ipmi_data *ipmi = &data->ipmi; /* AEM registers are 1, 2, 4 or 8 bytes */ switch (size) { case 1: case 2: case 4: case 8: break; default: return -EINVAL; } rs_req.id = system_x_id; rs_req.module_handle = data->module_handle; rs_req.element = elt; rs_req.subcommand = AEM_READ_REGISTER; rs_req.reg = reg; rs_req.rx_buf_size = size; ipmi->tx_message.cmd = AEM_ELEMENT_CMD; ipmi->tx_message.data = (char *)&rs_req; ipmi->tx_message.data_len = sizeof(rs_req); rs_size = sizeof(*rs_resp) + size; ipmi->rx_msg_data = rs_resp; ipmi->rx_msg_len = rs_size; aem_send_message(ipmi); res = wait_for_completion_timeout(&ipmi->read_complete, IPMI_TIMEOUT); if (!res) { res = -ETIMEDOUT; goto out; } if (ipmi->rx_result || ipmi->rx_msg_len != rs_size || memcmp(&rs_resp->id, &system_x_id, sizeof(system_x_id))) { res = -ENOENT; goto out; } switch (size) { case 1: { u8 *x = buf; *x = rs_resp->bytes[0]; break; } case 2: { u16 *x = buf; *x = be16_to_cpup((__be16 *)rs_resp->bytes); break; } case 4: { u32 *x = buf; *x = be32_to_cpup((__be32 *)rs_resp->bytes); break; } case 8: { u64 *x = buf; *x = be64_to_cpup((__be64 *)rs_resp->bytes); break; } } res = 0; out: return res; } /* Update AEM energy registers */ static void update_aem_energy_one(struct aem_data *data, int which) { aem_read_sensor(data, AEM_ENERGY_ELEMENT, which, &data->energy[which], 8); } static void update_aem_energy(struct aem_data *data) { update_aem_energy_one(data, 0); if (data->ver_major < 2) return; update_aem_energy_one(data, 1); } /* Update all AEM1 sensors */ static void update_aem1_sensors(struct aem_data *data) { mutex_lock(&data->lock); if (time_before(jiffies, data->last_updated + REFRESH_INTERVAL) && data->valid) goto out; update_aem_energy(data); out: mutex_unlock(&data->lock); } /* Update all AEM2 sensors */ static void update_aem2_sensors(struct aem_data *data) { int i; mutex_lock(&data->lock); if (time_before(jiffies, data->last_updated + REFRESH_INTERVAL) && data->valid) goto out; update_aem_energy(data); aem_read_sensor(data, AEM_EXHAUST_ELEMENT, 0, &data->temp[0], 1); aem_read_sensor(data, AEM_EXHAUST_ELEMENT, 1, &data->temp[1], 1); for (i = POWER_CAP; i <= POWER_AUX; i++) aem_read_sensor(data, AEM_POWER_CAP_ELEMENT, i, &data->pcap[i], 2); out: mutex_unlock(&data->lock); } /* Delete an AEM instance */ static void aem_delete(struct aem_data *data) { list_del(&data->list); aem_remove_sensors(data); kfree(data->rs_resp); hwmon_device_unregister(data->hwmon_dev); ipmi_destroy_user(data->ipmi.user); platform_set_drvdata(data->pdev, NULL); platform_device_unregister(data->pdev); ida_simple_remove(&aem_ida, data->id); kfree(data); } /* Probe functions for AEM1 devices */ /* Retrieve version and module handle for an AEM1 instance */ static int aem_find_aem1_count(struct aem_ipmi_data *data) { int res; struct aem_find_firmware_req ff_req; struct aem_find_firmware_resp ff_resp; ff_req.id = system_x_id; ff_req.index = 0; ff_req.module_type_id = cpu_to_be16(AEM_MODULE_TYPE_ID); data->tx_message.cmd = AEM_FIND_FW_CMD; data->tx_message.data = (char *)&ff_req; data->tx_message.data_len = sizeof(ff_req); data->rx_msg_data = &ff_resp; data->rx_msg_len = sizeof(ff_resp); aem_send_message(data); res = wait_for_completion_timeout(&data->read_complete, IPMI_TIMEOUT); if (!res) return -ETIMEDOUT; if (data->rx_result || data->rx_msg_len != sizeof(ff_resp) || memcmp(&ff_resp.id, &system_x_id, sizeof(system_x_id))) return -ENOENT; return ff_resp.num_instances; } /* Find and initialize one AEM1 instance */ static int aem_init_aem1_inst(struct aem_ipmi_data *probe, u8 module_handle) { struct aem_data *data; int i; int res = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return res; mutex_init(&data->lock); /* Copy instance data */ data->ver_major = 1; data->ver_minor = 0; data->module_handle = module_handle; for (i = 0; i < AEM1_NUM_ENERGY_REGS; i++) data->power_period[i] = AEM_DEFAULT_POWER_INTERVAL; /* Create sub-device for this fw instance */ data->id = ida_simple_get(&aem_ida, 0, 0, GFP_KERNEL); if (data->id < 0) goto id_err; data->pdev = platform_device_alloc(DRVNAME, data->id); if (!data->pdev) goto dev_err; data->pdev->dev.driver = &aem_driver.driver; res = platform_device_add(data->pdev); if (res) goto ipmi_err; platform_set_drvdata(data->pdev, data); /* Set up IPMI interface */ res = aem_init_ipmi_data(&data->ipmi, probe->interface, probe->bmc_device); if (res) goto ipmi_err; /* Register with hwmon */ data->hwmon_dev = hwmon_device_register(&data->pdev->dev); if (IS_ERR(data->hwmon_dev)) { dev_err(&data->pdev->dev, "Unable to register hwmon device for IPMI interface %d\n", probe->interface); res = PTR_ERR(data->hwmon_dev); goto hwmon_reg_err; } data->update = update_aem1_sensors; data->rs_resp = kzalloc(sizeof(*(data->rs_resp)) + 8, GFP_KERNEL); if (!data->rs_resp) { res = -ENOMEM; goto alloc_resp_err; } /* Find sensors */ res = aem1_find_sensors(data); if (res) goto sensor_err; /* Add to our list of AEM devices */ list_add_tail(&data->list, &driver_data.aem_devices); dev_info(data->ipmi.bmc_device, "Found AEM v%d.%d at 0x%X\n", data->ver_major, data->ver_minor, data->module_handle); return 0; sensor_err: kfree(data->rs_resp); alloc_resp_err: hwmon_device_unregister(data->hwmon_dev); hwmon_reg_err: ipmi_destroy_user(data->ipmi.user); ipmi_err: platform_set_drvdata(data->pdev, NULL); platform_device_unregister(data->pdev); dev_err: ida_simple_remove(&aem_ida, data->id); id_err: kfree(data); return res; } /* Find and initialize all AEM1 instances */ static void aem_init_aem1(struct aem_ipmi_data *probe) { int num, i, err; num = aem_find_aem1_count(probe); for (i = 0; i < num; i++) { err = aem_init_aem1_inst(probe, i); if (err) { dev_err(probe->bmc_device, "Error %d initializing AEM1 0x%X\n", err, i); } } } /* Probe functions for AEM2 devices */ /* Retrieve version and module handle for an AEM2 instance */ static int aem_find_aem2(struct aem_ipmi_data *data, struct aem_find_instance_resp *fi_resp, int instance_num) { int res; struct aem_find_instance_req fi_req; fi_req.id = system_x_id; fi_req.instance_number = instance_num; fi_req.module_type_id = cpu_to_be16(AEM_MODULE_TYPE_ID); data->tx_message.cmd = AEM_FW_INSTANCE_CMD; data->tx_message.data = (char *)&fi_req; data->tx_message.data_len = sizeof(fi_req); data->rx_msg_data = fi_resp; data->rx_msg_len = sizeof(*fi_resp); aem_send_message(data); res = wait_for_completion_timeout(&data->read_complete, IPMI_TIMEOUT); if (!res) return -ETIMEDOUT; if (data->rx_result || data->rx_msg_len != sizeof(*fi_resp) || memcmp(&fi_resp->id, &system_x_id, sizeof(system_x_id)) || fi_resp->num_instances <= instance_num) return -ENOENT; return 0; } /* Find and initialize one AEM2 instance */ static int aem_init_aem2_inst(struct aem_ipmi_data *probe, struct aem_find_instance_resp *fi_resp) { struct