Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 4645 | 100.00% | 1 | 100.00% |
Total | 4645 | 1 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2010 * * Author: Arun R Murthy <arun.murthy@stericsson.com> * Author: Daniel Willerud <daniel.willerud@stericsson.com> * Author: Johan Palsson <johan.palsson@stericsson.com> * Author: M'boumba Cedric Madianga * Author: Linus Walleij <linus.walleij@linaro.org> * * AB8500 General Purpose ADC driver. The AB8500 uses reference voltages: * VinVADC, and VADC relative to GND to do its job. It monitors main and backup * battery voltages, AC (mains) voltage, USB cable voltage, as well as voltages * representing the temperature of the chip die and battery, accessory * detection by resistance measurements using relative voltages and GSM burst * information. * * Some of the voltages are measured on external pins on the IC, such as * battery temperature or "ADC aux" 1 and 2. Other voltages are internal rails * from other parts of the ASIC such as main charger voltage, main and battery * backup voltage or USB VBUS voltage. For this reason drivers for other * parts of the system are required to obtain handles to the ADC to do work * for them and the IIO driver provides arbitration among these consumers. */ #include <linux/init.h> #include <linux/bits.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/platform_device.h> #include <linux/completion.h> #include <linux/regulator/consumer.h> #include <linux/random.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> /* GPADC register offsets and bit definitions */ #define AB8500_GPADC_CTRL1_REG 0x00 /* GPADC control register 1 bits */ #define AB8500_GPADC_CTRL1_DISABLE 0x00 #define AB8500_GPADC_CTRL1_ENABLE BIT(0) #define AB8500_GPADC_CTRL1_TRIG_ENA BIT(1) #define AB8500_GPADC_CTRL1_START_SW_CONV BIT(2) #define AB8500_GPADC_CTRL1_BTEMP_PULL_UP BIT(3) /* 0 = use rising edge, 1 = use falling edge */ #define AB8500_GPADC_CTRL1_TRIG_EDGE BIT(4) /* 0 = use VTVOUT, 1 = use VRTC as pull-up supply for battery temp NTC */ #define AB8500_GPADC_CTRL1_PUPSUPSEL BIT(5) #define AB8500_GPADC_CTRL1_BUF_ENA BIT(6) #define AB8500_GPADC_CTRL1_ICHAR_ENA BIT(7) #define AB8500_GPADC_CTRL2_REG 0x01 #define AB8500_GPADC_CTRL3_REG 0x02 /* * GPADC control register 2 and 3 bits * the bit layout is the same for SW and HW conversion set-up */ #define AB8500_GPADC_CTRL2_AVG_1 0x00 #define AB8500_GPADC_CTRL2_AVG_4 BIT(5) #define AB8500_GPADC_CTRL2_AVG_8 BIT(6) #define AB8500_GPADC_CTRL2_AVG_16 (BIT(5) | BIT(6)) enum ab8500_gpadc_channel { AB8500_GPADC_CHAN_UNUSED = 0x00, AB8500_GPADC_CHAN_BAT_CTRL = 0x01, AB8500_GPADC_CHAN_BAT_TEMP = 0x02, /* This is not used on AB8505 */ AB8500_GPADC_CHAN_MAIN_CHARGER = 0x03, AB8500_GPADC_CHAN_ACC_DET_1 = 0x04, AB8500_GPADC_CHAN_ACC_DET_2 = 0x05, AB8500_GPADC_CHAN_ADC_AUX_1 = 0x06, AB8500_GPADC_CHAN_ADC_AUX_2 = 0x07, AB8500_GPADC_CHAN_VBAT_A = 0x08, AB8500_GPADC_CHAN_VBUS = 0x09, AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT = 0x0a, AB8500_GPADC_CHAN_USB_CHARGER_CURRENT = 0x0b, AB8500_GPADC_CHAN_BACKUP_BAT = 0x0c, /* Only on AB8505 */ AB8505_GPADC_CHAN_DIE_TEMP = 0x0d, AB8500_GPADC_CHAN_ID = 0x0e, AB8500_GPADC_CHAN_INTERNAL_TEST_1 = 0x0f, AB8500_GPADC_CHAN_INTERNAL_TEST_2 = 0x10, AB8500_GPADC_CHAN_INTERNAL_TEST_3 = 0x11, /* FIXME: Applicable to all ASIC variants? */ AB8500_GPADC_CHAN_XTAL_TEMP = 0x12, AB8500_GPADC_CHAN_VBAT_TRUE_MEAS = 0x13, /* FIXME: Doesn't seem to work with pure AB8500 */ AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT = 0x1c, AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT = 0x1d, AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT = 0x1e, AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT = 0x1f, /* * Virtual channel used only for ibat conversion to ampere. * Battery current conversion (ibat) cannot be requested as a * single conversion but it is always requested in combination * with other input requests. */ AB8500_GPADC_CHAN_IBAT_VIRTUAL = 0xFF, }; #define AB8500_GPADC_AUTO_TIMER_REG 0x03 #define AB8500_GPADC_STAT_REG 0x04 #define AB8500_GPADC_STAT_BUSY BIT(0) #define