Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thor Thayer | 2225 | 95.86% | 1 | 12.50% |
Atsushi Nemoto | 82 | 3.53% | 2 | 25.00% |
Wolfram Sang | 4 | 0.17% | 1 | 12.50% |
Andy Shevchenko | 3 | 0.13% | 1 | 12.50% |
Gustavo A. R. Silva | 3 | 0.13% | 1 | 12.50% |
Thomas Gleixner | 2 | 0.09% | 1 | 12.50% |
Dejin Zheng | 2 | 0.09% | 1 | 12.50% |
Total | 2321 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright Intel Corporation (C) 2017. * * Based on the i2c-axxia.c driver. */ #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/iopoll.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/platform_device.h> #define ALTR_I2C_TFR_CMD 0x00 /* Transfer Command register */ #define ALTR_I2C_TFR_CMD_STA BIT(9) /* send START before byte */ #define ALTR_I2C_TFR_CMD_STO BIT(8) /* send STOP after byte */ #define ALTR_I2C_TFR_CMD_RW_D BIT(0) /* Direction of transfer */ #define ALTR_I2C_RX_DATA 0x04 /* RX data FIFO register */ #define ALTR_I2C_CTRL 0x08 /* Control register */ #define ALTR_I2C_CTRL_RXT_SHFT 4 /* RX FIFO Threshold */ #define ALTR_I2C_CTRL_TCT_SHFT 2 /* TFER CMD FIFO Threshold */ #define ALTR_I2C_CTRL_BSPEED BIT(1) /* Bus Speed (1=Fast) */ #define ALTR_I2C_CTRL_EN BIT(0) /* Enable Core (1=Enable) */ #define ALTR_I2C_ISER 0x0C /* Interrupt Status Enable register */ #define ALTR_I2C_ISER_RXOF_EN BIT(4) /* Enable RX OVERFLOW IRQ */ #define ALTR_I2C_ISER_ARB_EN BIT(3) /* Enable ARB LOST IRQ */ #define ALTR_I2C_ISER_NACK_EN BIT(2) /* Enable NACK DET IRQ */ #define ALTR_I2C_ISER_RXRDY_EN BIT(1) /* Enable RX Ready IRQ */ #define ALTR_I2C_ISER_TXRDY_EN BIT(0) /* Enable TX Ready IRQ */ #define ALTR_I2C_ISR 0x10 /* Interrupt Status register */ #define ALTR_I2C_ISR_RXOF BIT(4) /* RX OVERFLOW IRQ */ #define ALTR_I2C_ISR_ARB BIT(3) /* ARB LOST IRQ */ #define ALTR_I2C_ISR_NACK BIT(2) /* NACK DET IRQ */ #define ALTR_I2C_ISR_RXRDY BIT(1) /* RX Ready IRQ */ #define ALTR_I2C_ISR_TXRDY BIT(0) /* TX Ready IRQ */ #define ALTR_I2C_STATUS 0x14 /* Status register */ #define ALTR_I2C_STAT_CORE BIT(0) /* Core Status (0=idle) */ #define ALTR_I2C_TC_FIFO_LVL 0x18 /* Transfer FIFO LVL register */ #define ALTR_I2C_RX_FIFO_LVL 0x1C /* Receive FIFO LVL register */ #define ALTR_I2C_SCL_LOW 0x20 /* SCL low count register */ #define ALTR_I2C_SCL_HIGH 0x24 /* SCL high count register */ #define ALTR_I2C_SDA_HOLD 0x28 /* SDA hold count register */ #define ALTR_I2C_ALL_IRQ (ALTR_I2C_ISR_RXOF | ALTR_I2C_ISR_ARB | \ ALTR_I2C_ISR_NACK | ALTR_I2C_ISR_RXRDY | \ ALTR_I2C_ISR_TXRDY) #define ALTR_I2C_THRESHOLD 0 /* IRQ Threshold at 1 element */ #define ALTR_I2C_DFLT_FIFO_SZ 4 #define ALTR_I2C_TIMEOUT 100000 /* 100ms */ #define ALTR_I2C_XFER_TIMEOUT (msecs_to_jiffies(250)) /** * altr_i2c_dev - I2C device context * @base: pointer to register struct * @msg: pointer to current message * @msg_len: number of bytes transferred in msg * @msg_err: error code for completed message * @msg_complete: xfer completion object * @dev: device reference * @adapter: core i2c abstraction * @i2c_clk: clock reference for i2c input clock * @bus_clk_rate: current i2c bus clock rate * @buf: ptr to msg buffer for easier use. * @fifo_size: size of the FIFO passed in. * @isr_mask: cached copy of local ISR enables. * @isr_status: cached copy of local ISR status. * @isr_mutex: mutex for IRQ thread. */ struct altr_i2c_dev { void __iomem *base; struct i2c_msg *msg; size_t msg_len; int msg_err; struct completion msg_complete; struct device *dev; struct