Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jon Brenner | 4205 | 50.21% | 2 | 2.53% |
Brian Masney | 3610 | 43.11% | 57 | 72.15% |
Lars-Peter Clausen | 201 | 2.40% | 2 | 2.53% |
Chuhong Yuan | 153 | 1.83% | 4 | 5.06% |
Jonathan Cameron | 93 | 1.11% | 2 | 2.53% |
Mario Schuknecht | 40 | 0.48% | 1 | 1.27% |
Sachin Kamat | 23 | 0.27% | 1 | 1.27% |
Colin Ian King | 10 | 0.12% | 1 | 1.27% |
Surender Polsani | 10 | 0.12% | 1 | 1.27% |
Dan Carpenter | 8 | 0.10% | 1 | 1.27% |
Takashi Iwai | 7 | 0.08% | 1 | 1.27% |
Nizam Haider | 4 | 0.05% | 1 | 1.27% |
Grégor Boirie | 3 | 0.04% | 1 | 1.27% |
Eva Rachel Retuya | 3 | 0.04% | 1 | 1.27% |
Wei Yongjun | 2 | 0.02% | 1 | 1.27% |
Cristina Moraru | 1 | 0.01% | 1 | 1.27% |
Arvind Yadav | 1 | 0.01% | 1 | 1.27% |
Total | 8374 | 79 |
// SPDX-License-Identifier: GPL-2.0+ /* * Device driver for monitoring ambient light intensity in (lux) and proximity * detection (prox) within the TAOS TSL2571, TSL2671, TMD2671, TSL2771, TMD2771, * TSL2572, TSL2672, TMD2672, TSL2772, and TMD2772 devices. * * Copyright (c) 2012, TAOS Corporation. * Copyright (c) 2017-2018 Brian Masney <masneyb@onstation.org> */ #include <linux/delay.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/platform_data/tsl2772.h> #include <linux/regulator/consumer.h> /* Cal defs */ #define PROX_STAT_CAL 0 #define PROX_STAT_SAMP 1 #define MAX_SAMPLES_CAL 200 /* TSL2772 Device ID */ #define TRITON_ID 0x00 #define SWORDFISH_ID 0x30 #define HALIBUT_ID 0x20 /* Lux calculation constants */ #define TSL2772_LUX_CALC_OVER_FLOW 65535 /* * TAOS Register definitions - Note: depending on device, some of these register * are not used and the register address is benign. */ /* Register offsets */ #define TSL2772_MAX_CONFIG_REG 16 /* Device Registers and Masks */ #define TSL2772_CNTRL 0x00 #define TSL2772_ALS_TIME 0X01 #define TSL2772_PRX_TIME 0x02 #define TSL2772_WAIT_TIME 0x03 #define TSL2772_ALS_MINTHRESHLO 0X04 #define TSL2772_ALS_MINTHRESHHI 0X05 #define TSL2772_ALS_MAXTHRESHLO 0X06 #define TSL2772_ALS_MAXTHRESHHI 0X07 #define TSL2772_PRX_MINTHRESHLO 0X08 #define TSL2772_PRX_MINTHRESHHI 0X09 #define TSL2772_PRX_MAXTHRESHLO 0X0A #define TSL2772_PRX_MAXTHRESHHI 0X0B #define TSL2772_PERSISTENCE 0x0C #define TSL2772_ALS_PRX_CONFIG 0x0D #define TSL2772_PRX_COUNT 0x0E #define TSL2772_GAIN 0x0F #define TSL2772_NOTUSED 0x10 #define TSL2772_REVID 0x11 #define TSL2772_CHIPID 0x12 #define TSL2772_STATUS 0x13 #define TSL2772_ALS_CHAN0LO 0x14 #define TSL2772_ALS_CHAN0HI 0x15 #define TSL2772_ALS_CHAN1LO 0x16 #define TSL2772_ALS_CHAN1HI 0x17 #define TSL2772_PRX_LO 0x18 #define TSL2772_PRX_HI 0x19 /* tsl2772 cmd reg masks */ #define TSL2772_CMD_REG 0x80 #define TSL2772_CMD_SPL_FN 0x60 #define TSL2772_CMD_REPEAT_PROTO 0x00 #define TSL2772_CMD_AUTOINC_PROTO 0x20 #define TSL2772_CMD_PROX_INT_CLR 0X05 #define TSL2772_CMD_ALS_INT_CLR 0x06 #define TSL2772_CMD_PROXALS_INT_CLR 0X07 /* tsl2772 cntrl reg masks */ #define TSL2772_CNTL_ADC_ENBL 0x02 #define TSL2772_CNTL_PWR_ON 0x01 /* tsl2772 status reg masks */ #define TSL2772_STA_ADC_VALID 0x01 #define TSL2772_STA_PRX_VALID 0x02 #define TSL2772_STA_ADC_PRX_VALID (TSL2772_STA_ADC_VALID | \ TSL2772_STA_PRX_VALID) #define TSL2772_STA_ALS_INTR 0x10 #define TSL2772_STA_PRX_INTR 0x20 /* tsl2772 cntrl reg masks */ #define TSL2772_CNTL_REG_CLEAR 0x00 #define TSL2772_CNTL_PROX_INT_ENBL 0X20 #define TSL2772_CNTL_ALS_INT_ENBL 0X10 #define TSL2772_CNTL_WAIT_TMR_ENBL 0X08 #define TSL2772_CNTL_PROX_DET_ENBL 