Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean Delvare | 2503 | 28.68% | 48 | 30.57% |
Mika Westerberg | 1102 | 12.63% | 8 | 5.10% |
Greg Kroah-Hartman | 1060 | 12.15% | 7 | 4.46% |
Daniel Kurtz | 658 | 7.54% | 6 | 3.82% |
David Woodhouse | 527 | 6.04% | 2 | 1.27% |
Oleg Ryjkov | 508 | 5.82% | 2 | 1.27% |
Pali Rohár | 380 | 4.35% | 1 | 0.64% |
Hans de Goede | 376 | 4.31% | 2 | 1.27% |
Benjamin Tissoires | 326 | 3.74% | 6 | 3.82% |
Jarkko Nikula | 309 | 3.54% | 17 | 10.83% |
Ellen Wang | 151 | 1.73% | 1 | 0.64% |
Alexander Sverdlin | 117 | 1.34% | 1 | 0.64% |
Linus Walleij | 109 | 1.25% | 1 | 0.64% |
James Ralston | 96 | 1.10% | 4 | 2.55% |
Seth Heasley | 89 | 1.02% | 9 | 5.73% |
Andy Shevchenko | 76 | 0.87% | 6 | 3.82% |
Jason D. Gaston | 66 | 0.76% | 7 | 4.46% |
Dustin Byford | 39 | 0.45% | 1 | 0.64% |
Srinivas Pandruvada | 30 | 0.34% | 1 | 0.64% |
Alexandra Yates | 30 | 0.34% | 2 | 1.27% |
Qiuxu Zhuo | 28 | 0.32% | 1 | 0.64% |
David Brownell | 24 | 0.28% | 3 | 1.91% |
Felipe Balbi | 24 | 0.28% | 1 | 0.64% |
Chew, Kean Ho | 13 | 0.15% | 1 | 0.64% |
Devin Ryles | 13 | 0.15% | 1 | 0.64% |
Alan Cox | 11 | 0.13% | 1 | 0.64% |
Geert Uytterhoeven | 11 | 0.13% | 1 | 0.64% |
Javier Martinez Canillas | 9 | 0.10% | 1 | 0.64% |
Matthieu CASTET | 7 | 0.08% | 1 | 0.64% |
Jingoo Han | 6 | 0.07% | 1 | 0.64% |
Andrew Morton | 5 | 0.06% | 1 | 0.64% |
Wolfram Sang | 4 | 0.05% | 2 | 1.27% |
Daniel Ritz | 4 | 0.05% | 1 | 0.64% |
Ben Hutchings | 3 | 0.03% | 1 | 0.64% |
Roel Kluin | 2 | 0.02% | 1 | 0.64% |
Bill Pemberton | 2 | 0.02% | 1 | 0.64% |
Martin Schlemmer | 2 | 0.02% | 1 | 0.64% |
Chuhong Yuan | 2 | 0.02% | 1 | 0.64% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.64% |
Lucas De Marchi | 1 | 0.01% | 1 | 0.64% |
Anders Roxell | 1 | 0.01% | 1 | 0.64% |
Deepak Saxena | 1 | 0.01% | 1 | 0.64% |
Total | 8727 | 157 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Copyright (c) 1998 - 2002 Frodo Looijaard <frodol@dds.nl>, Philip Edelbrock <phil@netroedge.com>, and Mark D. Studebaker <mdsxyz123@yahoo.com> Copyright (C) 2007 - 2014 Jean Delvare <jdelvare@suse.de> Copyright (C) 2010 Intel Corporation, David Woodhouse <dwmw2@infradead.org> */ /* * Supports the following Intel I/O Controller Hubs (ICH): * * I/O Block I2C * region SMBus Block proc. block * Chip name PCI ID size PEC buffer call read * --------------------------------------------------------------------------- * 82801AA (ICH) 0x2413 16 no no no no * 82801AB (ICH0) 0x2423 16 no no no no * 82801BA (ICH2) 0x2443 16 no no no no * 82801CA (ICH3) 0x2483 32 soft no no no * 82801DB (ICH4) 0x24c3 32 hard yes no no * 82801E (ICH5) 0x24d3 32 hard yes yes yes * 6300ESB 0x25a4 32 hard yes yes yes * 82801F (ICH6) 0x266a 32 hard yes yes yes * 6310ESB/6320ESB 0x269b 32 hard yes yes yes * 82801G (ICH7) 0x27da 32 hard yes yes yes * 82801H (ICH8) 0x283e 32 hard yes yes yes * 82801I (ICH9) 0x2930 32 hard yes yes yes * EP80579 (Tolapai) 0x5032 32 hard yes yes yes * ICH10 0x3a30 32 hard yes yes yes * ICH10 0x3a60 32 hard yes yes yes * 5/3400 Series (PCH) 0x3b30 32 hard yes yes yes * 6 Series (PCH) 0x1c22 32 hard yes yes yes * Patsburg (PCH) 0x1d22 32 hard yes yes yes * Patsburg (PCH) IDF 0x1d70 32 hard yes yes yes * Patsburg (PCH) IDF 0x1d71 32 hard yes yes yes * Patsburg (PCH) IDF 0x1d72 32 hard yes yes yes * DH89xxCC (PCH) 0x2330 32 hard yes yes yes * Panther Point (PCH) 0x1e22 32 hard yes yes yes * Lynx Point (PCH) 0x8c22 32 hard yes yes yes * Lynx Point-LP (PCH) 0x9c22 32 hard yes yes yes * Avoton (SOC) 0x1f3c 32 hard yes yes yes * Wellsburg (PCH) 0x8d22 32 hard yes yes yes * Wellsburg (PCH) MS 0x8d7d 32 hard yes yes yes * Wellsburg (PCH) MS 0x8d7e 32 hard yes yes yes * Wellsburg (PCH) MS 0x8d7f 32 hard yes yes yes * Coleto Creek (PCH) 0x23b0 32 hard yes yes yes * Wildcat Point (PCH) 0x8ca2 32 hard yes yes yes * Wildcat Point-LP (PCH) 0x9ca2 32 hard yes yes yes * BayTrail (SOC) 0x0f12 32 hard yes yes yes * Braswell (SOC) 0x2292 32 hard yes yes yes * Sunrise Point-H (PCH) 0xa123 32 hard yes yes yes * Sunrise Point-LP (PCH) 0x9d23 32 hard yes yes yes * DNV (SOC) 0x19df 32 hard yes yes yes * Broxton (SOC) 0x5ad4 32 hard yes yes yes * Lewisburg (PCH) 0xa1a3 32 hard yes yes yes * Lewisburg Supersku (PCH) 0xa223 32 hard yes yes yes * Kaby Lake PCH-H (PCH) 0xa2a3 32 hard yes yes yes * Gemini Lake (SOC) 0x31d4 32 hard yes yes yes * Cannon Lake-H (PCH) 0xa323 32 hard yes yes yes * Cannon Lake-LP (PCH) 0x9da3 32 hard yes yes yes * Cedar Fork (PCH) 0x18df 32 hard yes yes yes * Ice Lake-LP (PCH) 0x34a3 32 hard yes yes yes * Comet Lake (PCH) 0x02a3 32 hard yes yes yes * Comet Lake-H (PCH) 0x06a3 32 hard yes yes yes * Elkhart Lake (PCH) 0x4b23 32 hard yes yes yes * Tiger Lake-LP (PCH) 0xa0a3 32 hard yes yes yes * Jasper Lake (SOC) 0x4da3 32 hard yes yes yes * Comet Lake-V (PCH) 0xa3a3 32 hard yes yes yes * * Features supported by this driver: * Software PEC no * Hardware PEC yes * Block buffer yes * Block process call transaction yes * I2C block read transaction yes (doesn't use the block buffer) * Slave mode no * SMBus Host Notify yes * Interrupt processing yes * * See the file Documentation/i2c/busses/i2c-i801.rst for details. */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/stddef.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/i2c-smbus.h> #include <linux/acpi.h> #include <linux/io.h> #include <linux/dmi.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/platform_data/itco_wdt.h> #include <linux/pm_runtime.h> #if IS_ENABLED(CONFIG_I2C_MUX_GPIO) && defined CONFIG_DMI #include <linux/gpio/machine.h> #include <linux/platform_data/i2c-mux-gpio.h> #endif /* I801 SMBus address offsets */ #define SMBHSTSTS(p) (0 + (p)->smba) #define SMBHSTCNT(p) (2 + (p)->smba) #define SMBHSTCMD(p) (3 + (p)->smba) #define SMBHSTADD(p) (4 + (p)->smba) #define SMBHSTDAT0(p) (5 + (p)->smba) #define SMBHSTDAT1(p) (6 + (p)->smba) #define SMBBLKDAT(p) (7 + (p)->smba) #define SMBPEC(p) (8 + (p)->smba) /* ICH3 and later */ #define SMBAUXSTS(p) (12 + (p)->smba) /* ICH4 and later */ #define SMBAUXCTL(p) (13 + (p)->smba) /* ICH4 and later */ #define SMBSLVSTS(p) (16 + (p)->smba) /* ICH3 and later */ #define SMBSLVCMD(p) (17 + (p)->smba) /* ICH3 and later */ #define SMBNTFDADD(p) (20 + (p)->smba) /* ICH3 and later */ /* PCI Address Constants */ #define SMBBAR 4 #define SMBPCICTL 0x004 #define SMBPCISTS 0x006 #define SMBHSTCFG 0x040 #define TCOBASE 0x050 #define TCOCTL 0x054 #define SBREG_BAR 0x10 #define SBREG_SMBCTRL 0xc6000c #define SBREG_SMBCTRL_DNV 0xcf000c /* Host status bits for SMBPCISTS */ #define SMBPCISTS_INTS BIT(3) /* Control bits for SMBPCICTL */ #define SMBPCICTL_INTDIS BIT(10) /* Host configuration bits for SMBHSTCFG */ #define SMBHSTCFG_HST_EN BIT(0) #define SMBHSTCFG_SMB_SMI_EN BIT(1) #define SMBHSTCFG_I2C_EN BIT(2) #define SMBHSTCFG_SPD_WD BIT(4) /* TCO configuration bits for TCOCTL */ #define TCOCTL_EN BIT(8) /* Auxiliary status register bits, ICH4+ only */ #define SMBAUXSTS_CRCE BIT(0) #define SMBAUXSTS_STCO BIT(1) /* Auxiliary control register bits, ICH4+ only */ #define SMBAUXCTL_CRC