AB8500_GPADC_MANDATAL_REG 0x05 #define AB8500_GPADC_MANDATAH_REG 0x06 #define AB8500_GPADC_AUTODATAL_REG 0x07 #define AB8500_GPADC_AUTODATAH_REG 0x08 #define AB8500_GPADC_MUX_CTRL_REG 0x09 #define AB8540_GPADC_MANDATA2L_REG 0x09 #define AB8540_GPADC_MANDATA2H_REG 0x0A #define AB8540_GPADC_APEAAX_REG 0x10 #define AB8540_GPADC_APEAAT_REG 0x11 #define AB8540_GPADC_APEAAM_REG 0x12 #define AB8540_GPADC_APEAAH_REG 0x13 #define AB8540_GPADC_APEAAL_REG 0x14 /* * OTP register offsets * Bank : 0x15 */ #define AB8500_GPADC_CAL_1 0x0F #define AB8500_GPADC_CAL_2 0x10 #define AB8500_GPADC_CAL_3 0x11 #define AB8500_GPADC_CAL_4 0x12 #define AB8500_GPADC_CAL_5 0x13 #define AB8500_GPADC_CAL_6 0x14 #define AB8500_GPADC_CAL_7 0x15 /* New calibration for 8540 */ #define AB8540_GPADC_OTP4_REG_7 0x38 #define AB8540_GPADC_OTP4_REG_6 0x39 #define AB8540_GPADC_OTP4_REG_5 0x3A #define AB8540_GPADC_DIS_ZERO 0x00 #define AB8540_GPADC_EN_VBIAS_XTAL_TEMP 0x02 /* GPADC constants from AB8500 spec, UM0836 */ #define AB8500_ADC_RESOLUTION 1024 #define AB8500_ADC_CH_BTEMP_MIN 0 #define AB8500_ADC_CH_BTEMP_MAX 1350 #define AB8500_ADC_CH_DIETEMP_MIN 0 #define AB8500_ADC_CH_DIETEMP_MAX 1350 #define AB8500_ADC_CH_CHG_V_MIN 0 #define AB8500_ADC_CH_CHG_V_MAX 20030 #define AB8500_ADC_CH_ACCDET2_MIN 0 #define AB8500_ADC_CH_ACCDET2_MAX 2500 #define AB8500_ADC_CH_VBAT_MIN 2300 #define AB8500_ADC_CH_VBAT_MAX 4800 #define AB8500_ADC_CH_CHG_I_MIN 0 #define AB8500_ADC_CH_CHG_I_MAX 1500 #define AB8500_ADC_CH_BKBAT_MIN 0 #define AB8500_ADC_CH_BKBAT_MAX 3200 /* GPADC constants from AB8540 spec */ #define AB8500_ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat */ #define AB8500_ADC_CH_IBAT_MAX 6000 #define AB8500_ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat */ #define AB8500_ADC_CH_IBAT_MAX_V 60 #define AB8500_GPADC_IBAT_VDROP_L (-56) /* mV */ #define AB8500_GPADC_IBAT_VDROP_H 56 /* This is used to not lose precision when dividing to get gain and offset */ #define AB8500_GPADC_CALIB_SCALE 1000 /* * Number of bits shift used to not lose precision * when dividing to get ibat gain. */ #define AB8500_GPADC_CALIB_SHIFT_IBAT 20 /* Time in ms before disabling regulator */ #define AB8500_GPADC_AUTOSUSPEND_DELAY 1 #define AB8500_GPADC_CONVERSION_TIME 500 /* ms */ enum ab8500_cal_channels { AB8500_CAL_VMAIN = 0, AB8500_CAL_BTEMP, AB8500_CAL_VBAT, AB8500_CAL_IBAT, AB8500_CAL_NR, }; /** * struct ab8500_adc_cal_data - Table for storing gain and offset for the * calibrated ADC channels * @gain: Gain of the ADC channel * @offset: Offset of the ADC channel * @otp_calib_hi: Calibration from OTP * @otp_calib_lo: Calibration from OTP */ struct ab8500_adc_cal_data { s64 gain; s64 offset; u16 otp_calib_hi; u16 otp_calib_lo; }; /** * struct ab8500_gpadc_chan_info - per-channel GPADC info * @name: name of the channel * @id: the internal AB8500 ID number for the channel * @hardware_control: indicate that we want to use hardware ADC control * on this channel, the default is software ADC control. Hardware control * is normally only used to test the battery voltage during GSM bursts * and needs a hardware trigger on the GPADCTrig pin of the ASIC. * @falling_edge: indicate that we want to trigger on falling edge * rather than rising edge, rising edge is the default * @avg_sample: how many samples to average: must be 1, 4, 8 or 16. * @trig_timer: how long to wait for the trigger, in 32kHz periods: * 0 .. 255 periods */ struct ab8500_gpadc_chan_info { const char *name; u8 id; bool hardware_control; bool falling_edge; u8 avg_sample; u8 trig_timer; }; /** * struct ab8500_gpadc - AB8500 GPADC device information * @dev: pointer to the containing device * @ab8500: pointer to the parent AB8500 device * @chans: internal per-channel information container * @nchans: number of channels * @complete: pointer to the completion that indicates * the completion of an gpadc conversion cycle * @vddadc: pointer to the regulator supplying VDDADC * @irq_sw: interrupt number that is used by gpadc for software ADC conversion * @irq_hw: interrupt number that is used by gpadc for hardware ADC conversion * @cal_data: array of ADC calibration data structs */ struct ab8500_gpadc { struct device *dev; struct ab8500 *ab8500; struct ab8500_gpadc_chan_info *chans; unsigned int nchans; struct completion complete; struct regulator *vddadc; int irq_sw; int irq_hw; struct ab8500_adc_cal_data cal_data[AB8500_CAL_NR]; }; static struct ab8500_gpadc_chan_info * ab8500_gpadc_get_channel(struct ab8500_gpadc *gpadc, u8 chan) { struct ab8500_gpadc_chan_info *ch; int i; for (i = 0; i < gpadc->nchans; i++) { ch = &gpadc->chans[i]; if (ch->id == chan) break; } if (i == gpadc->nchans) return NULL; return ch; } /** * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage * @gpadc: GPADC instance * @ch: the sampled channel this raw value is coming from * @ad_value: the raw value */ static int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, enum ab8500_gpadc_channel ch, int ad_value) { int res; switch (ch) { case AB8500_GPADC_CHAN_MAIN_CHARGER: /* No calibration data available: just interpolate */ if (!gpadc->cal_data[AB8500_CAL_VMAIN].gain) { res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; } /* Here we can use calibration */ res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VMAIN].gain + gpadc->cal_data[AB8500_CAL_VMAIN].offset) / AB8500_GPADC_CALIB_SCALE; break; case AB8500_GPADC_CHAN_BAT_CTRL: case AB8500_GPADC_CHAN_BAT_TEMP: case AB8500_GPADC_CHAN_ACC_DET_1: case AB8500_GPADC_CHAN_ADC_AUX_1: case AB8500_GPADC_CHAN_ADC_AUX_2: case AB8500_GPADC_CHAN_XTAL_TEMP: /* No calibration data available: just interpolate */ if (!gpadc->cal_data[AB8500_CAL_BTEMP].gain) { res = AB8500_ADC_CH_BTEMP_MIN + (AB8500_ADC_CH_BTEMP_MAX - AB8500_ADC_CH_BTEMP_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; } /* Here we can use calibration */ res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_BTEMP].gain + gpadc->cal_data[AB8500_CAL_BTEMP].offset) / AB8500_GPADC_CALIB_SCALE; break; case AB8500_GPADC_CHAN_VBAT_A: case AB8500_GPADC_CHAN_VBAT_TRUE_MEAS: /* No calibration data available: just interpolate */ if (!gpadc->cal_data[AB8500_CAL_VBAT].gain) { res = AB8500_ADC_CH_VBAT_MIN + (AB8500_ADC_CH_VBAT_MAX - AB8500_ADC_CH_VBAT_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; } /* Here we can use calibration */ res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_VBAT].gain + gpadc->cal_data[AB8500_CAL_VBAT].offset) / AB8500_GPADC_CALIB_SCALE; break; case AB8505_GPADC_CHAN_DIE_TEMP: res = AB8500_ADC_CH_DIETEMP_MIN + (AB8500_ADC_CH_DIETEMP_MAX - AB8500_ADC_CH_DIETEMP_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; case AB8500_GPADC_CHAN_ACC_DET_2: res = AB8500_ADC_CH_ACCDET2_MIN + (AB8500_ADC_CH_ACCDET2_MAX - AB8500_ADC_CH_ACCDET2_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; case AB8500_GPADC_CHAN_VBUS: res = AB8500_ADC_CH_CHG_V_MIN + (AB8500_ADC_CH_CHG_V_MAX - AB8500_ADC_CH_CHG_V_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT: case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT: res = AB8500_ADC_CH_CHG_I_MIN + (AB8500_ADC_CH_CHG_I_MAX - AB8500_ADC_CH_CHG_I_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; case AB8500_GPADC_CHAN_BACKUP_BAT: res = AB8500_ADC_CH_BKBAT_MIN + (AB8500_ADC_CH_BKBAT_MAX - AB8500_ADC_CH_BKBAT_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; case AB8500_GPADC_CHAN_IBAT_VIRTUAL: /* No calibration data available: just interpolate */ if (!gpadc->cal_data[AB8500_CAL_IBAT].gain) { res = AB8500_ADC_CH_IBAT_MIN + (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN) * ad_value / AB8500_ADC_RESOLUTION; break; } /* Here we can use calibration */ res = (int) (ad_value * gpadc->cal_data[AB8500_CAL_IBAT].gain + gpadc->cal_data[AB8500_CAL_IBAT].offset) >> AB8500_GPADC_CALIB_SHIFT_IBAT; break; default: dev_err(gpadc->dev, "unknown channel ID: %d, not possible to convert\n", ch); res = -EINVAL; break; } return res; } static int ab8500_gpadc_read(struct ab8500_gpadc *gpadc, const struct ab8500_gpadc_chan_info *ch, int *ibat) { int ret; int looplimit = 0; unsigned long completion_timeout; u8 val; u8 low_data, high_data, low_data2, high_data2; u8 ctrl1; u8 ctrl23; unsigned int delay_min = 0; unsigned int delay_max = 0; u8 data_low_addr, data_high_addr; if (!gpadc) return -ENODEV; /* check if conversion is supported */ if ((gpadc->irq_sw <= 0) && !ch->hardware_control) return -ENOTSUPP; if ((gpadc->irq_hw <= 0) && ch->hardware_control) return -ENOTSUPP; /* Enable vddadc by grabbing PM runtime */ pm_runtime_get_sync(gpadc->dev); /* Check if ADC is not busy, lock and proceed */ do { ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_STAT_REG, &val); if (ret < 0) goto out; if (!