i2c_adapter adapter; struct clk *i2c_clk; u32 bus_clk_rate; u8 *buf; u32 fifo_size; u32 isr_mask; u32 isr_status; struct mutex isr_mutex; }; static void altr_i2c_int_enable(struct altr_i2c_dev *idev, u32 mask, bool enable) { u32 int_en; int_en = readl(idev->base + ALTR_I2C_ISER); if (enable) idev->isr_mask = int_en | mask; else idev->isr_mask = int_en & ~mask; writel(idev->isr_mask, idev->base + ALTR_I2C_ISER); } static void altr_i2c_int_clear(struct altr_i2c_dev *idev, u32 mask) { u32 int_en = readl(idev->base + ALTR_I2C_ISR); writel(int_en | mask, idev->base + ALTR_I2C_ISR); } static void altr_i2c_core_disable(struct altr_i2c_dev *idev) { u32 tmp = readl(idev->base + ALTR_I2C_CTRL); writel(tmp & ~ALTR_I2C_CTRL_EN, idev->base + ALTR_I2C_CTRL); } static void altr_i2c_core_enable(struct altr_i2c_dev *idev) { u32 tmp = readl(idev->base + ALTR_I2C_CTRL); writel(tmp | ALTR_I2C_CTRL_EN, idev->base + ALTR_I2C_CTRL); } static void altr_i2c_reset(struct altr_i2c_dev *idev) { altr_i2c_core_disable(idev); altr_i2c_core_enable(idev); } static inline void altr_i2c_stop(struct altr_i2c_dev *idev) { writel(ALTR_I2C_TFR_CMD_STO, idev->base + ALTR_I2C_TFR_CMD); } static void altr_i2c_init(struct altr_i2c_dev *idev) { u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate; u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000; u32 tmp = (ALTR_I2C_THRESHOLD << ALTR_I2C_CTRL_RXT_SHFT) | (ALTR_I2C_THRESHOLD << ALTR_I2C_CTRL_TCT_SHFT); u32 t_high, t_low; if (idev->bus_clk_rate <= I2C_MAX_STANDARD_MODE_FREQ) { tmp &= ~ALTR_I2C_CTRL_BSPEED; /* Standard mode SCL 50/50 */ t_high = divisor * 1 / 2; t_low = divisor * 1 / 2; } else { tmp |= ALTR_I2C_CTRL_BSPEED; /* Fast mode SCL 33/66 */ t_high = divisor * 1 / 3; t_low = divisor * 2 / 3; } writel(tmp, idev->base + ALTR_I2C_CTRL); dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n", idev->bus_clk_rate, clk_mhz, divisor); /* Reset controller */ altr_i2c_reset(idev); /* SCL High Time */ writel(t_high, idev->base + ALTR_I2C_SCL_HIGH); /* SCL Low Time */ writel(t_low, idev->base + ALTR_I2C_SCL_LOW); /* SDA Hold Time, 300ns */ writel(3 * clk_mhz / 10, idev->base + ALTR_I2C_SDA_HOLD); /* Mask all master interrupt bits */ altr_i2c_int_enable(idev, ALTR_I2C_ALL_IRQ, false); } /** * altr_i2c_transfer - On the last byte to be transmitted, send * a Stop bit on the last byte. */ static void altr_i2c_transfer(struct altr_i2c_dev *idev, u32 data) { /* On the last byte to be transmitted, send STOP */ if (idev->msg_len == 1) data |= ALTR_I2C_TFR_CMD_STO; if (idev->msg_len > 0) writel(data, idev->base + ALTR_I2C_TFR_CMD); } /** * altr_i2c_empty_rx_fifo - Fetch data from RX FIFO until end of * transfer. Send a Stop bit on the last byte. */ static void altr_i2c_empty_rx_fifo(struct altr_i2c_dev *idev) { size_t rx_fifo_avail = readl(idev->base + ALTR_I2C_RX_FIFO_LVL); int bytes_to_transfer = min(rx_fifo_avail, idev->msg_len); while (bytes_to_transfer-- > 0) { *idev->buf++ = readl(idev->base + ALTR_I2C_RX_DATA); idev->msg_len--; altr_i2c_transfer(idev, 0); } } /** * altr_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer. * @return: Number of bytes left to transfer. */ static int altr_i2c_fill_tx_fifo(struct altr_i2c_dev *idev) { size_t tx_fifo_avail = idev->fifo_size - readl(idev->base + ALTR_I2C_TC_FIFO_LVL); int bytes_to_transfer = min(tx_fifo_avail, idev->msg_len); int ret = idev->msg_len - bytes_to_transfer; while (bytes_to_transfer-- > 