BIT(0) #define SMBAUXCTL_E32B BIT(1) /* Other settings */ #define MAX_RETRIES 400 /* I801 command constants */ #define I801_QUICK 0x00 #define I801_BYTE 0x04 #define I801_BYTE_DATA 0x08 #define I801_WORD_DATA 0x0C #define I801_PROC_CALL 0x10 /* unimplemented */ #define I801_BLOCK_DATA 0x14 #define I801_I2C_BLOCK_DATA 0x18 /* ICH5 and later */ #define I801_BLOCK_PROC_CALL 0x1C /* I801 Host Control register bits */ #define SMBHSTCNT_INTREN BIT(0) #define SMBHSTCNT_KILL BIT(1) #define SMBHSTCNT_LAST_BYTE BIT(5) #define SMBHSTCNT_START BIT(6) #define SMBHSTCNT_PEC_EN BIT(7) /* ICH3 and later */ /* I801 Hosts Status register bits */ #define SMBHSTSTS_BYTE_DONE BIT(7) #define SMBHSTSTS_INUSE_STS BIT(6) #define SMBHSTSTS_SMBALERT_STS BIT(5) #define SMBHSTSTS_FAILED BIT(4) #define SMBHSTSTS_BUS_ERR BIT(3) #define SMBHSTSTS_DEV_ERR BIT(2) #define SMBHSTSTS_INTR BIT(1) #define SMBHSTSTS_HOST_BUSY BIT(0) /* Host Notify Status register bits */ #define SMBSLVSTS_HST_NTFY_STS BIT(0) /* Host Notify Command register bits */ #define SMBSLVCMD_HST_NTFY_INTREN BIT(0) #define STATUS_ERROR_FLAGS (SMBHSTSTS_FAILED | SMBHSTSTS_BUS_ERR | \ SMBHSTSTS_DEV_ERR) #define STATUS_FLAGS (SMBHSTSTS_BYTE_DONE | SMBHSTSTS_INTR | \ STATUS_ERROR_FLAGS) /* Older devices have their ID defined in <linux/pci_ids.h> */ #define PCI_DEVICE_ID_INTEL_COMETLAKE_SMBUS 0x02a3 #define PCI_DEVICE_ID_INTEL_COMETLAKE_H_SMBUS 0x06a3 #define PCI_DEVICE_ID_INTEL_BAYTRAIL_SMBUS 0x0f12 #define PCI_DEVICE_ID_INTEL_CDF_SMBUS 0x18df #define PCI_DEVICE_ID_INTEL_DNV_SMBUS 0x19df #define PCI_DEVICE_ID_INTEL_COUGARPOINT_SMBUS 0x1c22 #define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS 0x1d22 /* Patsburg also has three 'Integrated Device Function' SMBus controllers */ #define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF0 0x1d70 #define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF1 0x1d71 #define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF2 0x1d72 #define PCI_DEVICE_ID_INTEL_PANTHERPOINT_SMBUS 0x1e22 #define PCI_DEVICE_ID_INTEL_AVOTON_SMBUS 0x1f3c #define PCI_DEVICE_ID_INTEL_BRASWELL_SMBUS 0x2292 #define PCI_DEVICE_ID_INTEL_DH89XXCC_SMBUS 0x2330 #define PCI_DEVICE_ID_INTEL_COLETOCREEK_SMBUS 0x23b0 #define PCI_DEVICE_ID_INTEL_GEMINILAKE_SMBUS 0x31d4 #define PCI_DEVICE_ID_INTEL_ICELAKE_LP_SMBUS 0x34a3 #define PCI_DEVICE_ID_INTEL_5_3400_SERIES_SMBUS 0x3b30 #define PCI_DEVICE_ID_INTEL_ELKHART_LAKE_SMBUS 0x4b23 #define PCI_DEVICE_ID_INTEL_JASPER_LAKE_SMBUS 0x4da3 #define PCI_DEVICE_ID_INTEL_BROXTON_SMBUS 0x5ad4 #define PCI_DEVICE_ID_INTEL_LYNXPOINT_SMBUS 0x8c22 #define PCI_DEVICE_ID_INTEL_WILDCATPOINT_SMBUS 0x8ca2 #define PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS 0x8d22 #define PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS0 0x8d7d #define PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS1 0x8d7e #define PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS2 0x8d7f #define PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_SMBUS 0x9c22 #define PCI_DEVICE_ID_INTEL_WILDCATPOINT_LP_SMBUS 0x9ca2 #define PCI_DEVICE_ID_INTEL_SUNRISEPOINT_LP_SMBUS 0x9d23 #define PCI_DEVICE_ID_INTEL_CANNONLAKE_LP_SMBUS 0x9da3 #define PCI_DEVICE_ID_INTEL_TIGERLAKE_LP_SMBUS 0xa0a3 #define PCI_DEVICE_ID_INTEL_SUNRISEPOINT_H_SMBUS 0xa123 #define PCI_DEVICE_ID_INTEL_LEWISBURG_SMBUS 0xa1a3 #define PCI_DEVICE_ID_INTEL_LEWISBURG_SSKU_SMBUS 0xa223 #define PCI_DEVICE_ID_INTEL_KABYLAKE_PCH_H_SMBUS 0xa2a3 #define PCI_DEVICE_ID_INTEL_CANNONLAKE_H_SMBUS 0xa323 #define PCI_DEVICE_ID_INTEL_COMETLAKE_V_SMBUS 0xa3a3 struct i801_mux_config { char *gpio_chip; unsigned values[3]; int n_values; unsigned classes[3]; unsigned gpios[2]; /* Relative to gpio_chip->base */ int n_gpios; }; struct i801_priv { struct i2c_adapter adapter; unsigned long smba; unsigned char original_hstcfg; unsigned char original_slvcmd; struct pci_dev *pci_dev; unsigned int features; /* isr processing */ wait_queue_head_t waitq; u8 status; /* Command state used by isr for byte-by-byte block transactions */ u8 cmd; bool is_read; int count; int len; u8 *data; #if IS_ENABLED(CONFIG_I2C_MUX_GPIO) && defined CONFIG_DMI const struct i801_mux_config *mux_drvdata; struct platform_device *mux_pdev; struct gpiod_lookup_table *lookup; #endif struct platform_device *tco_pdev; /* * If set to true the host controller registers are reserved for * ACPI AML use. Protected by acpi_lock. */ bool acpi_reserved; struct mutex acpi_lock; }; #define FEATURE_SMBUS_PEC BIT(0) #define FEATURE_BLOCK_BUFFER BIT(1) #define FEATURE_BLOCK_PROC BIT(2) #define FEATURE_I2C_BLOCK_READ BIT(3) #define FEATURE_IRQ BIT(4) #define FEATURE_HOST_NOTIFY BIT(5) /* Not really a feature, but it's convenient to handle it as such */ #define FEATURE_IDF BIT(15) #define FEATURE_TCO_SPT BIT(16) #define FEATURE_TCO_CNL BIT(17) static const char *i801_feature_names[] = { "SMBus PEC", "Block buffer", "Block process call", "I2C block read", "Interrupt", "SMBus Host Notify", }; static unsigned int disable_features; module_param(disable_features, uint, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(disable_features, "Disable selected driver features:\n" "\t\t 0x01 disable SMBus PEC\n" "\t\t 0x02 disable the block buffer\n" "\t\t 0x08 disable the I2C block read functionality\n" "\t\t 0x10 don't use interrupts\n" "\t\t 0x20 disable SMBus Host Notify "); /* Make sure the SMBus host is ready to start transmitting. Return 0 if it is, -EBUSY if it is not. */ static int i801_check_pre(struct i801_priv *priv) { int status; status = inb_p(SMBHSTSTS(priv)); if (status & SMBHSTSTS_HOST_BUSY) { dev_err(&priv->pci_dev->dev, "SMBus is busy, can't use it!\n"); return -EBUSY; } status &= STATUS_FLAGS; if (status) { dev_dbg(&priv->pci_dev->dev, "Clearing status flags (%02x)\n", status); outb_p(status, SMBHSTSTS(priv)); status = inb_p(SMBHSTSTS(priv)) & STATUS_FLAGS; if (status) { dev_err(&priv->pci_dev->dev, "Failed clearing status flags (%02x)\n", status); return -EBUSY; } } /* * Clear CRC status if needed. * During normal operation, i801_check_post() takes care * of it after every operation. We do it here only in case * the hardware was already in this state when the driver * started. */ if (priv->features & FEATURE_SMBUS_PEC) { status = inb_p(SMBAUXSTS(priv)) & SMBAUXSTS_CRCE; if (status) { dev_dbg(&priv->pci_dev->dev, "Clearing aux status flags (%02x)\n", status); outb_p(status, SMBAUXSTS(priv)); status = inb_p(SMBAUXSTS(priv)) & SMBAUXSTS_CRCE; if (status) { dev_err(&priv->pci_dev->dev, "Failed clearing aux status flags (%02x)\n", status); return -EBUSY; } } } return 0; } /* * Convert the status register to an error code, and clear it. * Note that status only contains the bits we want to clear, not the * actual register value. */ static int i801_check_post(struct i801_priv *priv, int status) { int result = 0; /* * If the SMBus is still busy, we give up * Note: This timeout condition only happens when using polling * transactions. For interrupt operation, NAK/timeout is indicated by * DEV_ERR. */ if (unlikely(status < 0)) { dev_err(&priv->pci_dev->dev, "Transaction timeout\n"); /* try to stop the current command */ dev_dbg(&priv->pci_dev->dev, "Terminating the current operation\n"); outb_p(inb_p(SMBHSTCNT(priv)) | SMBHSTCNT_KILL, SMBHSTCNT(priv)); usleep_range(1000, 2000); outb_p(inb_p(SMBHSTCNT(priv)) & (~SMBHSTCNT_KILL), SMBHSTCNT(priv)); /* Check if it worked */ status = inb_p(SMBHSTSTS(priv)); if ((status & SMBHSTSTS_HOST_BUSY) || !