aem_data *data; int i; int res = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return res; mutex_init(&data->lock); /* Copy instance data */ data->ver_major = fi_resp->major; data->ver_minor = fi_resp->minor; data->module_handle = fi_resp->module_handle; for (i = 0; i < AEM2_NUM_ENERGY_REGS; i++) data->power_period[i] = AEM_DEFAULT_POWER_INTERVAL; /* Create sub-device for this fw instance */ data->id = ida_simple_get(&aem_ida, 0, 0, GFP_KERNEL); if (data->id < 0) goto id_err; data->pdev = platform_device_alloc(DRVNAME, data->id); if (!data->pdev) goto dev_err; data->pdev->dev.driver = &aem_driver.driver; res = platform_device_add(data->pdev); if (res) goto ipmi_err; platform_set_drvdata(data->pdev, data); /* Set up IPMI interface */ res = aem_init_ipmi_data(&data->ipmi, probe->interface, probe->bmc_device); if (res) goto ipmi_err; /* Register with hwmon */ data->hwmon_dev = hwmon_device_register(&data->pdev->dev); if (IS_ERR(data->hwmon_dev)) { dev_err(&data->pdev->dev, "Unable to register hwmon device for IPMI interface %d\n", probe->interface); res = PTR_ERR(data->hwmon_dev); goto hwmon_reg_err; } data->update = update_aem2_sensors; data->rs_resp = kzalloc(sizeof(*(data->rs_resp)) + 8, GFP_KERNEL); if (!data->rs_resp) { res = -ENOMEM; goto alloc_resp_err; } /* Find sensors */ res = aem2_find_sensors(data); if (res) goto sensor_err; /* Add to our list of AEM devices */ list_add_tail(&data->list, &driver_data.aem_devices); dev_info(data->ipmi.bmc_device, "Found AEM v%d.%d at 0x%X\n", data->ver_major, data->ver_minor, data->module_handle); return 0; sensor_err: kfree(data->rs_resp); alloc_resp_err: hwmon_device_unregister(data->hwmon_dev); hwmon_reg_err: ipmi_destroy_user(data->ipmi.user); ipmi_err: platform_set_drvdata(data->pdev, NULL); platform_device_unregister(data->pdev); dev_err: ida_simple_remove(&aem_ida, data->id); id_err: kfree(data); return res; } /* Find and initialize all AEM2 instances */ static void aem_init_aem2(struct aem_ipmi_data *probe) { struct aem_find_instance_resp fi_resp; int err; int i = 0; while (!aem_find_aem2(probe, &fi_resp, i)) { if (fi_resp.major != 2) { dev_err(probe->bmc_device, "Unknown AEM v%d; please report this to the maintainer.\n", fi_resp.major); i++; continue; } err = aem_init_aem2_inst(probe, &fi_resp); if (err) { dev_err(probe->bmc_device, "Error %d initializing AEM2 0x%X\n", err, fi_resp.module_handle); } i++; } } /* Probe a BMC for AEM firmware instances */ static void aem_register_bmc(int iface, struct device *dev) { struct aem_ipmi_data probe; if (aem_init_ipmi_data(&probe, iface, dev)) return; /* Ignore probe errors; they won't cause problems */ aem_init_aem1(&probe); aem_init_aem2(&probe); ipmi_destroy_user(probe.user); } /* Handle BMC deletion */ static void aem_bmc_gone(int iface) { struct aem_data *p1, *next1; list_for_each_entry_safe(p1, next1, &driver_data.aem_devices, list) if (p1->ipmi.interface == iface) aem_delete(p1); } /* sysfs support functions */ /* AEM device name */ static ssize_t name_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct aem_data *data = dev_get_drvdata(dev); return sprintf(buf, "%s%d\n", DRVNAME, data->ver_major); } static SENSOR_DEVICE_ATTR_RO(name, name, 0); /* AEM device version */ static ssize_t version_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct aem_data *data = dev_get_drvdata(dev); return sprintf(buf, "%d.