Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Vašut | 1863 | 52.84% | 8 | 20.51% |
Wolfram Sang | 912 | 25.87% | 9 | 23.08% |
Lothar Waßmann | 245 | 6.95% | 1 | 2.56% |
Lucas Stach | 218 | 6.18% | 2 | 5.13% |
Juergen Beisert (or Jourgen Borleis) | 152 | 4.31% | 1 | 2.56% |
Fabio Estevam | 38 | 1.08% | 4 | 10.26% |
Shawn Guo | 21 | 0.60% | 2 | 5.13% |
Jingoo Han | 18 | 0.51% | 1 | 2.56% |
Janusz Użycki | 18 | 0.51% | 2 | 5.13% |
Peter Rosin | 12 | 0.34% | 1 | 2.56% |
Peter Ujfalusi | 10 | 0.28% | 1 | 2.56% |
Nicholas Mc Guire | 7 | 0.20% | 1 | 2.56% |
Michael Thalmeier | 3 | 0.09% | 1 | 2.56% |
Linus Torvalds | 2 | 0.06% | 1 | 2.56% |
Andy Shevchenko | 2 | 0.06% | 1 | 2.56% |
Anson Huang | 2 | 0.06% | 1 | 2.56% |
Gustavo A. R. Silva | 2 | 0.06% | 1 | 2.56% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 2.56% |
Total | 3526 | 39 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale MXS I2C bus driver * * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. * * based on a (non-working) driver which was: * * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. */ #include <linux/slab.h> #include <linux/device.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/platform_device.h> #include <linux/jiffies.h> #include <linux/io.h> #include <linux/stmp_device.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #define DRIVER_NAME "mxs-i2c" #define MXS_I2C_CTRL0 (0x00) #define MXS_I2C_CTRL0_SET (0x04) #define MXS_I2C_CTRL0_CLR (0x08) #define MXS_I2C_CTRL0_SFTRST 0x80000000 #define MXS_I2C_CTRL0_RUN 0x20000000 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) #define MXS_I2C_TIMING0 (0x10) #define MXS_I2C_TIMING1 (0x20) #define MXS_I2C_TIMING2 (0x30) #define MXS_I2C_CTRL1 (0x40) #define MXS_I2C_CTRL1_SET (0x44) #define MXS_I2C_CTRL1_CLR (0x48) #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 #define MXS_I2C_STAT (0x50) #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 #define MXS_I2C_STAT_BUS_BUSY 0x00000800 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ MXS_I2C_CTRL1_SLAVE_IRQ) #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ MXS_I2C_CTRL0_PRE_SEND_START | \ MXS_I2C_CTRL0_MASTER_MODE | \ MXS_I2C_CTRL0_DIRECTION | \ MXS_I2C_CTRL0_XFER_COUNT(1)) #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ MXS_I2C_CTRL0_MASTER_MODE | \ MXS_I2C_CTRL0_DIRECTION) #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ MXS_I2C_CTRL0_MASTER_MODE) enum mxs_i2c_devtype { MXS_I2C_UNKNOWN = 0, MXS_I2C_V1, MXS_I2C_V2, }; /** * struct mxs_i2c_dev - per device, private MXS-I2C data * * @dev: driver model device node * @dev_type: distinguish i.MX23/i.MX28 features * @regs: IO registers pointer * @cmd_complete: completion object for transaction wait * @cmd_err: error code for last transaction * @adapter: i2c subsystem adapter node */ struct mxs_i2c_dev { struct device *dev; enum mxs_i2c_devtype dev_type; void __iomem *regs; struct completion cmd_complete; int cmd_err; struct i2c_adapter adapter; uint32_t timing0; uint32_t timing1; uint32_t timing2; /* DMA support components */ struct dma_chan *dmach; uint32_t pio_data[2]; uint32_t addr_data; struct scatterlist sg_io[2]; bool dma_read; }; static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) { int ret = stmp_reset_block(i2c->regs); if (ret) return ret; /* * Configure timing for the I2C block. The I2C TIMING2 register has to * be programmed with this particular magic number. The rest is derived * from the XTAL speed and requested I2C speed. * * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. */ writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); return 0; } static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) { if (i2c->dma_read) { dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); } else { dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); } } static void mxs_i2c_dma_irq_callback(void *param) { struct mxs_i2c_dev *i2c = param; complete(&i2c->cmd_complete); mxs_i2c_dma_finish(i2c); } static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, uint32_t flags) { struct dma_async_tx_descriptor *desc; struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); i2c->addr_data = i2c_8bit_addr_from_msg(msg); if (msg->flags & I2C_M_RD) { i2c->dma_read = true; /* * SELECT command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[0] = MXS_CMD_I2C_SELECT; desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[0], 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto select_init_pio_fail; } /* Queue the DMA data transfer. */ sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto select_init_dma_fail; } /* * READ command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | MXS_I2C_CTRL0_XFER_COUNT(msg->len); desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[1], 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto select_init_dma_fail; } /* Queue the DMA data transfer. */ sg_init_one(&i2c->sg_io[1], msg->buf, msg->len); dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto read_init_dma_fail; } } else { i2c->dma_read = false; /* * WRITE command. */ /* Queue the PIO register write transfer. */ i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); desc = dmaengine_prep_slave_sg(i2c->dmach, (struct scatterlist *)&i2c->pio_data[0], 1, DMA_TRANS_NONE, 0); if (!desc) { dev_err(i2c->dev, "Failed to get PIO reg. write descriptor.\n"); goto write_init_pio_fail; } /* Queue the DMA data transfer. */ sg_init_table(i2c->sg_io, 2); sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len); dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(i2c->dev, "Failed to get DMA data write descriptor.\n"); goto write_init_dma_fail; } } /* * The last descriptor must have this callback, * to finish the DMA transaction. */ desc->callback = mxs_i2c_dma_irq_callback; desc->callback_param = i2c; /* Start the transfer. */ dmaengine_submit(desc); dma_async_issue_pending(i2c->dmach); return 0; /* Read failpath. */ read_init_dma_fail: dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); select_init_dma_fail: dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); select_init_pio_fail: dmaengine_terminate_all(i2c->dmach); return -EINVAL; /* Write failpath. */ write_init_dma_fail: dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); write_init_pio_fail: dmaengine_terminate_all(i2c->dmach); return -EINVAL; } static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { if (readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) return -ENXIO; if (time_after(jiffies, timeout)) return -ETIMEDOUT; cond_resched(); } return 0; } static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) { u32 state; state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) i2c->cmd_err = -ENXIO; else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | MXS_I2C_CTRL1_MASTER_LOSS_IRQ | MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) i2c->cmd_err = -EIO; return i2c->cmd_err; } static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) { u32 reg; writel(cmd, i2c->regs + MXS_I2C_CTRL0); /* readback makes sure the write is latched into hardware */ reg = readl(i2c->regs + MXS_I2C_CTRL0); reg |= MXS_I2C_CTRL0_RUN; writel(reg, i2c->regs + MXS_I2C_CTRL0); } /* * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, * CTRL0::PIO_MODE bit description clarifies the order in which the registers * must be written during PIO mode operation. First, the CTRL0 register has * to be programmed with all the necessary bits but the RUN bit. Then the * payload has to be written into the DATA register. Finally, the transmission * is executed by setting the RUN bit in CTRL0. */ static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, u32 data) { writel(cmd, i2c->regs + MXS_I2C_CTRL0); if (i2c->dev_type == MXS_I2C_V1) writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); writel(data, i2c->regs + MXS_I2C_DATA(i2c)); writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); } static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, uint32_t flags) { struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); uint32_t addr_data = i2c_8bit_addr_from_msg(msg); uint32_t data = 0; int i, ret, xlen = 0, xmit = 0; uint32_t start; /* Mute IRQs coming from this block. */ writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); /* * MX23 idea: * - Enable CTRL0::PIO_MODE (1 << 24) * - Enable CTRL1::ACK_MODE (1 << 27) * * WARNING! The MX23 is broken in some way, even if it claims * to support PIO, when we try to transfer any amount of data * that is not aligned to 4 bytes, the DMA engine will have * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the * transfer. This in turn will mess up the next transfer as * the block it emit one byte write onto the bus terminated * with a NAK+STOP. A possible workaround is to reset the IP * block after every PIO transmission, which might just work. * * NOTE: The CTRL0::PIO_MODE description is important, since * it outlines how the PIO mode is really supposed to work. */ if (msg->flags & I2C_M_RD) { /* * PIO READ transfer: * * This transfer MUST be limited to 4 bytes maximum. It is not * possible to transfer more than four bytes via PIO, since we * can not in any way make sure we can read the data from the * DATA register fast enough. Besides, the RX FIFO is only four * bytes deep, thus we can only really read up to four bytes at * time. Finally, there is no bit indicating us that new data * arrived at the FIFO and can thus be fetched from the DATA * register. */ BUG_ON(msg->len > 4); /* SELECT command. */ mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, addr_data); ret = mxs_i2c_pio_wait_xfer_end(i2c); if (ret) { dev_dbg(i2c->dev, "PIO: Failed to send SELECT command!\n"); goto cleanup; } /* READ command. */ mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_READ | flags | MXS_I2C_CTRL0_XFER_COUNT(msg->len)); ret = mxs_i2c_pio_wait_xfer_end(i2c); if (ret) { dev_dbg(i2c->dev, "PIO: Failed to send READ command!\n"); goto cleanup; } data = readl(i2c->regs + MXS_I2C_DATA(i2c)); for (i = 0; i < msg->len; i++) { msg->buf[i] = data & 0xff; data >>= 8; } } else { /* * PIO WRITE transfer: * * The code below implements clock stretching to circumvent * the possibility of kernel not being able to supply data * fast enough. It is possible to transfer arbitrary amount * of data using PIO write. */ /* * The LSB of data buffer is the first byte blasted across * the bus. Higher order bytes follow. Thus the following * filling schematic. */ data = addr_data << 24; /* Start the transfer with START condition. */ start = MXS_I2C_CTRL0_PRE_SEND_START; /* If the transfer is long, use clock stretching. */ if (msg->len > 3) start |= MXS_I2C_CTRL0_RETAIN_CLOCK; for (i = 0; i < msg->len; i++) { data >>= 8; data |= (msg->buf[i] << 24); xmit = 0; /* This is the last transfer of the message. */ if (i + 1 == msg->len) { /* Add optional STOP flag. */ start |= flags; /* Remove RETAIN_CLOCK bit. */ start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; xmit = 1; } /* Four bytes are ready in the "data" variable. */ if ((i & 3) == 2) xmit = 1; /* Nothing interesting happened, continue stuffing. */ if (!xmit) continue; /* * Compute the size of the transfer and shift the * data accordingly. * * i = (4k + 0) .... xlen = 2 * i = (4k + 1) .... xlen = 3 * i = (4k + 2) .... xlen = 4 * i = (4k + 3) .... xlen = 1 */ if ((i % 4) == 3) xlen = 1; else xlen = (i % 4) + 2; data >>= (4 - xlen) * 8; dev_dbg(i2c->dev, "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", xlen, i, msg->len, start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); mxs_i2c_pio_trigger_write_cmd(i2c, start | MXS_I2C_CTRL0_MASTER_MODE | MXS_I2C_CTRL0_DIRECTION | MXS_I2C_CTRL0_XFER_COUNT(xlen), data); /* The START condition is sent only once. */ start &= ~MXS_I2C_CTRL0_PRE_SEND_START; /* Wait for the end of the transfer. */ ret = mxs_i2c_pio_wait_xfer_end(i2c); if (ret) { dev_dbg(i2c->dev, "PIO: Failed to finish WRITE cmd!