(status & SMBHSTSTS_FAILED)) dev_err(&priv->pci_dev->dev, "Failed terminating the transaction\n"); outb_p(STATUS_FLAGS, SMBHSTSTS(priv)); return -ETIMEDOUT; } if (status & SMBHSTSTS_FAILED) { result = -EIO; dev_err(&priv->pci_dev->dev, "Transaction failed\n"); } if (status & SMBHSTSTS_DEV_ERR) { /* * This may be a PEC error, check and clear it. * * AUXSTS is handled differently from HSTSTS. * For HSTSTS, i801_isr() or i801_wait_intr() * has already cleared the error bits in hardware, * and we are passed a copy of the original value * in "status". * For AUXSTS, the hardware register is left * for us to handle here. * This is asymmetric, slightly iffy, but safe, * since all this code is serialized and the CRCE * bit is harmless as long as it's cleared before * the next operation. */ if ((priv->features & FEATURE_SMBUS_PEC) && (inb_p(SMBAUXSTS(priv)) & SMBAUXSTS_CRCE)) { outb_p(SMBAUXSTS_CRCE, SMBAUXSTS(priv)); result = -EBADMSG; dev_dbg(&priv->pci_dev->dev, "PEC error\n"); } else { result = -ENXIO; dev_dbg(&priv->pci_dev->dev, "No response\n"); } } if (status & SMBHSTSTS_BUS_ERR) { result = -EAGAIN; dev_dbg(&priv->pci_dev->dev, "Lost arbitration\n"); } /* Clear status flags except BYTE_DONE, to be cleared by caller */ outb_p(status, SMBHSTSTS(priv)); return result; } /* Wait for BUSY being cleared and either INTR or an error flag being set */ static int i801_wait_intr(struct i801_priv *priv) { int timeout = 0; int status; /* We will always wait for a fraction of a second! */ do { usleep_range(250, 500); status = inb_p(SMBHSTSTS(priv)); } while (((status & SMBHSTSTS_HOST_BUSY) || !(status & (STATUS_ERROR_FLAGS | SMBHSTSTS_INTR))) && (timeout++ < MAX_RETRIES)); if (timeout > MAX_RETRIES) { dev_dbg(&priv->pci_dev->dev, "INTR Timeout!\n"); return -ETIMEDOUT; } return status & (STATUS_ERROR_FLAGS | SMBHSTSTS_INTR); } /* Wait for either BYTE_DONE or an error flag being set */ static int i801_wait_byte_done(struct i801_priv *priv) { int timeout = 0; int status; /* We will always wait for a fraction of a second! */ do { usleep_range(250, 500); status = inb_p(SMBHSTSTS(priv)); } while (!(status & (STATUS_ERROR_FLAGS | SMBHSTSTS_BYTE_DONE)) && (timeout++ < MAX_RETRIES)); if (timeout > MAX_RETRIES) { dev_dbg(&priv->pci_dev->dev, "BYTE_DONE Timeout!\n"); return -ETIMEDOUT; } return status & STATUS_ERROR_FLAGS; } static int i801_transaction(struct i801_priv *priv, int xact) { int status; int result; const struct i2c_adapter *adap = &priv->adapter; result = i801_check_pre(priv); if (result < 0) return result; if (priv->features & FEATURE_IRQ) { outb_p(xact | SMBHSTCNT_INTREN | SMBHSTCNT_START, SMBHSTCNT(priv)); result = wait_event_timeout(priv->waitq, (status = priv->status), adap->timeout); if (!result) { status = -ETIMEDOUT; dev_warn(&priv->pci_dev->dev, "Timeout waiting for interrupt!\n"); } priv->status = 0; return i801_check_post(priv, status); } /* the current contents of SMBHSTCNT can be overwritten, since PEC, * SMBSCMD are passed in xact */ outb_p(xact | SMBHSTCNT_START, SMBHSTCNT(priv)); status = i801_wait_intr(priv); return i801_check_post(priv, status); } static int i801_block_transaction_by_block(struct i801_priv *priv, union i2c_smbus_data *data, char read_write, int command, int hwpec) { int i, len; int status; int xact = hwpec ? SMBHSTCNT_PEC_EN : 0; switch (command) { case I2C_SMBUS_BLOCK_PROC_CALL: xact |= I801_BLOCK_PROC_CALL; break; case I2C_SMBUS_BLOCK_DATA: xact |= I801_BLOCK_DATA; break; default: return -EOPNOTSUPP; } inb_p(SMBHSTCNT(priv)); /* reset the data buffer index */ /* Use 32-byte buffer to process this transaction */ if (read_write == I2C_SMBUS_WRITE) { len = data->block[0]; outb_p(len, SMBHSTDAT0(priv)); for (i = 0; i < len; i++) outb_p(data->block[i+1], SMBBLKDAT(priv)); } status = i801_transaction(priv, xact); if (status) return status; if (read_write == I2C_SMBUS_READ || command == I2C_SMBUS_BLOCK_PROC_CALL) { len = inb_p(SMBHSTDAT0(priv)); if (len < 1 || len > I2C_SMBUS_BLOCK_MAX) return -EPROTO; data->block[0] = len; for (i = 0; i < len; i++) data->block[i + 1] = inb_p(SMBBLKDAT(priv)); } return 0; } static void i801_isr_byte_done(struct i801_priv *priv) { if (priv->is_read) { /* For SMBus block reads, length is received with first byte */ if (((priv->cmd & 0x1c) == I801_BLOCK_DATA) && (priv->count == 0)) { priv->len = inb_p(SMBHSTDAT0(priv)); if (priv->len < 1 || priv->len > I2C_SMBUS_BLOCK_MAX) { dev_err(&priv->pci_dev->dev, "Illegal SMBus block read size %d\n", priv->len); /* FIXME: Recover */ priv->len = I2C_SMBUS_BLOCK_MAX; } else { dev_dbg(&priv->pci_dev->dev, "SMBus block read size is %d\n", priv->len); } priv->data[-1] = priv->len; } /* Read next byte */ if (priv->count < priv->len) priv->data[priv->count++] = inb(SMBBLKDAT(priv)); else dev_dbg(&priv->pci_dev->dev, "Discarding extra byte on block read\n"); /* Set LAST_BYTE for last byte of read transaction */ if (priv->count == priv->len - 1) outb_p(priv->cmd | SMBHSTCNT_LAST_BYTE, SMBHSTCNT(priv)); } else if (priv->count < priv->len - 1) { /* Write next byte, except for IRQ after last byte */ outb_p(priv->data[++priv->count], SMBBLKDAT(priv)); } /* Clear BYTE_DONE to continue with next byte */ outb_p(SMBHSTSTS_BYTE_DONE, SMBHSTSTS(priv)); } static irqreturn_t i801_host_notify_isr(struct i801_priv *priv) { unsigned short addr; addr = inb_p(SMBNTFDADD(priv)) >> 1; /* * With the tested platforms, reading SMBNTFDDAT (22 + (p)->smba) * always returns 0. Our current implementation doesn't provide * data, so we just ignore it. */ i2c_handle_smbus_host_notify(&priv->adapter, addr); /* clear Host Notify bit and return */ outb_p(SMBSLVSTS_HST_NTFY_STS, SMBSLVSTS(priv)); return IRQ_HANDLED; } /* * There are three kinds of interrupts: * * 1) i801 signals transaction completion with one of these interrupts: * INTR - Success * DEV_ERR - Invalid command, NAK or communication timeout * BUS_ERR - SMI# transaction collision * FAILED - transaction was canceled due to a KILL request * When any of these occur, update ->status and wake up the waitq. * ->status must be cleared before kicking off the next transaction. * * 2) For byte-by-byte (I2C read/write) transactions, one BYTE_DONE interrupt * occurs for each byte of a byte-by-byte to prepare the next byte. * * 3) Host Notify interrupts */ static irqreturn_t i801_isr(int irq, void *dev_id) { struct i801_priv *priv = dev_id; u16 pcists; u8 status; /* Confirm this is our interrupt */ pci_read_config_word(priv->pci_dev, SMBPCISTS, &pcists); if (!