%d\n", data->ver_major, data->ver_minor); } static SENSOR_DEVICE_ATTR_RO(version, version, 0); /* Display power use */ static ssize_t aem_show_power(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *data = dev_get_drvdata(dev); u64 before, after, delta, time; signed long leftover; mutex_lock(&data->lock); update_aem_energy_one(data, attr->index); time = ktime_get_ns(); before = data->energy[attr->index]; leftover = schedule_timeout_interruptible( msecs_to_jiffies(data->power_period[attr->index]) ); if (leftover) { mutex_unlock(&data->lock); return 0; } update_aem_energy_one(data, attr->index); time = ktime_get_ns() - time; after = data->energy[attr->index]; mutex_unlock(&data->lock); delta = (after - before) * UJ_PER_MJ; return sprintf(buf, "%llu\n", (unsigned long long)div64_u64(delta * NSEC_PER_SEC, time)); } /* Display energy use */ static ssize_t aem_show_energy(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *a = dev_get_drvdata(dev); mutex_lock(&a->lock); update_aem_energy_one(a, attr->index); mutex_unlock(&a->lock); return sprintf(buf, "%llu\n", (unsigned long long)a->energy[attr->index] * 1000); } /* Display power interval registers */ static ssize_t aem_show_power_period(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *a = dev_get_drvdata(dev); a->update(a); return sprintf(buf, "%lu\n", a->power_period[attr->index]); } /* Set power interval registers */ static ssize_t aem_set_power_period(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *a = dev_get_drvdata(dev); unsigned long temp; int res; res = kstrtoul(buf, 10, &temp); if (res) return res; if (temp < AEM_MIN_POWER_INTERVAL) return -EINVAL; mutex_lock(&a->lock); a->power_period[attr->index] = temp; mutex_unlock(&a->lock); return count; } /* Discover sensors on an AEM device */ static int aem_register_sensors(struct aem_data *data, const struct aem_ro_sensor_template *ro, const struct aem_rw_sensor_template *rw) { struct device *dev = &data->pdev->dev; struct sensor_device_attribute *sensors = data->sensors; int err; /* Set up read-only sensors */ while (ro->label) { sysfs_attr_init(&sensors->dev_attr.attr); sensors->dev_attr.attr.name = ro->label; sensors->dev_attr.attr.mode = 0444; sensors->dev_attr.show = ro->show; sensors->index = ro->index; err = device_create_file(dev, &sensors->dev_attr); if (err) { sensors->dev_attr.attr.name = NULL; goto error; } sensors++; ro++; } /* Set up read-write sensors */ while (rw->label) { sysfs_attr_init(&sensors->dev_attr.attr); sensors->dev_attr.attr.name = rw->label; sensors->dev_attr.attr.mode = 0644; sensors->dev_attr.show = rw->show; sensors->dev_attr.store = rw->set; sensors->index = rw->index; err = device_create_file(dev, &sensors->dev_attr); if (err) { sensors->dev_attr.attr.name = NULL; goto error; } sensors++; rw++; } err = device_create_file(dev, &sensor_dev_attr_name.dev_attr); if (err) goto error; err = device_create_file(dev, &sensor_dev_attr_version.dev_attr); return err; error: aem_remove_sensors(data); return err; } /* sysfs support functions for AEM2 sensors */ /* Display temperature use */ static ssize_t aem2_show_temp(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *a = dev_get_drvdata(dev); a->update(a); return sprintf(buf, "%u\n", a->temp[attr->index] * 1000); } /* Display power-capping registers */ static ssize_t aem2_show_pcap_value(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct aem_data *a = dev_get_drvdata(dev); a->update(a); return sprintf(buf, "%u\n", a->pcap[attr->index] * 100000); } /* Remove sensors attached to an AEM device */ static void aem_remove_sensors(struct aem_data *data) { int i; for (i = 0; i < AEM_NUM_SENSORS; i++) { if (!data->sensors[i].dev_attr.attr.name) continue; device_remove_file(&data->pdev->dev, &data->sensors[i].dev_attr); } device_remove_file(&data->pdev->dev, &sensor_dev_attr_name.dev_attr); device_remove_file(&data->pdev->dev, &sensor_dev_attr_version.dev_attr); } /* Sensor probe functions */ /* Description of AEM1 sensors */ static const struct aem_ro_sensor_template aem1_ro_sensors[] = { {"energy1_input", aem_show_energy, 0}, {"power1_average", aem_show_power, 0}, {NULL, NULL, 0}, }; static const struct aem_rw_sensor_template aem1_rw_sensors[] = { {"power1_average_interval", aem_show_power_period, aem_set_power_period, 0}, {NULL, NULL, NULL, 0}, }; /* Description of AEM2 sensors */ static const struct aem_ro_sensor_template aem2_ro_sensors[] = { {"energy1_input", aem_show_energy, 0}, {"energy2_input", aem_show_energy, 1}, {"power1_average", aem_show_power, 0}, {"power2_average", aem_show_power, 1}, {"temp1_input", aem2_show_temp, 0}, {"temp2_input", aem2_show_temp, 1}, {"power4_average", aem2_show_pcap_value, POWER_CAP_MAX_HOTPLUG}, {"power5_average", aem2_show_pcap_value, POWER_CAP_MAX}, {"power6_average", aem2_show_pcap_value, POWER_CAP_MIN_WARNING}, {"power7_average", aem2_show_pcap_value, POWER_CAP_MIN}, {"power3_average", aem2_show_pcap_value, POWER_AUX}, {"power_cap", aem2_show_pcap_value, POWER_CAP}, {NULL, NULL, 0}, }; static const struct aem_rw_sensor_template aem2_rw_sensors[] = { {"power1_average_interval", aem_show_power_period, aem_set_power_period, 0}, {"power2_average_interval", aem_show_power_period, aem_set_power_period, 1}, {NULL, NULL, NULL, 0}, }; /* Set up AEM1 sensor attrs */ static int aem1_find_sensors(struct aem_data *data) { return aem_register_sensors(data, aem1_ro_sensors, aem1_rw_sensors); } /* Set up AEM2 sensor attrs */ static int aem2_find_sensors(struct aem_data *data) { return aem_register_sensors(data, aem2_ro_sensors, aem2_rw_sensors); } /* Module init/exit routines */ static int __init aem_init(void) { int res; res = driver_register(&aem_driver.driver); if (res) { pr_err("Can't register aem driver\n"); return res; } res = ipmi_smi_watcher_register(&driver_data.bmc_events); if (res) goto ipmi_reg_err; return 0; ipmi_reg_err: driver_unregister(&aem_driver.driver); return res; } static void __exit aem_exit(void) { struct aem_data *p1, *next1; ipmi_smi_watcher_unregister(&driver_data.bmc_events); driver_unregister(&aem_driver.driver); list_for_each_entry_safe(p1, next1, &driver_data.aem_devices, list) aem_delete(p1); } MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>"); MODULE_DESCRIPTION("IBM AEM power/temp/energy sensor driver"); MODULE_LICENSE("GPL"); module_init(aem_init); module_exit(aem_exit); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3350-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3550-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3650-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3655-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMSystemx3755-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBM3850M2/x3950M2-*"); MODULE_ALIAS("dmi:bvnIBM:*:pnIBMBladeHC10-*");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1