0) { altr_i2c_transfer(idev, *idev->buf++); idev->msg_len--; } return ret; } static irqreturn_t altr_i2c_isr_quick(int irq, void *_dev) { struct altr_i2c_dev *idev = _dev; irqreturn_t ret = IRQ_HANDLED; /* Read IRQ status but only interested in Enabled IRQs. */ idev->isr_status = readl(idev->base + ALTR_I2C_ISR) & idev->isr_mask; if (idev->isr_status) ret = IRQ_WAKE_THREAD; return ret; } static irqreturn_t altr_i2c_isr(int irq, void *_dev) { int ret; bool read, finish = false; struct altr_i2c_dev *idev = _dev; u32 status = idev->isr_status; mutex_lock(&idev->isr_mutex); if (!idev->msg) { dev_warn(idev->dev, "unexpected interrupt\n"); altr_i2c_int_clear(idev, ALTR_I2C_ALL_IRQ); goto out; } read = (idev->msg->flags & I2C_M_RD) != 0; /* handle Lost Arbitration */ if (unlikely(status & ALTR_I2C_ISR_ARB)) { altr_i2c_int_clear(idev, ALTR_I2C_ISR_ARB); idev->msg_err = -EAGAIN; finish = true; } else if (unlikely(status & ALTR_I2C_ISR_NACK)) { dev_dbg(idev->dev, "Could not get ACK\n"); idev->msg_err = -ENXIO; altr_i2c_int_clear(idev, ALTR_I2C_ISR_NACK); altr_i2c_stop(idev); finish = true; } else if (read && unlikely(status & ALTR_I2C_ISR_RXOF)) { /* handle RX FIFO Overflow */ altr_i2c_empty_rx_fifo(idev); altr_i2c_int_clear(idev, ALTR_I2C_ISR_RXRDY); altr_i2c_stop(idev); dev_err(idev->dev, "RX FIFO Overflow\n"); finish = true; } else if (read && (status & ALTR_I2C_ISR_RXRDY)) { /* RX FIFO needs service? */ altr_i2c_empty_rx_fifo(idev); altr_i2c_int_clear(idev, ALTR_I2C_ISR_RXRDY); if (!idev->msg_len) finish = true; } else if (!read && (status & ALTR_I2C_ISR_TXRDY)) { /* TX FIFO needs service? */ altr_i2c_int_clear(idev, ALTR_I2C_ISR_TXRDY); if (idev->msg_len > 0) altr_i2c_fill_tx_fifo(idev); else finish = true; } else { dev_warn(idev->dev, "Unexpected interrupt: 0x%x\n", status); altr_i2c_int_clear(idev, ALTR_I2C_ALL_IRQ); } if (finish) { /* Wait for the Core to finish */ ret = readl_poll_timeout_atomic(idev->base + ALTR_I2C_STATUS, status, !(status & ALTR_I2C_STAT_CORE), 1, ALTR_I2C_TIMEOUT); if (ret) dev_err(idev->dev, "message timeout\n"); altr_i2c_int_enable(idev, ALTR_I2C_ALL_IRQ, false); altr_i2c_int_clear(idev, ALTR_I2C_ALL_IRQ); complete(&idev->msg_complete); dev_dbg(idev->dev, "Message Complete\n"); } out: mutex_unlock(&idev->isr_mutex); return IRQ_HANDLED; } static int altr_i2c_xfer_msg(struct altr_i2c_dev *idev, struct i2c_msg *msg) { u32 imask = ALTR_I2C_ISR_RXOF | ALTR_I2C_ISR_ARB | ALTR_I2C_ISR_NACK; unsigned long time_left; u32 value; u8 addr = i2c_8bit_addr_from_msg(msg); mutex_lock(&idev->isr_mutex); idev->msg = msg; idev->msg_len = msg->len; idev->buf = msg->buf; idev->msg_err = 0; reinit_completion(&idev->msg_complete); altr_i2c_core_enable(idev); /* Make sure RX FIFO is empty */ do { readl(idev->base + ALTR_I2C_RX_DATA); } while (readl(idev->base + ALTR_I2C_RX_FIFO_LVL)); writel(ALTR_I2C_TFR_CMD_STA | addr, idev->base + ALTR_I2C_TFR_CMD); if ((msg->flags & I2C_M_RD) != 0) { imask |= ALTR_I2C_ISER_RXOF_EN | ALTR_I2C_ISER_RXRDY_EN; altr_i2c_int_enable(idev, imask, true); /* write the first byte to start the RX */ altr_i2c_transfer(idev, 0); } else { imask |= ALTR_I2C_ISR_TXRDY; altr_i2c_int_enable(idev, imask, true); altr_i2c_fill_tx_fifo(idev); } mutex_unlock(&idev->isr_mutex); time_left = wait_for_completion_timeout(&idev->msg_complete, ALTR_I2C_XFER_TIMEOUT); mutex_lock(&idev->isr_mutex); altr_i2c_int_enable(idev, imask, false); value = readl(idev->base + ALTR_I2C_STATUS) & ALTR_I2C_STAT_CORE; if (value) dev_err(idev->dev, "Core Status not IDLE...