0X04 #define TSL2772_CNTL_PWRON 0x01 #define TSL2772_CNTL_ALSPON_ENBL 0x03 #define TSL2772_CNTL_INTALSPON_ENBL 0x13 #define TSL2772_CNTL_PROXPON_ENBL 0x0F #define TSL2772_CNTL_INTPROXPON_ENBL 0x2F #define TSL2772_ALS_GAIN_TRIM_MIN 250 #define TSL2772_ALS_GAIN_TRIM_MAX 4000 #define TSL2772_MAX_PROX_LEDS 2 #define TSL2772_BOOT_MIN_SLEEP_TIME 10000 #define TSL2772_BOOT_MAX_SLEEP_TIME 28000 /* Device family members */ enum { tsl2571, tsl2671, tmd2671, tsl2771, tmd2771, tsl2572, tsl2672, tmd2672, tsl2772, tmd2772, apds9930, }; enum { TSL2772_CHIP_UNKNOWN = 0, TSL2772_CHIP_WORKING = 1, TSL2772_CHIP_SUSPENDED = 2 }; enum { TSL2772_SUPPLY_VDD = 0, TSL2772_SUPPLY_VDDIO = 1, TSL2772_NUM_SUPPLIES = 2 }; /* Per-device data */ struct tsl2772_als_info { u16 als_ch0; u16 als_ch1; u16 lux; }; struct tsl2772_chip_info { int chan_table_elements; struct iio_chan_spec channel_with_events[4]; struct iio_chan_spec channel_without_events[4]; const struct iio_info *info; }; static const int tsl2772_led_currents[][2] = { { 100000, TSL2772_100_mA }, { 50000, TSL2772_50_mA }, { 25000, TSL2772_25_mA }, { 13000, TSL2772_13_mA }, { 0, 0 } }; struct tsl2772_chip { kernel_ulong_t id; struct mutex prox_mutex; struct mutex als_mutex; struct i2c_client *client; struct regulator_bulk_data supplies[TSL2772_NUM_SUPPLIES]; u16 prox_data; struct tsl2772_als_info als_cur_info; struct tsl2772_settings settings; struct tsl2772_platform_data *pdata; int als_gain_time_scale; int als_saturation; int tsl2772_chip_status; u8 tsl2772_config[TSL2772_MAX_CONFIG_REG]; const struct tsl2772_chip_info *chip_info; const struct iio_info *info; s64 event_timestamp; /* * This structure is intentionally large to accommodate * updates via sysfs. * Sized to 9 = max 8 segments + 1 termination segment */ struct tsl2772_lux tsl2772_device_lux[TSL2772_MAX_LUX_TABLE_SIZE]; }; /* * Different devices require different coefficents, and these numbers were * derived from the 'Lux Equation' section of the various device datasheets. * All of these coefficients assume a Glass Attenuation (GA) factor of 1. * The coefficients are multiplied by 1000 to avoid floating point operations. * The two rows in each table correspond to the Lux1 and Lux2 equations from * the datasheets. */ static const struct tsl2772_lux tsl2x71_lux_table[TSL2772_DEF_LUX_TABLE_SZ] = { { 53000, 106000 }, { 31800, 53000 }, { 0, 0 }, }; static const struct tsl2772_lux tmd2x71_lux_table[TSL2772_DEF_LUX_TABLE_SZ] = { { 24000, 48000 }, { 14400, 24000 }, { 0, 0 }, }; static const struct tsl2772_lux tsl2x72_lux_table[TSL2772_DEF_LUX_TABLE_SZ] = { { 60000, 112200 }, { 37800, 60000 }, { 0, 0 }, }; static const struct tsl2772_lux tmd2x72_lux_table[TSL2772_DEF_LUX_TABLE_SZ] = { { 20000, 35000 }, { 12600, 20000 }, { 0, 0 }, }; static const struct tsl2772_lux apds9930_lux_table[TSL2772_DEF_LUX_TABLE_SZ] = { { 52000, 96824 }, { 38792, 67132 }, { 0, 0 }, }; static const struct tsl2772_lux *tsl2772_default_lux_table_group[] = { [tsl2571] = tsl2x71_lux_table, [tsl2671] = tsl2x71_lux_table, [tmd2671] = tmd2x71_lux_table, [tsl2771] = tsl2x71_lux_table, [tmd2771] = tmd2x71_lux_table, [tsl2572] = tsl2x72_lux_table, [tsl2672] = tsl2x72_lux_table, [tmd2672] = tmd2x72_lux_table, [tsl2772] = tsl2x72_lux_table, [tmd2772] = tmd2x72_lux_table, [apds9930] = apds9930_lux_table, }; static const struct tsl2772_settings tsl2772_default_settings = { .als_time = 255, /* 2.72 / 2.73 ms */ .als_gain = 0, .prox_time = 255, /* 2.72 / 2.73 ms */ .prox_gain = 0, .wait_time = 255, .als_prox_config = 0, .als_gain_trim = 1000, .als_cal_target = 150, .als_persistence = 1, .als_interrupt_en = false, .als_thresh_low = 200, .als_thresh_high = 256, .prox_persistence = 1, .prox_interrupt_en = false, .prox_thres_low = 0, .prox_thres_high = 512, .prox_max_samples_cal = 30, .prox_pulse_count = 8, .prox_diode = TSL2772_DIODE1, .prox_power = TSL2772_100_mA }; static const s16 tsl2772_als_gain[] = { 1, 8, 16, 120 }; static const s16 tsl2772_prox_gain[] = { 1, 2, 4, 8 }; static const int tsl2772_int_time_avail[][6] = { [tsl2571] = { 0, 2720, 0, 2720, 0, 696000 }, [tsl2671] = { 0, 2720, 0, 2720, 0, 696000 }, [tmd2671] = { 0, 2720, 0, 2720, 0, 696000 }, [tsl2771] = { 0, 2720, 0, 2720, 0, 696000 }, [tmd2771] = { 0, 2720, 0, 2720, 0, 696000 }, [tsl2572] = { 0, 2730, 0, 2730, 0, 699000 }, [tsl2672] = { 0, 2730, 0, 2730, 0, 699000 }, [tmd2672] = { 0, 2730, 0, 2730, 0, 699000 }, [tsl2772] = { 0, 2730, 0, 2730, 0, 699000 }, [tmd2772] = { 0, 2730, 0, 2730, 0, 699000 }, [apds9930] = { 0, 2730, 0, 2730, 0, 699000 }, }; static int tsl2772_int_calibscale_avail[] = { 1, 8, 16, 120 }; static int tsl2772_prox_calibscale_avail[] = { 1, 2, 4, 8 }; /* Channel variations */ enum { ALS, PRX, ALSPRX, PRX2, ALSPRX2, }; static const u8 device_channel_config[] = { [tsl2571] = ALS, [tsl2671] = PRX, [tmd2671] = PRX, [tsl2771] = ALSPRX, [tmd2771] = ALSPRX, [tsl2572] = ALS, [tsl2672] = PRX2, [tmd2672] = PRX2, [tsl2772] = ALSPRX2, [tmd2772] = ALSPRX2, [apds9930] = ALSPRX2, }; static int tsl2772_read_status(struct tsl2772_chip *chip) { int ret; ret = i2c_smbus_read_byte_data(chip->client, TSL2772_CMD_REG | TSL2772_STATUS); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to read STATUS register: %d\n", __func__, ret); return ret; } static int tsl2772_write_control_reg(struct tsl2772_chip *chip, u8 data) { int ret; ret = i2c_smbus_write_byte_data(chip->client, TSL2772_CMD_REG | TSL2772_CNTRL, data); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to write to control register %x: %d\n", __func__, data, ret); } return ret; } static int tsl2772_read_autoinc_regs(struct tsl2772_chip *chip, int lower_reg, int upper_reg) { u8 buf[2]; int ret; ret = i2c_smbus_write_byte(chip->client, TSL2772_CMD_REG | TSL2772_CMD_AUTOINC_PROTO | lower_reg); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to enable auto increment protocol: %d\n", __func__, ret); return ret; } ret = i2c_smbus_read_byte_data(chip->client, TSL2772_CMD_REG | lower_reg); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read from register %x: %d\n", __func__, lower_reg, ret); return ret; } buf[0] = ret; ret = i2c_smbus_read_byte_data(chip->client, TSL2772_CMD_REG | upper_reg); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read from register %x: %d\n", __func__, upper_reg, ret); return ret; } buf[1] = ret; ret = i2c_smbus_write_byte(chip->client, TSL2772_CMD_REG | TSL2772_CMD_REPEAT_PROTO | lower_reg); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to enable repeated byte protocol: %d\n", __func__, ret); return ret; } return le16_to_cpup((const __le16 *)&buf[0]); } /** * tsl2772_get_lux() - Reads and calculates current lux value. * @indio_dev: pointer to IIO device * * The raw ch0 and ch1 values of the ambient light sensed in the last * integration cycle are read from the device. The raw values are multiplied * by a device-specific scale factor, and divided by the integration time and * device gain. The code supports