(pcists & SMBPCISTS_INTS)) return IRQ_NONE; if (priv->features & FEATURE_HOST_NOTIFY) { status = inb_p(SMBSLVSTS(priv)); if (status & SMBSLVSTS_HST_NTFY_STS) return i801_host_notify_isr(priv); } status = inb_p(SMBHSTSTS(priv)); if (status & SMBHSTSTS_BYTE_DONE) i801_isr_byte_done(priv); /* * Clear irq sources and report transaction result. * ->status must be cleared before the next transaction is started. */ status &= SMBHSTSTS_INTR | STATUS_ERROR_FLAGS; if (status) { outb_p(status, SMBHSTSTS(priv)); priv->status = status; wake_up(&priv->waitq); } return IRQ_HANDLED; } /* * For "byte-by-byte" block transactions: * I2C write uses cmd=I801_BLOCK_DATA, I2C_EN=1 * I2C read uses cmd=I801_I2C_BLOCK_DATA */ static int i801_block_transaction_byte_by_byte(struct i801_priv *priv, union i2c_smbus_data *data, char read_write, int command, int hwpec) { int i, len; int smbcmd; int status; int result; const struct i2c_adapter *adap = &priv->adapter; if (command == I2C_SMBUS_BLOCK_PROC_CALL) return -EOPNOTSUPP; result = i801_check_pre(priv); if (result < 0) return result; len = data->block[0]; if (read_write == I2C_SMBUS_WRITE) { outb_p(len, SMBHSTDAT0(priv)); outb_p(data->block[1], SMBBLKDAT(priv)); } if (command == I2C_SMBUS_I2C_BLOCK_DATA && read_write == I2C_SMBUS_READ) smbcmd = I801_I2C_BLOCK_DATA; else smbcmd = I801_BLOCK_DATA; if (priv->features & FEATURE_IRQ) { priv->is_read = (read_write == I2C_SMBUS_READ); if (len == 1 && priv->is_read) smbcmd |= SMBHSTCNT_LAST_BYTE; priv->cmd = smbcmd | SMBHSTCNT_INTREN; priv->len = len; priv->count = 0; priv->data = &data->block[1]; outb_p(priv->cmd | SMBHSTCNT_START, SMBHSTCNT(priv)); result = wait_event_timeout(priv->waitq, (status = priv->status), adap->timeout); if (!result) { status = -ETIMEDOUT; dev_warn(&priv->pci_dev->dev, "Timeout waiting for interrupt!\n"); } priv->status = 0; return i801_check_post(priv, status); } for (i = 1; i <= len; i++) { if (i == len && read_write == I2C_SMBUS_READ) smbcmd |= SMBHSTCNT_LAST_BYTE; outb_p(smbcmd, SMBHSTCNT(priv)); if (i == 1) outb_p(inb(SMBHSTCNT(priv)) | SMBHSTCNT_START, SMBHSTCNT(priv)); status = i801_wait_byte_done(priv); if (status) goto exit; if (i == 1 && read_write == I2C_SMBUS_READ && command != I2C_SMBUS_I2C_BLOCK_DATA) { len = inb_p(SMBHSTDAT0(priv)); if (len < 1 || len > I2C_SMBUS_BLOCK_MAX) { dev_err(&priv->pci_dev->dev, "Illegal SMBus block read size %d\n", len); /* Recover */ while (inb_p(SMBHSTSTS(priv)) & SMBHSTSTS_HOST_BUSY) outb_p(SMBHSTSTS_BYTE_DONE, SMBHSTSTS(priv)); outb_p(SMBHSTSTS_INTR, SMBHSTSTS(priv)); return -EPROTO; } data->block[0] = len; } /* Retrieve/store value in SMBBLKDAT */ if (read_write == I2C_SMBUS_READ) data->block[i] = inb_p(SMBBLKDAT(priv)); if (read_write == I2C_SMBUS_WRITE && i+1 <= len) outb_p(data->block[i+1], SMBBLKDAT(priv)); /* signals SMBBLKDAT ready */ outb_p(SMBHSTSTS_BYTE_DONE, SMBHSTSTS(priv)); } status = i801_wait_intr(priv); exit: return i801_check_post(priv, status); } static int i801_set_block_buffer_mode(struct i801_priv *priv) { outb_p(inb_p(SMBAUXCTL(priv)) | SMBAUXCTL_E32B, SMBAUXCTL(priv)); if ((inb_p(SMBAUXCTL(priv)) & SMBAUXCTL_E32B) == 0) return -EIO; return 0; } /* Block transaction function */ static int i801_block_transaction(struct i801_priv *priv, union i2c_smbus_data *data, char read_write, int command, int hwpec) { int result = 0; unsigned char hostc; if (command == I2C_SMBUS_I2C_BLOCK_DATA) { if (read_write == I2C_SMBUS_WRITE) { /* set I2C_EN bit in configuration register */ pci_read_config_byte(priv->pci_dev, SMBHSTCFG, &hostc); pci_write_config_byte(priv->pci_dev, SMBHSTCFG, hostc | SMBHSTCFG_I2C_EN); } else if (!(priv->features & FEATURE_I2C_BLOCK_READ)) { dev_err(&priv->pci_dev->dev, "I2C block read is unsupported!\n"); return -EOPNOTSUPP; } } if (read_write == I2C_SMBUS_WRITE || command == I2C_SMBUS_I2C_BLOCK_DATA) { if (data->block[0] < 1) data->block[0] = 1; if (data->block[0] > I2C_SMBUS_BLOCK_MAX) data->block[0] = I2C_SMBUS_BLOCK_MAX; } else { data->block[0] = 32; /* max for SMBus block reads */ } /* Experience has shown that the block buffer can only be used for SMBus (not I2C) block transactions, even though the datasheet doesn't mention this limitation. */ if ((priv->features & FEATURE_BLOCK_BUFFER) && command != I2C_SMBUS_I2C_BLOCK_DATA && i801_set_block_buffer_mode(priv) == 0) result = i801_block_transaction_by_block(priv, data, read_write, command, hwpec); else result = i801_block_transaction_byte_by_byte(priv, data, read_write, command, hwpec); if (command == I2C_SMBUS_I2C_BLOCK_DATA && read_write == I2C_SMBUS_WRITE) { /* restore saved configuration register value */ pci_write_config_byte(priv->pci_dev, SMBHSTCFG, hostc); } return result; } /* Return negative errno on error. */ static s32 i801_access(struct i2c_adapter *adap, u16 addr, unsigned short flags, char read_write, u8 command, int size, union i2c_smbus_data *data) { int hwpec; int block = 0; int ret = 0, xact = 0; struct i801_priv *priv = i2c_get_adapdata(adap); mutex_lock(&priv->acpi_lock); if (priv->acpi_reserved) { mutex_unlock(&priv->acpi_lock); return -EBUSY; } pm_runtime_get_sync(&priv->pci_dev->dev); hwpec = (priv->features & FEATURE_SMBUS_PEC) && (flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK && size != I2C_SMBUS_I2C_BLOCK_DATA; switch (size) { case I2C_SMBUS_QUICK: outb_p(((addr & 0x7f) << 1) | (read_write & 0x01), SMBHSTADD(priv)); xact = I801_QUICK; break; case I2C_SMBUS_BYTE: outb_p(((addr & 0x7f) << 1) | (read_write & 0x01), SMBHSTADD(priv)); if (read_write == I2C_SMBUS_WRITE) outb_p(command, SMBHSTCMD(priv)); xact = I801_BYTE; break; case I2C_SMBUS_BYTE_DATA: outb_p(((addr & 0x7f) << 1) | (read_write & 0x01), SMBHSTADD(priv)); outb_p(command, SMBHSTCMD(priv)); if (read_write == I2C_SMBUS_WRITE) outb_p(data->byte, SMBHSTDAT0(priv)); xact = I801_BYTE_DATA; break; case I2C_SMBUS_WORD_DATA: outb_p(((addr & 0x7f) << 1) | (read_write & 0x01), SMBHSTADD(priv)); outb_p(command, SMBHSTCMD(priv)); if (read_write == I2C_SMBUS_WRITE) { outb_p(data->word & 0xff, SMBHSTDAT0(priv)); outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1(priv)); } xact = I801_WORD_DATA; break; case I2C_SMBUS_BLOCK_DATA: outb_p(((addr & 0x7f) << 1) | (read_write & 0x01), SMBHSTADD(priv)); outb_p(command, SMBHSTCMD(priv)); block = 1; break; case I2C_SMBUS_I2C_BLOCK_DATA: /* * NB: page 240 of ICH5 datasheet shows that the R/#W * bit should be cleared here, even when reading. * However if SPD Write Disable is set (Lynx Point and later), * the read will fail if we don't set the R/#W bit. */ outb_p(((addr & 0x7f) << 1) | ((priv->original_hstcfg & SMBHSTCFG_SPD_WD) ? (read_write & 0x01) : 0), SMBHSTADD(priv)); if (read_write == I2C_SMBUS_READ) { /* NB: page 240 of ICH5 datasheet also shows * that DATA1 is the cmd field when reading */ outb_p(command, SMBHSTDAT1(priv)); } else outb_p(command, SMBHSTCMD(priv)); block = 1; break; case I2C_SMBUS_BLOCK_PROC_CALL: /* * Bit 0 of the slave address register always indicate a write * command. */ outb_p((addr & 0x7f) << 1, SMBHSTADD(priv)); outb_p(command, SMBHSTCMD(priv)); block = 1; break; default: dev_err(&priv->pci_dev->dev, "Unsupported transaction %d\n", size); ret = -EOPNOTSUPP; goto out; } if (hwpec) /* enable/disable hardware PEC */ outb_p(inb_p(SMBAUXCTL(priv)) | SMBAUXCTL_CRC, SMBAUXCTL(priv)); else outb_p(inb_p(SMBAUXCTL(priv)) & (~SMBAUXCTL_CRC), SMBAUXCTL(priv)); if (block) ret = i801_block_transaction(priv, data, read_write, size, hwpec); else ret = i801_transaction(priv, xact); /* Some BIOSes don't like it when PEC is enabled at reboot or resume time, so we forcibly disable it after every transaction. Turn off E32B for the same reason. */ if (hwpec || block) outb_p(inb_p(SMBAUXCTL(priv)) & ~(SMBAUXCTL_CRC | SMBAUXCTL_E32B), SMBAUXCTL(priv)); if (block) goto out; if (ret) goto out; if ((read_write == I2C_SMBUS_WRITE) || (xact == I801_QUICK)) goto out; switch (xact & 0x7f) { case I801_BYTE: /* Result put in SMBHSTDAT0 */ case I801_BYTE_DATA: data->byte = inb_p(SMBHSTDAT0(priv)); break; case I801_WORD_DATA: data->word = inb_p(SMBHSTDAT0(priv)) + (inb_p(SMBHSTDAT1(priv)) << 8); break; } out: pm_runtime_mark_last_busy(&priv->pci_dev->dev); pm_runtime_put_autosuspend(&priv->pci_dev->dev); mutex_unlock(&priv->acpi_lock); return ret; } static u32 i801_func(struct i2c_adapter *adapter) { struct i801_priv *priv = i2c_get_adapdata(adapter); return I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK | ((priv->features & FEATURE_SMBUS_PEC) ? I2C_FUNC_SMBUS_PEC : 0) | ((priv->features & FEATURE_BLOCK_PROC) ? I2C_FUNC_SMBUS_BLOCK_PROC_CALL : 0) | ((priv->features & FEATURE_I2C_BLOCK_READ) ? I2C_FUNC_SMBUS_READ_I2C_BLOCK : 0) | ((priv->features & FEATURE_HOST_NOTIFY) ? I2C_FUNC_SMBUS_HOST_NOTIFY : 0); } static void i801_enable_host_notify(struct i2c_adapter *adapter) { struct i801_priv *priv = i2c_get_adapdata(adapter); if (!(priv->features & FEATURE_HOST_NOTIFY)) return; if (!(SMBSLVCMD_HST_NTFY_INTREN & priv->original_slvcmd)) outb_p(SMBSLVCMD_HST_NTFY_INTREN | priv->original_slvcmd, SMBSLVCMD(priv)); /* clear Host Notify bit to allow a new notification */ outb_p(SMBSLVSTS_HST_NTFY_STS, SMBSLVSTS(priv)); } static void i801_disable_host_notify(struct i801_priv *priv) { if (!(priv->features & FEATURE_HOST_NOTIFY)) return; outb_p(priv->original_slvcmd, SMBSLVCMD(priv)); } static const struct i2c_algorithm smbus_algorithm = { .smbus_xfer = i801_access, .functionality = i801_func, }; static const struct pci_device_id i801_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AA_3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801AB_3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801BA_2) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801CA_3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801DB_3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801EB_3) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB_4) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH6_16) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH7_17) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB2_17) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH8_5) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH9_6) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EP80579_1) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH10_4) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICH10_5) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5_3400_SERIES_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_COUGARPOINT_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF0) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF1) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF2) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_DH89XXCC_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_PANTHERPOINT_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNXPOINT_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_AVOTON_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS0) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS1) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS2) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_COLETOCREEK_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_GEMINILAKE_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WILDCATPOINT_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_WILDCATPOINT_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BAYTRAIL_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BRASWELL_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SUNRISEPOINT_H_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SUNRISEPOINT_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CDF_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_DNV_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROXTON_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LEWISBURG_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LEWISBURG_SSKU_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_KABYLAKE_PCH_H_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CANNONLAKE_H_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_CANNONLAKE_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ICELAKE_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_COMETLAKE_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_COMETLAKE_H_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_COMETLAKE_V_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ELKHART_LAKE_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_TIGERLAKE_LP_SMBUS) }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_JASPER_LAKE_SMBUS) }, { 0, } }; MODULE_DEVICE_TABLE(pci, i801_ids); #if defined CONFIG_X86 && defined CONFIG_DMI static unsigned char apanel_addr; /* Scan the system ROM for the signature "FJKEYINF" */ static __init const void __iomem *bios_signature(const void __iomem *bios) { ssize_t offset; const unsigned char signature[] = "FJKEYINF"; for (offset = 0; offset < 0x10000; offset += 0x10) { if (check_signature(bios + offset, signature, sizeof(signature)-1)) return bios + offset; } return NULL; } static void __init input_apanel_init(void) { void __iomem *bios; const void __iomem *p; bios = ioremap(0xF0000, 0x10000); /* Can't fail */ p = bios_signature(bios); if (p) { /* just use the first address */ apanel_addr = readb(p + 8 + 3) >> 1; } iounmap(bios); } struct dmi_onboard_device_info { const char *name; u8 type; unsigned short i2c_addr; const char *i2c_type; }; static const struct dmi_onboard_device_info dmi_devices[] = { { "Syleus", DMI_DEV_TYPE_OTHER, 0x73, "fscsyl" }, { "Hermes", DMI_DEV_TYPE_OTHER, 0x73, "fscher" }, { "Hades", DMI_DEV_TYPE_OTHER, 0x73, "fschds" }, }; static void dmi_check_onboard_device(u8 type, const char *name, struct i2c_adapter *adap) { int i; struct i2c_board_info info; for (i = 0; i < ARRAY_SIZE(dmi_devices); i++) { /* & ~0x80, ignore enabled/disabled bit */ if ((type & ~0x80) != dmi_devices[i].type) continue; if (strcasecmp(name, dmi_devices[i].name)) continue; memset(&info, 0, sizeof(struct i2c_board_info)); info.addr = dmi_devices[i].i2c_addr; strlcpy(info.type, dmi_devices[i].i2c_type, I2C_NAME_SIZE); i2c_new_client_device(adap, &info); break; } } /* We use our own function to check for onboard devices instead of dmi_find_device() as some buggy BIOS's have the devices we are interested in marked as disabled */ static void dmi_check_onboard_devices(const struct dmi_header *dm, void *adap) { int i, count; if (dm->type != 10) return; count = (dm->length - sizeof(struct dmi_header)) / 2; for (i = 0; i < count; i++) { const u8 *d = (char *)(dm + 1) + (i * 2); const char *name = ((char *) dm) + dm->length; u8 type = d[0]; u8 s = d[1]; if (!s) continue; s--; while (s > 0 && name[0]) { name += strlen(name) + 1; s--; } if (name[0] == 0) /* Bogus string reference */ continue; dmi_check_onboard_device(type, name, adap); } } /* NOTE: Keep this list in sync with drivers/platform/x86/dell-smo8800.c */ static const char *const acpi_smo8800_ids[] = { "SMO8800", "SMO8801", "SMO8810", "SMO8811", "SMO8820", "SMO8821", "SMO8830", "SMO8831", }; static acpi_status check_acpi_smo88xx_device(acpi_handle obj_handle, u32 nesting_level, void *context, void **return_value) { struct acpi_device_info *info; acpi_status status; char *hid; int i; status = acpi_get_object_info(obj_handle, &info); if (ACPI_FAILURE(status)) return AE_OK; if (!