(val & AB8500_GPADC_STAT_BUSY)) break; msleep(20); } while (++looplimit < 10); if (looplimit >= 10 && (val & AB8500_GPADC_STAT_BUSY)) { dev_err(gpadc->dev, "gpadc_conversion: GPADC busy"); ret = -EINVAL; goto out; } /* Enable GPADC */ ctrl1 = AB8500_GPADC_CTRL1_ENABLE; /* Select the channel source and set average samples */ switch (ch->avg_sample) { case 1: ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_1; break; case 4: ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_4; break; case 8: ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_8; break; default: ctrl23 = ch->id | AB8500_GPADC_CTRL2_AVG_16; break; } if (ch->hardware_control) { ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL3_REG, ctrl23); ctrl1 |= AB8500_GPADC_CTRL1_TRIG_ENA; if (ch->falling_edge) ctrl1 |= AB8500_GPADC_CTRL1_TRIG_EDGE; } else { ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL2_REG, ctrl23); } if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: set avg samples failed\n"); goto out; } /* * Enable ADC, buffering, select rising edge and enable ADC path * charging current sense if it needed, ABB 3.0 needs some special * treatment too. */ switch (ch->id) { case AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT: case AB8500_GPADC_CHAN_USB_CHARGER_CURRENT: ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA | AB8500_GPADC_CTRL1_ICHAR_ENA; break; case AB8500_GPADC_CHAN_BAT_TEMP: if (!is_ab8500_2p0_or_earlier(gpadc->ab8500)) { ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA | AB8500_GPADC_CTRL1_BTEMP_PULL_UP; /* * Delay might be needed for ABB8500 cut 3.0, if not, * remove when hardware will be available */ delay_min = 1000; /* Delay in micro seconds */ delay_max = 10000; /* large range optimises sleepmode */ break; } /* Fall through */ default: ctrl1 |= AB8500_GPADC_CTRL1_BUF_ENA; break; } /* Write configuration to control register 1 */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ctrl1); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: set Control register failed\n"); goto out; } if (delay_min != 0) usleep_range(delay_min, delay_max); if (ch->hardware_control) { /* Set trigger delay timer */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, ch->trig_timer); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: trig timer failed\n"); goto out; } completion_timeout = 2 * HZ; data_low_addr = AB8500_GPADC_AUTODATAL_REG; data_high_addr = AB8500_GPADC_AUTODATAH_REG; } else { /* Start SW conversion */ ret = abx500_mask_and_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_START_SW_CONV, AB8500_GPADC_CTRL1_START_SW_CONV); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: start s/w conv failed\n"); goto out; } completion_timeout = msecs_to_jiffies(AB8500_GPADC_CONVERSION_TIME); data_low_addr = AB8500_GPADC_MANDATAL_REG; data_high_addr = AB8500_GPADC_MANDATAH_REG; } /* Wait for completion of conversion */ if (!wait_for_completion_timeout(&gpadc->complete, completion_timeout)) { dev_err(gpadc->dev, "timeout didn't receive GPADC conv interrupt\n"); ret = -EINVAL; goto out; } /* Read the converted RAW data */ ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, data_low_addr, &low_data); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n"); goto out; } ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, data_high_addr, &high_data); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n"); goto out; } /* Check if double conversion is required */ if ((ch->id == AB8500_GPADC_CHAN_BAT_CTRL_AND_IBAT) || (ch->id == AB8500_GPADC_CHAN_VBAT_MEAS_AND_IBAT) || (ch->id == AB8500_GPADC_CHAN_VBAT_TRUE_MEAS_AND_IBAT) || (ch->id == AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT)) { if (ch->hardware_control) { /* not supported */ ret = -ENOTSUPP; dev_err(gpadc->dev, "gpadc_conversion: only SW double conversion supported\n"); goto out; } else { /* Read the converted RAW data 2 */ ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG, &low_data2); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read sw low data 2 failed\n"); goto out; } ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG, &high_data2); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read sw high data 2 failed\n"); goto out; } if (ibat != NULL) { *ibat = (high_data2 << 8) | low_data2; } else { dev_warn(gpadc->dev, "gpadc_conversion: ibat not stored\n"); } } } /* Disable GPADC */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n"); goto out; } /* This eventually drops the regulator */ pm_runtime_mark_last_busy(gpadc->dev); pm_runtime_put_autosuspend(gpadc->dev); return (high_data << 8) | low_data; out: /* * It has shown to be needed to turn off the GPADC if an error occurs, * otherwise we might have problem when waiting for the busy bit in the * GPADC status register to go low. In V1.1 there wait_for_completion * seems to timeout when waiting for an interrupt.. Not seen in V2.0 */ (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, AB8500_GPADC_CTRL1_DISABLE); pm_runtime_put(gpadc->dev); dev_err(gpadc->dev, "gpadc_conversion: Failed to AD convert channel %d\n", ch->id); return ret; } /** * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion * @irq: irq number * @data: pointer to the data passed during request irq * * This is a interrupt service routine for gpadc conversion completion. * Notifies the gpadc completion is completed and the converted raw value * can be read from the registers. * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *data) { struct ab8500_gpadc *gpadc = data; complete(&gpadc->complete); return IRQ_HANDLED; } static int otp_cal_regs[] = { AB8500_GPADC_CAL_1, AB8500_GPADC_CAL_2, AB8500_GPADC_CAL_3, AB8500_GPADC_CAL_4, AB8500_GPADC_CAL_5, AB8500_GPADC_CAL_6, AB8500_GPADC_CAL_7, }; static int otp4_cal_regs[] = { AB8540_GPADC_OTP4_REG_7, AB8540_GPADC_OTP4_REG_6, AB8540_GPADC_OTP4_REG_5, }; static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) { int i; int ret[ARRAY_SIZE(otp_cal_regs)]; u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; int ret_otp4[ARRAY_SIZE(otp4_cal_regs)]; u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)]; int vmain_high, vmain_low; int btemp_high, btemp_low; int vbat_high, vbat_low; int ibat_high, ibat_low; s64 V_gain, V_offset, V2A_gain, V2A_offset; /* First we read all OTP registers and store the error code */ for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { ret[i] = abx500_get_register_interruptible(gpadc->dev, AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]); if (ret[i] < 0) { /* Continue anyway: maybe the other registers are OK */ dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n", __func__, otp_cal_regs[i]); } else { /* Put this in the entropy pool as device-unique */ add_device_randomness(&ret[i], sizeof(ret[i])); } } /* * The ADC calibration data is stored in OTP registers. * The layout of the calibration data is outlined below and a more * detailed description can be found in UM0836 * * vm_h/l = vmain_high/low * bt_h/l = btemp_high/low * vb_h/l = vbat_high/low * * Data bits 8500/9540: * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | | vm_h9 | vm_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | * |.......|.......|.......|.......|.......|.......|.......|....... * * Data bits 8540: * OTP2 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | * |.......|.......|.......|.......|.......|.......|.......|....... * * Data bits 8540: * OTP4 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | | ib_h9 | ib_h8 | ib_h7 * |.......|.......|.......|.......|.......|.......|.......|....... * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5 * |.......|.......|.......|.......|.......|.......|.......