multiple lux equations through the lux table * coefficients. A lux gain trim is applied to each lux equation, and then the * maximum lux within the interval 0..65535 is selected. */ static int tsl2772_get_lux(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); struct tsl2772_lux *p; int max_lux, ret; bool overflow; mutex_lock(&chip->als_mutex); if (chip->tsl2772_chip_status != TSL2772_CHIP_WORKING) { dev_err(&chip->client->dev, "%s: device is not enabled\n", __func__); ret = -EBUSY; goto out_unlock; } ret = tsl2772_read_status(chip); if (ret < 0) goto out_unlock; if (!(ret & TSL2772_STA_ADC_VALID)) { dev_err(&chip->client->dev, "%s: data not valid yet\n", __func__); ret = chip->als_cur_info.lux; /* return LAST VALUE */ goto out_unlock; } ret = tsl2772_read_autoinc_regs(chip, TSL2772_ALS_CHAN0LO, TSL2772_ALS_CHAN0HI); if (ret < 0) goto out_unlock; chip->als_cur_info.als_ch0 = ret; ret = tsl2772_read_autoinc_regs(chip, TSL2772_ALS_CHAN1LO, TSL2772_ALS_CHAN1HI); if (ret < 0) goto out_unlock; chip->als_cur_info.als_ch1 = ret; if (chip->als_cur_info.als_ch0 >= chip->als_saturation) { max_lux = TSL2772_LUX_CALC_OVER_FLOW; goto update_struct_with_max_lux; } if (!chip->als_cur_info.als_ch0) { /* have no data, so return LAST VALUE */ ret = chip->als_cur_info.lux; goto out_unlock; } max_lux = 0; overflow = false; for (p = (struct tsl2772_lux *)chip->tsl2772_device_lux; p->ch0 != 0; p++) { int lux; lux = ((chip->als_cur_info.als_ch0 * p->ch0) - (chip->als_cur_info.als_ch1 * p->ch1)) / chip->als_gain_time_scale; /* * The als_gain_trim can have a value within the range 250..4000 * and is a multiplier for the lux. A trim of 1000 makes no * changes to the lux, less than 1000 scales it down, and * greater than 1000 scales it up. */ lux = (lux * chip->settings.als_gain_trim) / 1000; if (lux > TSL2772_LUX_CALC_OVER_FLOW) { overflow = true; continue; } max_lux = max(max_lux, lux); } if (overflow && max_lux == 0) max_lux = TSL2772_LUX_CALC_OVER_FLOW; update_struct_with_max_lux: chip->als_cur_info.lux = max_lux; ret = max_lux; out_unlock: mutex_unlock(&chip->als_mutex); return ret; } /** * tsl2772_get_prox() - Reads proximity data registers and updates * chip->prox_data. * * @indio_dev: pointer to IIO device */ static int tsl2772_get_prox(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->prox_mutex); ret = tsl2772_read_status(chip); if (ret < 0) goto prox_poll_err; switch (chip->id) { case tsl2571: case tsl2671: case tmd2671: case tsl2771: case tmd2771: if (!(ret & TSL2772_STA_ADC_VALID)) { ret = -EINVAL; goto prox_poll_err; } break; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: case apds9930: if (!(ret & TSL2772_STA_PRX_VALID)) { ret = -EINVAL; goto prox_poll_err; } break; } ret = tsl2772_read_autoinc_regs(chip, TSL2772_PRX_LO, TSL2772_PRX_HI); if (ret < 0) goto prox_poll_err; chip->prox_data = ret; prox_poll_err: mutex_unlock(&chip->prox_mutex); return ret; } static int tsl2772_read_prox_led_current(struct tsl2772_chip *chip) { struct device_node *of_node = chip->client->dev.of_node; int ret, tmp, i; ret = of_property_read_u32(of_node, "led-max-microamp", &tmp); if (ret < 0) return ret; for (i = 0; tsl2772_led_currents[i][0] != 0; i++) { if (tmp == tsl2772_led_currents[i][0]) { chip->settings.prox_power = tsl2772_led_currents[i][1]; return 0; } } dev_err(&chip->client->dev, "Invalid value %d for led-max-microamp\n", tmp); return -EINVAL; } static int tsl2772_read_prox_diodes(struct tsl2772_chip *chip) { struct device_node *of_node = chip->client->dev.of_node; int i, ret, num_leds, prox_diode_mask; u32 leds[TSL2772_MAX_PROX_LEDS]; ret = of_property_count_u32_elems(of_node, "amstaos,proximity-diodes"); if (ret < 0) return ret; num_leds = ret; if (num_leds > TSL2772_MAX_PROX_LEDS) num_leds = TSL2772_MAX_PROX_LEDS; ret = of_property_read_u32_array(of_node, "amstaos,proximity-diodes", leds, num_leds); if (ret < 0) { dev_err(&chip->client->dev, "Invalid value for amstaos,proximity-diodes: %d.