\n"); break; } /* Check NAK here. */ ret = readl(i2c->regs + MXS_I2C_STAT) & MXS_I2C_STAT_GOT_A_NAK; if (ret) { ret = -ENXIO; goto cleanup; } } } /* make sure we capture any occurred error into cmd_err */ ret = mxs_i2c_pio_check_error_state(i2c); cleanup: /* Clear any dangling IRQs and re-enable interrupts. */ writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); /* Clear the PIO_MODE on i.MX23 */ if (i2c->dev_type == MXS_I2C_V1) writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); return ret; } /* * Low level master read/write transaction. */ static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, int stop) { struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); int ret; int flags; int use_pio = 0; unsigned long time_left; flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", msg->addr, msg->len, msg->flags, stop); /* * The MX28 I2C IP block can only do PIO READ for transfer of to up * 4 bytes of length. The write transfer is not limited as it can use * clock stretching to avoid FIFO underruns. */ if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) use_pio = 1; if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) use_pio = 1; i2c->cmd_err = 0; if (use_pio) { ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); /* No need to reset the block if NAK was received. */ if (ret && (ret != -ENXIO)) mxs_i2c_reset(i2c); } else { reinit_completion(&i2c->cmd_complete); ret = mxs_i2c_dma_setup_xfer(adap, msg, flags); if (ret) return ret; time_left = wait_for_completion_timeout(&i2c->cmd_complete, msecs_to_jiffies(1000)); if (!time_left) goto timeout; ret = i2c->cmd_err; } if (ret == -ENXIO) { /* * If the transfer fails with a NAK from the slave the * controller halts until it gets told to return to idle state. */ writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, i2c->regs + MXS_I2C_CTRL1_SET); } /* * WARNING! * The i.MX23 is strange. After each and every operation, it's I2C IP * block must be reset, otherwise the IP block will misbehave. This can * be observed on the bus by the block sending out one single byte onto * the bus. In case such an error happens, bit 27 will be set in the * DEBUG0 register. This bit is not documented in the i.MX23 datasheet * and is marked as "TBD" instead. To reset this bit to a correct state, * reset the whole block. Since the block reset does not take long, do * reset the block after every transfer to play safe. */ if (i2c->dev_type == MXS_I2C_V1) mxs_i2c_reset(i2c); dev_dbg(i2c->dev, "Done with err=%d\n", ret); return ret; timeout: dev_dbg(i2c->dev, "Timeout!\n"); mxs_i2c_dma_finish(i2c); ret = mxs_i2c_reset(i2c); if (ret) return ret; return -ETIMEDOUT; } static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { int i; int err; for (i = 0; i < num; i++) { err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); if (err) return err; } return num; } static u32 mxs_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) { struct mxs_i2c_dev *i2c = dev_id; u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; if (!stat) return IRQ_NONE; if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) i2c->cmd_err = -ENXIO; else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | MXS_I2C_CTRL1_MASTER_LOSS_IRQ | MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ i2c->cmd_err = -EIO; writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); return IRQ_HANDLED; } static const struct i2c_algorithm mxs_i2c_algo = { .master_xfer = mxs_i2c_xfer, .functionality = mxs_i2c_func, }; static const struct i2c_adapter_quirks mxs_i2c_quirks = { .flags = I2C_AQ_NO_ZERO_LEN, }; static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) { /* The I2C block clock runs at 24MHz */ const uint32_t clk = 24000000; uint32_t divider; uint16_t high_count, low_count, rcv_count, xmit_count; uint32_t bus_free, leadin; struct device *dev = i2c->dev; divider = DIV_ROUND_UP(clk, speed); if (divider < 25) { /* * limit the divider, so that min(low_count, high_count) * is >= 1 */ divider = 25; dev_warn(dev, "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", speed / 1000, speed % 1000, clk / divider / 1000, clk / divider % 1000); } else if (divider > 1897) { /* * limit the divider, so that max(low_count, high_count) * cannot exceed 1023 */ divider = 1897; dev_warn(dev, "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", speed / 1000, speed % 1000, clk / divider / 1000, clk / divider % 1000); } /* * The I2C spec specifies the following timing data: * standard