\n"); if (time_left == 0) { idev->msg_err = -ETIMEDOUT; dev_dbg(idev->dev, "Transaction timed out.\n"); } altr_i2c_core_disable(idev); mutex_unlock(&idev->isr_mutex); return idev->msg_err; } static int altr_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct altr_i2c_dev *idev = i2c_get_adapdata(adap); int i, ret; for (i = 0; i < num; i++) { ret = altr_i2c_xfer_msg(idev, msgs++); if (ret) return ret; } return num; } static u32 altr_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm altr_i2c_algo = { .master_xfer = altr_i2c_xfer, .functionality = altr_i2c_func, }; static int altr_i2c_probe(struct platform_device *pdev) { struct altr_i2c_dev *idev = NULL; int irq, ret; idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); if (!idev) return -ENOMEM; idev->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(idev->base)) return PTR_ERR(idev->base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; idev->i2c_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(idev->i2c_clk)) { dev_err(&pdev->dev, "missing clock\n"); return PTR_ERR(idev->i2c_clk); } idev->dev = &pdev->dev; init_completion(&idev->msg_complete); mutex_init(&idev->isr_mutex); ret = device_property_read_u32(idev->dev, "fifo-size", &idev->fifo_size); if (ret) { dev_err(&pdev->dev, "FIFO size set to default of %d\n", ALTR_I2C_DFLT_FIFO_SZ); idev->fifo_size = ALTR_I2C_DFLT_FIFO_SZ; } ret = device_property_read_u32(idev->dev, "clock-frequency", &idev->bus_clk_rate); if (ret) { dev_err(&pdev->dev, "Default to 100kHz\n"); idev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ; /* default clock rate */ } if (idev->bus_clk_rate > I2C_MAX_FAST_MODE_FREQ) { dev_err(&pdev->dev, "invalid clock-frequency %d\n", idev->bus_clk_rate); return -EINVAL; } ret = devm_request_threaded_irq(&pdev->dev, irq, altr_i2c_isr_quick, altr_i2c_isr, IRQF_ONESHOT, pdev->name, idev); if (ret) { dev_err(&pdev->dev, "failed to claim IRQ %d\n", irq); return ret; } ret = clk_prepare_enable(idev->i2c_clk); if (ret) { dev_err(&pdev->dev, "failed to enable clock\n"); return ret; } mutex_lock(&idev->isr_mutex); altr_i2c_init(idev); mutex_unlock(&idev->isr_mutex); i2c_set_adapdata(&idev->adapter, idev); strlcpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name)); idev->adapter.owner = THIS_MODULE; idev->adapter.algo = &altr_i2c_algo; idev->adapter.dev.parent = &pdev->dev; idev->adapter.dev.of_node = pdev->dev.of_node; platform_set_drvdata(pdev, idev); ret = i2c_add_adapter(&idev->adapter); if (ret) { clk_disable_unprepare(idev->i2c_clk); return ret; } dev_info(&pdev->dev, "Altera SoftIP I2C Probe Complete\n"); return 0; } static int altr_i2c_remove(struct platform_device *pdev) { struct altr_i2c_dev *idev = platform_get_drvdata(pdev); clk_disable_unprepare(idev->i2c_clk); i2c_del_adapter(&idev->adapter); return 0; } /* Match table for of_platform binding */ static const struct of_device_id altr_i2c_of_match[] = { { .compatible = "altr,softip-i2c-v1.0" }, {}, }; MODULE_DEVICE_TABLE(of, altr_i2c_of_match); static struct platform_driver altr_i2c_driver = { .probe = altr_i2c_probe, .remove = altr_i2c_remove, .driver = { .name = "altera-i2c", .of_match_table = altr_i2c_of_match, }, }; module_platform_driver(altr_i2c_driver); MODULE_DESCRIPTION("Altera Soft IP I2C bus driver"); MODULE_AUTHOR("Thor Thayer <thor.thayer@linux.intel.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1