(info->valid & ACPI_VALID_HID)) goto smo88xx_not_found; hid = info->hardware_id.string; if (!hid) goto smo88xx_not_found; i = match_string(acpi_smo8800_ids, ARRAY_SIZE(acpi_smo8800_ids), hid); if (i < 0) goto smo88xx_not_found; kfree(info); *((bool *)return_value) = true; return AE_CTRL_TERMINATE; smo88xx_not_found: kfree(info); return AE_OK; } static bool is_dell_system_with_lis3lv02d(void) { bool found; const char *vendor; vendor = dmi_get_system_info(DMI_SYS_VENDOR); if (!vendor || strcmp(vendor, "Dell Inc.")) return false; /* * Check that ACPI device SMO88xx is present and is functioning. * Function acpi_get_devices() already filters all ACPI devices * which are not present or are not functioning. * ACPI device SMO88xx represents our ST microelectronics lis3lv02d * accelerometer but unfortunately ACPI does not provide any other * information (like I2C address). */ found = false; acpi_get_devices(NULL, check_acpi_smo88xx_device, NULL, (void **)&found); return found; } /* * Accelerometer's I2C address is not specified in DMI nor ACPI, * so it is needed to define mapping table based on DMI product names. */ static const struct { const char *dmi_product_name; unsigned short i2c_addr; } dell_lis3lv02d_devices[] = { /* * Dell platform team told us that these Latitude devices have * ST microelectronics accelerometer at I2C address 0x29. */ { "Latitude E5250", 0x29 }, { "Latitude E5450", 0x29 }, { "Latitude E5550", 0x29 }, { "Latitude E6440", 0x29 }, { "Latitude E6440 ATG", 0x29 }, { "Latitude E6540", 0x29 }, /* * Additional individual entries were added after verification. */ { "Vostro V131", 0x1d }, }; static void register_dell_lis3lv02d_i2c_device(struct i801_priv *priv) { struct i2c_board_info info; const char *dmi_product_name; int i; dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME); for (i = 0; i < ARRAY_SIZE(dell_lis3lv02d_devices); ++i) { if (strcmp(dmi_product_name, dell_lis3lv02d_devices[i].dmi_product_name) == 0) break; } if (i == ARRAY_SIZE(dell_lis3lv02d_devices)) { dev_warn(&priv->pci_dev->dev, "Accelerometer lis3lv02d is present on SMBus but its" " address is unknown, skipping registration\n"); return; } memset(&info, 0, sizeof(struct i2c_board_info)); info.addr = dell_lis3lv02d_devices[i].i2c_addr; strlcpy(info.type, "lis3lv02d", I2C_NAME_SIZE); i2c_new_client_device(&priv->adapter, &info); } /* Register optional slaves */ static void i801_probe_optional_slaves(struct i801_priv *priv) { /* Only register slaves on main SMBus channel */ if (priv->features & FEATURE_IDF) return; if (apanel_addr) { struct i2c_board_info info; memset(&info, 0, sizeof(struct i2c_board_info)); info.addr = apanel_addr; strlcpy(info.type, "fujitsu_apanel", I2C_NAME_SIZE); i2c_new_client_device(&priv->adapter, &info); } if (dmi_name_in_vendors("FUJITSU")) dmi_walk(dmi_check_onboard_devices, &priv->adapter); if (is_dell_system_with_lis3lv02d()) register_dell_lis3lv02d_i2c_device(priv); /* Instantiate SPD EEPROMs unless the SMBus is multiplexed */ #if IS_ENABLED(CONFIG_I2C_MUX_GPIO) if (!priv->mux_drvdata) #endif i2c_register_spd(&priv->adapter); } #else static void __init input_apanel_init(void) {} static void i801_probe_optional_slaves(struct i801_priv *priv) {} #endif /* CONFIG_X86 && CONFIG_DMI */ #if IS_ENABLED(CONFIG_I2C_MUX_GPIO) && defined CONFIG_DMI static struct i801_mux_config i801_mux_config_asus_z8_d12 = { .gpio_chip = "gpio_ich", .values = { 0x02, 0x03 }, .n_values = 2, .classes = { I2C_CLASS_SPD, I2C_CLASS_SPD }, .gpios = { 52, 53 }, .n_gpios = 2, }; static struct i801_mux_config i801_mux_config_asus_z8_d18 = { .gpio_chip = "gpio_ich", .values = { 0x02, 0x03, 0x01 }, .n_values = 3, .classes = { I2C_CLASS_SPD, I2C_CLASS_SPD, I2C_CLASS_SPD }, .gpios = { 52, 53 }, .n_gpios = 2, }; static const struct dmi_system_id mux_dmi_table[] = { { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8NA-D6(C)"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8P(N)E-D12(X)"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8NH-D12"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8PH-D12/IFB"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8NR-D12"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8P(N)H-D12"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8PG-D18"), }, .driver_data = &i801_mux_config_asus_z8_d18, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8PE-D18"), }, .driver_data = &i801_mux_config_asus_z8_d18, }, { .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "Z8PS-D12"), }, .driver_data = &i801_mux_config_asus_z8_d12, }, { } }; /* Setup multiplexing if needed */ static int i801_add_mux(struct i801_priv *priv) { struct device *dev = &priv->adapter.dev; const struct i801_mux_config *mux_config; struct i2c_mux_gpio_platform_data gpio_data; struct gpiod_lookup_table *lookup; int err, i; if (!priv->mux_drvdata) return 0; mux_config = priv->mux_drvdata; /* Prepare the platform data */ memset(&gpio_data, 0, sizeof(struct i2c_mux_gpio_platform_data)); gpio_data.parent = priv->adapter.nr; gpio_data.values = mux_config->values; gpio_data.n_values = mux_config->n_values; gpio_data.classes = mux_config->classes; gpio_data.idle = I2C_MUX_GPIO_NO_IDLE; /* Register GPIO descriptor lookup table */ lookup = devm_kzalloc(dev, struct_size(lookup, table, mux_config->n_gpios), GFP_KERNEL); if (!lookup) return -ENOMEM; lookup->dev_id = "i2c-mux-gpio"; for (i = 0; i < mux_config->n_gpios; i++) { lookup->table[i] = (struct gpiod_lookup) GPIO_LOOKUP(mux_config->gpio_chip, mux_config->gpios[i], "mux", 0); } gpiod_add_lookup_table(lookup); priv->lookup = lookup; /* * Register the mux device, we use PLATFORM_DEVID_NONE here * because since we are referring to the GPIO chip by name we are * anyways in deep trouble if there is more than one of these * devices, and there should likely only be one platform controller * hub. */ priv->mux_pdev = platform_device_register_data(dev, "i2c-mux-gpio", PLATFORM_DEVID_NONE, &gpio_data, sizeof(struct i2c_mux_gpio_platform_data)); if (IS_ERR(priv->mux_pdev)) { err = PTR_ERR(priv->mux_pdev); gpiod_remove_lookup_table(lookup); priv->mux_pdev = NULL; dev_err(dev, "Failed to register i2c-mux-gpio device\n"); return err; } return 0; } static void i801_del_mux(struct i801_priv *priv) { if (priv->mux_pdev) platform_device_unregister(priv->mux_pdev); if (priv->lookup) gpiod_remove_lookup_table(priv->lookup); } static unsigned int i801_get_adapter_class(struct i801_priv *priv) { const struct dmi_system_id *id; const struct i801_mux_config *mux_config; unsigned int class = I2C_CLASS_HWMON | I2C_CLASS_SPD; int i; id = dmi_first_match(mux_dmi_table); if (id) { /* Remove branch classes from trunk */ mux_config = id->driver_data; for (i = 0; i < mux_config->n_values; i++) class &= ~mux_config->classes[i]; /* Remember for later */ priv->mux_drvdata = mux_config; } return class; } #else static inline int i801_add_mux(struct i801_priv *priv) { return 0; } static inline void i801_del_mux(struct i801_priv *priv) { } static inline unsigned int i801_get_adapter_class(struct i801_priv *priv) { return I2C_CLASS_HWMON | I2C_CLASS_SPD; } #endif static const struct itco_wdt_platform_data spt_tco_platform_data = { .name = "Intel PCH", .version = 4, }; static DEFINE_SPINLOCK(p2sb_spinlock); static struct platform_device * i801_add_tco_spt(struct i801_priv *priv, struct pci_dev *pci_dev, struct resource *tco_res) { struct resource *res; unsigned int devfn; u64 base64_addr; u32 base_addr; u8 hidden; /* * We must access the NO_REBOOT bit over the Primary to Sideband * bridge (P2SB). The BIOS prevents the P2SB device from being * enumerated by the PCI subsystem, so we need to unhide/hide it * to lookup the P2SB BAR. */ spin_lock(&p2sb_spinlock); devfn = PCI_DEVFN(PCI_SLOT(pci_dev->devfn), 1); /* Unhide the P2SB device, if it is hidden */ pci_bus_read_config_byte(pci_dev->bus, devfn, 0xe1, &hidden); if (hidden) pci_bus_write_config_byte(pci_dev->bus, devfn, 0xe1, 0x0); pci_bus_read_config_dword(pci_dev->bus, devfn, SBREG_BAR, &base_addr); base64_addr = base_addr & 0xfffffff0; pci_bus_read_config_dword(pci_dev->bus, devfn, SBREG_BAR + 0x4, &base_addr); base64_addr |= (u64)base_addr << 32; /* Hide the P2SB device, if it was hidden before */ if (hidden) pci_bus_write_config_byte(pci_dev->bus, devfn, 0xe1, hidden); spin_unlock(&p2sb_spinlock); res = &tco_res[1]; if (pci_dev->device == PCI_DEVICE_ID_INTEL_DNV_SMBUS) res->start = (resource_size_t)base64_addr + SBREG_SMBCTRL_DNV; else res->start = (resource_size_t)base64_addr + SBREG_SMBCTRL; res->end = res->start + 3; res->flags = IORESOURCE_MEM; return platform_device_register_resndata(&pci_dev->dev, "iTCO_wdt", -1, tco_res, 2, &spt_tco_platform_data, sizeof(spt_tco_platform_data)); } static const struct itco_wdt_platform_data cnl_tco_platform_data = { .name = "Intel PCH", .version = 6, }; static struct platform_device * i801_add_tco_cnl(struct i801_priv *priv, struct pci_dev *pci_dev, struct resource *tco_res) { return platform_device_register_resndata(&pci_dev->dev, "iTCO_wdt", -1, tco_res, 1, &cnl_tco_platform_data, sizeof(cnl_tco_platform_data)); } static void i801_add_tco(struct i801_priv *priv) { struct pci_dev *pci_dev = priv->pci_dev; struct resource tco_res[2], *res; u32 tco_base, tco_ctl; /* If we have ACPI based watchdog use that instead */ if (acpi_has_watchdog()) return; if (!(priv->features & (FEATURE_TCO_SPT | FEATURE_TCO_CNL))) return; pci_read_config_dword(pci_dev, TCOBASE, &tco_base); pci_read_config_dword(pci_dev, TCOCTL, &tco_ctl); if (!(tco_ctl & TCOCTL_EN)) return; memset(tco_res, 0, sizeof(tco_res)); /* * Always populate the main iTCO IO resource here. The second entry * for NO_REBOOT MMIO is filled by the SPT specific function. */ res = &tco_res[0]; res->start = tco_base & ~1; res->end = res->start + 32 - 1; res->flags = IORESOURCE_IO; if (priv->features & FEATURE_TCO_CNL) priv->tco_pdev = i801_add_tco_cnl(priv, pci_dev, tco_res); else priv->tco_pdev = i801_add_tco_spt(priv, pci_dev, tco_res); if (IS_ERR(priv->tco_pdev)) dev_warn(&pci_dev->dev, "failed to create iTCO device\n"); } #ifdef CONFIG_ACPI static bool i801_acpi_is_smbus_ioport(const struct i801_priv *priv, acpi_physical_address address) { return address >= priv->smba && address <= pci_resource_end(priv->pci_dev, SMBBAR); } static acpi_status i801_acpi_io_handler(u32 function, acpi_physical_address address, u32 bits, u64 *value, void *handler_context, void *region_context) { struct i801_priv *priv = handler_context; struct pci_dev *pdev = priv->pci_dev; acpi_status status; /* * Once BIOS AML code touches the OpRegion we warn and inhibit any * further access from the driver itself. This device is now owned * by the system firmware. */ mutex_lock(&priv->acpi_lock); if (!priv->acpi_reserved && i801_acpi_is_smbus_ioport(priv, address)) { priv->acpi_reserved = true; dev_warn(&pdev->dev, "BIOS is accessing SMBus registers\n"); dev_warn(&pdev->dev, "Driver SMBus register access inhibited\n"); /* * BIOS is accessing the host controller so prevent it from * suspending automatically from now on. */ pm_runtime_get_sync(&pdev->dev); } if ((function & ACPI_IO_MASK) == ACPI_READ) status = acpi_os_read_port(address, (u32 *)value, bits); else status = acpi_os_write_port(address, (u32)*value, bits); mutex_unlock(&priv->acpi_lock); return status; } static int i801_acpi_probe(struct i801_priv *priv) { struct acpi_device *adev; acpi_status status; adev = ACPI_COMPANION(&priv->pci_dev->dev); if (adev) { status = acpi_install_address_space_handler(adev->handle, ACPI_ADR_SPACE_SYSTEM_IO, i801_acpi_io_handler, NULL, priv); if (ACPI_SUCCESS(status)) return 0; } return acpi_check_resource_conflict(&priv->pci_dev->resource[SMBBAR]); } static void i801_acpi_remove(struct i801_priv *priv) { struct acpi_device *adev; adev = ACPI_COMPANION(&priv->pci_dev->dev); if (!adev) return; acpi_remove_address_space_handler(adev->handle, ACPI_ADR_SPACE_SYSTEM_IO, i801_acpi_io_handler); mutex_lock(&priv->acpi_lock); if (priv->acpi_reserved) pm_runtime_put(&priv->pci_dev->dev); mutex_unlock(&priv->acpi_lock); } #else static inline int i801_acpi_probe(struct i801_priv *priv) { return 0; } static inline void i801_acpi_remove(struct i801_priv *priv) { } #endif static int i801_probe(struct pci_dev *dev, const struct pci_device_id *id) { unsigned char temp; int err, i; struct i801_priv *priv; priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; i2c_set_adapdata(&priv->adapter, priv); priv->adapter.owner = THIS_MODULE; priv->adapter.class = i801_get_adapter_class(priv); priv->adapter.algo = &smbus_algorithm; priv->adapter.dev.parent = &dev->dev; ACPI_COMPANION_SET(&priv->adapter.dev, ACPI_COMPANION(&dev->dev)); priv->adapter.retries = 3; mutex_init(&priv->acpi_lock); priv->pci_dev = dev; switch (dev->device) { case PCI_DEVICE_ID_INTEL_SUNRISEPOINT_H_SMBUS: case PCI_DEVICE_ID_INTEL_SUNRISEPOINT_LP_SMBUS: case PCI_DEVICE_ID_INTEL_LEWISBURG_SMBUS: case PCI_DEVICE_ID_INTEL_LEWISBURG_SSKU_SMBUS: case PCI_DEVICE_ID_INTEL_DNV_SMBUS: case PCI_DEVICE_ID_INTEL_KABYLAKE_PCH_H_SMBUS: case PCI_DEVICE_ID_INTEL_COMETLAKE_V_SMBUS: priv->features |= FEATURE_BLOCK_PROC; priv->features |= FEATURE_I2C_BLOCK_READ; priv->features |= FEATURE_IRQ; priv->features |= FEATURE_SMBUS_PEC; priv->features |= FEATURE_BLOCK_BUFFER; priv->features |= FEATURE_TCO_SPT; priv->features |= FEATURE_HOST_NOTIFY; break; case PCI_DEVICE_ID_INTEL_CANNONLAKE_H_SMBUS: case PCI_DEVICE_ID_INTEL_CANNONLAKE_LP_SMBUS: case PCI_DEVICE_ID_INTEL_CDF_SMBUS: case PCI_DEVICE_ID_INTEL_ICELAKE_LP_SMBUS: case PCI_DEVICE_ID_INTEL_COMETLAKE_SMBUS: case PCI_DEVICE_ID_INTEL_COMETLAKE_H_SMBUS: case PCI_DEVICE_ID_INTEL_ELKHART_LAKE_SMBUS: case PCI_DEVICE_ID_INTEL_TIGERLAKE_LP_SMBUS: case PCI_DEVICE_ID_INTEL_JASPER_LAKE_SMBUS: priv->features |= FEATURE_BLOCK_PROC; priv->features |= FEATURE_I2C_BLOCK_READ; priv->features |= FEATURE_IRQ; priv->features |= FEATURE_SMBUS_PEC; priv->features |= FEATURE_BLOCK_BUFFER; priv->features |= FEATURE_TCO_CNL; priv->features |= FEATURE_HOST_NOTIFY; break; case PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF0: case PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF1: case PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF2: case PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS0: case PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS1: case PCI_DEVICE_ID_INTEL_WELLSBURG_SMBUS_MS2: priv->features |= FEATURE_IDF; /* fall through */ default: priv->features |= FEATURE_BLOCK_PROC; priv->features |= FEATURE_I2C_BLOCK_READ; priv->features |= FEATURE_IRQ; /* fall through */ case PCI_DEVICE_ID_INTEL_82801DB_3: priv->features |= FEATURE_SMBUS_PEC; priv->features |= FEATURE_BLOCK_BUFFER; /* fall through */ case PCI_DEVICE_ID_INTEL_82801CA_3: priv->features |= FEATURE_HOST_NOTIFY; /* fall through */ case PCI_DEVICE_ID_INTEL_82801BA_2: case PCI_DEVICE_ID_INTEL_82801AB_3: case PCI_DEVICE_ID_INTEL_82801AA_3: break; } /* Disable features on user request */ for (i = 0; i < ARRAY_SIZE(i801_feature_names); i++) { if (priv->features & disable_features & (1 << i)) dev_notice(&dev->dev, "%s disabled by user\n", i801_feature_names[i]); } priv->features &= ~disable_features; err = pcim_enable_device(dev); if (err) { dev_err(&dev->dev, "Failed to enable SMBus PCI device (%d)\n", err); return err; } pcim_pin_device(dev); /* Determine the address of the SMBus area */ priv->smba = pci_resource_start(dev, SMBBAR); if (!priv->smba) { dev_err(&dev->dev, "SMBus base address uninitialized, upgrade BIOS\n"); return -ENODEV; } if (i801_acpi_probe(priv)) return -ENODEV; err = pcim_iomap_regions(dev, 1 << SMBBAR, dev_driver_string(&dev->dev)); if (err) { dev_err(&dev->dev, "Failed to request SMBus region 0x%lx-0x%Lx\n", priv->smba, (unsigned long long)pci_resource_end(dev, SMBBAR)); i801_acpi_remove(priv); return err; } pci_read_config_byte(priv->pci_dev, SMBHSTCFG, &temp); priv->original_hstcfg = temp; temp &= ~SMBHSTCFG_I2C_EN; /* SMBus timing */ if (!(temp & SMBHSTCFG_HST_EN)) { dev_info(&dev->dev, "Enabling SMBus device\n"); temp |= SMBHSTCFG_HST_EN; } pci_write_config_byte(priv->pci_dev, SMBHSTCFG, temp); if (temp & SMBHSTCFG_SMB_SMI_EN) { dev_dbg(&dev->dev, "SMBus using interrupt SMI#\n"); /* Disable SMBus interrupt feature if SMBus using SMI# */ priv->features &= ~FEATURE_IRQ; } if (temp & SMBHSTCFG_SPD_WD) dev_info(&dev->dev, "SPD Write Disable is set\n"); /* Clear special mode bits */ if (priv->features & (FEATURE_SMBUS_PEC | FEATURE_BLOCK_BUFFER)) outb_p(inb_p(SMBAUXCTL(priv)) & ~(SMBAUXCTL_CRC | SMBAUXCTL_E32B), SMBAUXCTL(priv)); /* Remember original Host Notify setting */ if (priv->features & FEATURE_HOST_NOTIFY) priv->original_slvcmd = inb_p(SMBSLVCMD(priv)); /* Default timeout in interrupt mode: 200 ms */ priv->adapter.timeout = HZ / 5; if (dev->irq == IRQ_NOTCONNECTED) priv->features &= ~FEATURE_IRQ; if (priv->features & FEATURE_IRQ) { u16 pcictl, pcists; /* Complain if an interrupt is already pending */ pci_read_config_word(priv->pci_dev, SMBPCISTS, &pcists); if (pcists & SMBPCISTS_INTS) dev_warn(&dev->dev, "An interrupt is pending!\n"); /* Check if interrupts have been disabled */ pci_read_config_word(priv->pci_dev, SMBPCICTL, &pcictl); if (pcictl & SMBPCICTL_INTDIS) { dev_info(&dev->dev, "Interrupts are disabled\n"); priv->features &= ~FEATURE_IRQ; } } if (priv->features & FEATURE_IRQ) { init_waitqueue_head(&priv->waitq); err = devm_request_irq(&dev->dev, dev->irq, i801_isr, IRQF_SHARED, dev_driver_string(&dev->dev), priv); if (err) { dev_err(&dev->dev, "Failed to allocate irq %d: %d\n", dev->irq, err); priv->features &= ~FEATURE_IRQ; } } dev_info(&dev->dev, "SMBus using %s\n", priv->features & FEATURE_IRQ ? "PCI interrupt" : "polling"); i801_add_tco(priv); snprintf(priv->adapter.name, sizeof(priv->adapter.name), "SMBus I801 adapter at %04lx", priv->smba); err = i2c_add_adapter(&priv->adapter); if (err) { i801_acpi_remove(priv); return err; } i801_enable_host_notify(&priv->adapter); i801_probe_optional_slaves(priv); /* We ignore errors - multiplexing is optional */ i801_add_mux(priv); pci_set_drvdata(dev, priv); pm_runtime_set_autosuspend_delay(&dev->dev, 1000); pm_runtime_use_autosuspend(&dev->dev); pm_runtime_put_autosuspend(&dev->dev); pm_runtime_allow(&dev->dev); return 0; } static void i801_remove(struct pci_dev *dev) { struct i801_priv *priv = pci_get_drvdata(dev); pm_runtime_forbid(&dev->dev); pm_runtime_get_noresume(&dev->dev); i801_disable_host_notify(priv); i801_del_mux(priv); i2c_del_adapter(&priv->adapter); i801_acpi_remove(priv); pci_write_config_byte(dev, SMBHSTCFG, priv->original_hstcfg); platform_device_unregister(priv->tco_pdev); /* * do not call pci_disable_device(dev) since it can cause hard hangs on * some systems during power-off (eg. Fujitsu-Siemens Lifebook E8010) */ } static void i801_shutdown(struct pci_dev *dev) { struct i801_priv *priv = pci_get_drvdata(dev); /* Restore config registers to avoid hard hang on some systems */ i801_disable_host_notify(priv); pci_write_config_byte(dev, SMBHSTCFG, priv->original_hstcfg); } #ifdef CONFIG_PM_SLEEP static int i801_suspend(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct i801_priv *priv = pci_get_drvdata(pci_dev); pci_write_config_byte(pci_dev, SMBHSTCFG, priv->original_hstcfg); return 0; } static int i801_resume(struct device *dev) { struct i801_priv *priv = dev_get_drvdata(dev); i801_enable_host_notify(&priv->adapter); return 0; } #endif static SIMPLE_DEV_PM_OPS(i801_pm_ops, i801_suspend, i801_resume); static struct pci_driver i801_driver = { .name = "i801_smbus", .id_table = i801_ids, .probe = i801_probe, .remove = i801_remove, .shutdown = i801_shutdown, .driver = { .pm = &i801_pm_ops, }, }; static int __init i2c_i801_init(void) { if (dmi_name_in_vendors("FUJITSU")) input_apanel_init(); return pci_register_driver(&i801_driver); } static void __exit i2c_i801_exit(void) { pci_unregister_driver(&i801_driver); } MODULE_AUTHOR("Mark D. Studebaker <mdsxyz123@yahoo.com>, Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("I801 SMBus driver"); MODULE_LICENSE("GPL"); module_init(i2c_i801_init); module_exit(i2c_i801_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1