mode fast mode Bitfield name * tLOW (SCL LOW period) 4700 ns 1300 ns * tHIGH (SCL HIGH period) 4000 ns 600 ns * tSU;DAT (data setup time) 250 ns 100 ns * tHD;STA (START hold time) 4000 ns 600 ns * tBUF (bus free time) 4700 ns 1300 ns * * The hardware (of the i.MX28 at least) seems to add 2 additional * clock cycles to the low_count and 7 cycles to the high_count. * This is compensated for by subtracting the respective constants * from the values written to the timing registers. */ if (speed > I2C_MAX_STANDARD_MODE_FREQ) { /* fast mode */ low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); } else { /* normal mode */ low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); } rcv_count = high_count * 3 / 8; xmit_count = low_count * 3 / 8; dev_dbg(dev, "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", speed, clk / divider, divider, low_count, high_count, xmit_count, rcv_count, leadin, bus_free); low_count -= 2; high_count -= 7; i2c->timing0 = (high_count << 16) | rcv_count; i2c->timing1 = (low_count << 16) | xmit_count; i2c->timing2 = (bus_free << 16 | leadin); } static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) { uint32_t speed; struct device *dev = i2c->dev; struct device_node *node = dev->of_node; int ret; ret = of_property_read_u32(node, "clock-frequency", &speed); if (ret) { dev_warn(dev, "No I2C speed selected, using 100kHz\n"); speed = I2C_MAX_STANDARD_MODE_FREQ; } mxs_i2c_derive_timing(i2c, speed); return 0; } static const struct platform_device_id mxs_i2c_devtype[] = { { .name = "imx23-i2c", .driver_data = MXS_I2C_V1, }, { .name = "imx28-i2c", .driver_data = MXS_I2C_V2, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype); static const struct of_device_id mxs_i2c_dt_ids[] = { { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], }, { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); static int mxs_i2c_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(mxs_i2c_dt_ids, &pdev->dev); struct device *dev = &pdev->dev; struct mxs_i2c_dev *i2c; struct i2c_adapter *adap; int err, irq; i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; if (of_id) { const struct platform_device_id *device_id = of_id->data; i2c->dev_type = device_id->driver_data; } i2c->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(i2c->regs)) return PTR_ERR(i2c->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); if (err) return err; i2c->dev = dev; init_completion(&i2c->cmd_complete); if (dev->of_node) { err = mxs_i2c_get_ofdata(i2c); if (err) return err; } /* Setup the DMA */ i2c->dmach = dma_request_chan(dev, "rx-tx"); if (IS_ERR(i2c->dmach)) { dev_err(dev, "Failed to request dma\n"); return PTR_ERR(i2c->dmach); } platform_set_drvdata(pdev, i2c); /* Do reset to enforce correct startup after pinmuxing */ err = mxs_i2c_reset(i2c); if (err) return err; adap = &i2c->adapter; strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); adap->owner = THIS_MODULE; adap->algo = &mxs_i2c_algo; adap->quirks = &mxs_i2c_quirks; adap->dev.parent = dev; adap->nr = pdev->id; adap->dev.of_node = pdev->dev.of_node; i2c_set_adapdata(adap, i2c); err = i2c_add_numbered_adapter(adap); if (err) { writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); return err; } return 0; } static int mxs_i2c_remove(struct platform_device *pdev) { struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adapter); if (i2c->dmach) dma_release_channel(i2c->dmach); writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); return 0; } static struct platform_driver mxs_i2c_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = mxs_i2c_dt_ids, }, .probe = mxs_i2c_probe, .remove = mxs_i2c_remove, }; static int __init mxs_i2c_init(void) { return platform_driver_register(&mxs_i2c_driver); } subsys_initcall(mxs_i2c_init); static void __exit mxs_i2c_exit(void) { platform_driver_unregister(&mxs_i2c_driver); } module_exit(mxs_i2c_exit); MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>"); MODULE_DESCRIPTION("MXS I2C Bus Driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DRIVER_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1