|....... * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 | * * * Ideal output ADC codes corresponding to injected input voltages * during manufacturing is: * * vmain_high: Vin = 19500mV / ADC ideal code = 997 * vmain_low: Vin = 315mV / ADC ideal code = 16 * btemp_high: Vin = 1300mV / ADC ideal code = 985 * btemp_low: Vin = 21mV / ADC ideal code = 16 * vbat_high: Vin = 4700mV / ADC ideal code = 982 * vbat_low: Vin = 2380mV / ADC ideal code = 33 */ if (is_ab8540(gpadc->ab8500)) { /* Calculate gain and offset for VMAIN if all reads succeeded*/ if (!(ret[1] < 0 || ret[2] < 0)) { vmain_high = (((gpadc_cal[1] & 0xFF) << 2) | ((gpadc_cal[2] & 0xC0) >> 6)); vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi = (u16)vmain_high; gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo = (u16)vmain_low; gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low); gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE * 19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low)) * vmain_high; } else { gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0; } /* Read IBAT calibration Data */ for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) { ret_otp4[i] = abx500_get_register_interruptible( gpadc->dev, AB8500_OTP_EMUL, otp4_cal_regs[i], &gpadc_otp4[i]); if (ret_otp4[i] < 0) dev_err(gpadc->dev, "%s: read otp4 reg 0x%02x failed\n", __func__, otp4_cal_regs[i]); } /* Calculate gain and offset for IBAT if all reads succeeded */ if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) { ibat_high = (((gpadc_otp4[0] & 0x07) << 7) | ((gpadc_otp4[1] & 0xFE) >> 1)); ibat_low = (((gpadc_otp4[1] & 0x01) << 5) | ((gpadc_otp4[2] & 0xF8) >> 3)); gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_hi = (u16)ibat_high; gpadc->cal_data[AB8500_CAL_IBAT].otp_calib_lo = (u16)ibat_low; V_gain = ((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) << AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low); V_offset = (AB8500_GPADC_IBAT_VDROP_H << AB8500_GPADC_CALIB_SHIFT_IBAT) - (((AB8500_GPADC_IBAT_VDROP_H - AB8500_GPADC_IBAT_VDROP_L) << AB8500_GPADC_CALIB_SHIFT_IBAT) / (ibat_high - ibat_low)) * ibat_high; /* * Result obtained is in mV (at a scale factor), * we need to calculate gain and offset to get mA */ V2A_gain = (AB8500_ADC_CH_IBAT_MAX - AB8500_ADC_CH_IBAT_MIN)/ (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V); V2A_offset = ((AB8500_ADC_CH_IBAT_MAX_V * AB8500_ADC_CH_IBAT_MIN - AB8500_ADC_CH_IBAT_MAX * AB8500_ADC_CH_IBAT_MIN_V) << AB8500_GPADC_CALIB_SHIFT_IBAT) / (AB8500_ADC_CH_IBAT_MAX_V - AB8500_ADC_CH_IBAT_MIN_V); gpadc->cal_data[AB8500_CAL_IBAT].gain = V_gain * V2A_gain; gpadc->cal_data[AB8500_CAL_IBAT].offset = V_offset * V2A_gain + V2A_offset; } else { gpadc->cal_data[AB8500_CAL_IBAT].gain = 0; } } else { /* Calculate gain and offset for VMAIN if all reads succeeded */ if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { vmain_high = (((gpadc_cal[0] & 0x03) << 8) | ((gpadc_cal[1] & 0x3F) << 2) | ((gpadc_cal[2] & 0xC0) >> 6)); vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_hi = (u16)vmain_high; gpadc->cal_data[AB8500_CAL_VMAIN].otp_calib_lo = (u16)vmain_low; gpadc->cal_data[AB8500_CAL_VMAIN].gain = AB8500_GPADC_CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low); gpadc->cal_data[AB8500_CAL_VMAIN].offset = AB8500_GPADC_CALIB_SCALE * 19500 - (AB8500_GPADC_CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low)) * vmain_high; } else { gpadc->cal_data[AB8500_CAL_VMAIN].gain = 0; } } /* Calculate gain and offset for BTEMP if all reads succeeded */ if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { btemp_high = (((gpadc_cal[2] & 0x01) << 9) | (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7)); btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_hi = (u16)btemp_high; gpadc->cal_data[AB8500_CAL_BTEMP].otp_calib_lo = (u16)btemp_low; gpadc->cal_data[AB8500_CAL_BTEMP].gain = AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); gpadc->cal_data[AB8500_CAL_BTEMP].offset = AB8500_GPADC_CALIB_SCALE * 1300 - (AB8500_GPADC_CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low)) * btemp_high; } else { gpadc->cal_data[AB8500_CAL_BTEMP].gain = 0; } /* Calculate gain and offset for VBAT if all reads succeeded */ if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) { vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]); vbat_low = ((gpadc_cal[6] & 0xFC) >> 2); gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_hi = (u16)vbat_high; gpadc->cal_data[AB8500_CAL_VBAT].otp_calib_lo = (u16)vbat_low; gpadc->cal_data[AB8500_CAL_VBAT].gain = AB8500_GPADC_CALIB_SCALE * (4700 - 2380) / (vbat_high - vbat_low); gpadc->cal_data[AB8500_CAL_VBAT].offset = AB8500_GPADC_CALIB_SCALE * 4700 - (AB8500_GPADC_CALIB_SCALE * (4700 - 2380) / (vbat_high - vbat_low)) * vbat_high; } else { gpadc->cal_data[AB8500_CAL_VBAT].gain = 0; } } static int ab8500_gpadc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ab8500_gpadc *gpadc = iio_priv(indio_dev); const struct ab8500_gpadc_chan_info *ch; int raw_val; int processed; ch = ab8500_gpadc_get_channel(gpadc, chan->address); if (!ch) { dev_err(gpadc->dev, "no such channel %lu\n", chan->address); return -EINVAL; } raw_val = ab8500_gpadc_read(gpadc, ch, NULL); if (raw_val < 0) return raw_val; if (mask == IIO_CHAN_INFO_RAW) { *val = raw_val; return IIO_VAL_INT; } if (mask == IIO_CHAN_INFO_PROCESSED) { processed = ab8500_gpadc_ad_to_voltage(gpadc, ch->id, raw_val); if (processed < 0) return processed; /* Return millivolt or milliamps or millicentigrades */ *val = processed * 1000; return IIO_VAL_INT; } return -EINVAL; } static int ab8500_gpadc_of_xlate(struct iio_dev *indio_dev, const struct of_phandle_args *iiospec) { int i; for (i = 0; i < indio_dev->num_channels; i++) if (indio_dev->channels[i].channel == iiospec->args[0]) return i; return -EINVAL; } static const struct iio_info ab8500_gpadc_info = { .of_xlate = ab8500_gpadc_of_xlate, .read_raw = ab8500_gpadc_read_raw, }; #ifdef CONFIG_PM static int ab8500_gpadc_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ab8500_gpadc *gpadc = iio_priv(indio_dev); regulator_disable(gpadc->vddadc); return 0; } static int ab8500_gpadc_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ab8500_gpadc *gpadc = iio_priv(indio_dev); int ret; ret = regulator_enable(gpadc->vddadc); if (ret) dev_err(dev, "Failed to enable vddadc: %d\n", ret); return ret; } #endif /** * ab8500_gpadc_parse_channel() - process devicetree channel configuration * @dev: pointer to containing device * @np: device tree node for the channel to configure * @ch: channel info to fill in * @iio_chan: IIO channel specification to fill in * * The devicetree will set up the channel for use with the specific device, * and define usage for things like AUX GPADC inputs more precisely. */ static int ab8500_gpadc_parse_channel(struct device *dev, struct device_node *np, struct ab8500_gpadc_chan_info *ch, struct iio_chan_spec *iio_chan) { const char *name = np->name; u32 chan; int ret; ret = of_property_read_u32(np, "reg", &chan); if (ret) { dev_err(dev, "invalid channel number %s\n", name); return ret; } if (chan > AB8500_GPADC_CHAN_BAT_TEMP_AND_IBAT) { dev_err(dev, "%s channel number out of range %d\n", name, chan); return -EINVAL; } iio_chan->channel = chan; iio_chan->datasheet_name = name; iio_chan->indexed = 1; iio_chan->address = chan; iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_PROCESSED); /* Most are voltages (also temperatures), some are currents */ if ((chan == AB8500_GPADC_CHAN_MAIN_CHARGER_CURRENT) || (chan == AB8500_GPADC_CHAN_USB_CHARGER_CURRENT)) iio_chan->type = IIO_CURRENT; else iio_chan->type = IIO_VOLTAGE; ch->id = chan; /* Sensible defaults */ ch->avg_sample = 16; ch->hardware_control = false; ch->falling_edge = false; ch->trig_timer = 0; return 0; } /** * ab8500_gpadc_parse_channels() - Parse the GPADC channels from DT * @gpadc: the GPADC to configure the channels for * @np: device tree node containing the channel configurations * @chans: the IIO channels we parsed * @nchans: the number of IIO channels we parsed */ static int ab8500_gpadc_parse_channels(struct ab8500_gpadc *gpadc, struct device_node *np, struct iio_chan_spec **chans_parsed, unsigned int *nchans_parsed) { struct device_node *child; struct ab8500_gpadc_chan_info *ch; struct iio_chan_spec *iio_chans; unsigned int nchans; int i; nchans = of_get_available_child_count(np); if (!nchans) { dev_err(gpadc->dev, "no channel children\n"); return -ENODEV; } dev_info(gpadc->dev, "found %d ADC channels\n", nchans); iio_chans = devm_kcalloc(gpadc->dev, nchans, sizeof(*iio_chans), GFP_KERNEL); if (!iio_chans) return -ENOMEM; gpadc->chans = devm_kcalloc(gpadc->dev, nchans, sizeof(*gpadc->chans), GFP_KERNEL); if (!gpadc->chans) return -ENOMEM; i = 0; for_each_available_child_of_node(np, child) { struct iio_chan_spec *iio_chan; int ret; ch = &gpadc->chans[i]; iio_chan = &iio_chans[i]; ret = ab8500_gpadc_parse_channel(gpadc->dev, child, ch, iio_chan); if (ret) { of_node_put(child); return ret; } i++; } gpadc->nchans = nchans; *chans_parsed = iio_chans; *nchans_parsed = nchans; return 0; } static int ab8500_gpadc_probe(struct platform_device *pdev) { struct ab8500_gpadc *gpadc; struct iio_dev *indio_dev; struct device *dev = &pdev->dev; struct device_node *np = pdev->dev.of_node; struct iio_chan_spec *iio_chans; unsigned int n_iio_chans; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*gpadc)); if (!indio_dev) return -ENOMEM; platform_set_drvdata(pdev, indio_dev); gpadc = iio_priv(indio_dev); gpadc->dev = dev; gpadc->ab8500 = dev_get_drvdata(dev->parent); ret = ab8500_gpadc_parse_channels(gpadc, np, &iio_chans, &n_iio_chans); if (ret) return ret; gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END"); if (gpadc->irq_sw < 0) { dev_err(dev, "failed to get platform sw_conv_end irq\n"); return gpadc->irq_sw; } gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END"); if (gpadc->irq_hw < 0) { dev_err(dev, "failed to get platform hw_conv_end irq\n"); return gpadc->irq_hw; } /* Initialize completion used to notify completion of conversion */ init_completion(&gpadc->complete); /* Request interrupts */ ret = devm_request_threaded_irq(dev, gpadc->irq_sw, NULL, ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT, "ab8500-gpadc-sw", gpadc); if (ret < 0) { dev_err(dev, "failed to request sw conversion irq %d\n", gpadc->irq_sw); return ret; } ret = devm_request_threaded_irq(dev, gpadc->irq_hw, NULL, ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_ONESHOT, "ab8500-gpadc-hw", gpadc); if (ret < 0) { dev_err(dev, "Failed to request hw conversion irq: %d\n", gpadc->irq_hw); return ret; } /* The VTVout LDO used to power the AB8500 GPADC */ gpadc->vddadc = devm_regulator_get(dev, "vddadc"); if (IS_ERR(gpadc->vddadc)) { ret = PTR_ERR(gpadc->vddadc); dev_err(dev, "failed to get vddadc\n"); return ret; } ret = regulator_enable(gpadc->vddadc); if (ret) { dev_err(dev, "failed to enable vddadc: %d\n", ret); return ret; } /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, AB8500_GPADC_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); ab8500_gpadc_read_calibration_data(gpadc); pm_runtime_put(dev); indio_dev->dev.parent = dev; indio_dev->dev.of_node = np; indio_dev->name = "ab8500-gpadc"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &ab8500_gpadc_info; indio_dev->channels = iio_chans; indio_dev->num_channels = n_iio_chans; ret = devm_iio_device_register(dev, indio_dev); if (ret) goto out_dis_pm; return 0; out_dis_pm: pm_runtime_get_sync(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); regulator_disable(gpadc->vddadc); return ret; } static int ab8500_gpadc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = platform_get_drvdata(pdev); struct ab8500_gpadc *gpadc = iio_priv(indio_dev); pm_runtime_get_sync(gpadc->dev); pm_runtime_put_noidle(gpadc->dev); pm_runtime_disable(gpadc->dev); regulator_disable(gpadc->vddadc); return 0; } static const struct dev_pm_ops ab8500_gpadc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend, ab8500_gpadc_runtime_resume, NULL) }; static struct platform_driver ab8500_gpadc_driver = { .probe = ab8500_gpadc_probe, .remove = ab8500_gpadc_remove, .driver = { .name = "ab8500-gpadc", .pm = &ab8500_gpadc_pm_ops, }, }; builtin_platform_driver(ab8500_gpadc_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1