\n", ret); return ret; } prox_diode_mask = 0; for (i = 0; i < num_leds; i++) { if (leds[i] == 0) prox_diode_mask |= TSL2772_DIODE0; else if (leds[i] == 1) prox_diode_mask |= TSL2772_DIODE1; else { dev_err(&chip->client->dev, "Invalid value %d in amstaos,proximity-diodes.\n", leds[i]); return -EINVAL; } } return 0; } static void tsl2772_parse_dt(struct tsl2772_chip *chip) { tsl2772_read_prox_led_current(chip); tsl2772_read_prox_diodes(chip); } /** * tsl2772_defaults() - Populates the device nominal operating parameters * with those provided by a 'platform' data struct or * with prefined defaults. * * @chip: pointer to device structure. */ static void tsl2772_defaults(struct tsl2772_chip *chip) { /* If Operational settings defined elsewhere.. */ if (chip->pdata && chip->pdata->platform_default_settings) memcpy(&chip->settings, chip->pdata->platform_default_settings, sizeof(tsl2772_default_settings)); else memcpy(&chip->settings, &tsl2772_default_settings, sizeof(tsl2772_default_settings)); /* Load up the proper lux table. */ if (chip->pdata && chip->pdata->platform_lux_table[0].ch0 != 0) memcpy(chip->tsl2772_device_lux, chip->pdata->platform_lux_table, sizeof(chip->pdata->platform_lux_table)); else memcpy(chip->tsl2772_device_lux, tsl2772_default_lux_table_group[chip->id], TSL2772_DEFAULT_TABLE_BYTES); tsl2772_parse_dt(chip); } /** * tsl2772_als_calibrate() - Obtain single reading and calculate * the als_gain_trim. * * @indio_dev: pointer to IIO device */ static int tsl2772_als_calibrate(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); int ret, lux_val; ret = i2c_smbus_read_byte_data(chip->client, TSL2772_CMD_REG | TSL2772_CNTRL); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to read from the CNTRL register\n", __func__); return ret; } if ((ret & (TSL2772_CNTL_ADC_ENBL | TSL2772_CNTL_PWR_ON)) != (TSL2772_CNTL_ADC_ENBL | TSL2772_CNTL_PWR_ON)) { dev_err(&chip->client->dev, "%s: Device is not powered on and/or ADC is not enabled\n", __func__); return -EINVAL; } else if ((ret & TSL2772_STA_ADC_VALID) != TSL2772_STA_ADC_VALID) { dev_err(&chip->client->dev, "%s: The two ADC channels have not completed an integration cycle\n", __func__); return -ENODATA; } lux_val = tsl2772_get_lux(indio_dev); if (lux_val < 0) { dev_err(&chip->client->dev, "%s: failed to get lux\n", __func__); return lux_val; } if (lux_val == 0) return -ERANGE; ret = (chip->settings.als_cal_target * chip->settings.als_gain_trim) / lux_val; if (ret < TSL2772_ALS_GAIN_TRIM_MIN || ret > TSL2772_ALS_GAIN_TRIM_MAX) return -ERANGE; chip->settings.als_gain_trim = ret; return ret; } static void tsl2772_disable_regulators_action(void *_data) { struct tsl2772_chip *chip = _data; regulator_bulk_disable(ARRAY_SIZE(chip->supplies), chip->supplies); } static int tsl2772_chip_on(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); int ret, i, als_count, als_time_us; u8 *dev_reg, reg_val; /* Non calculated parameters */ chip->tsl2772_config[TSL2772_ALS_TIME] = chip->settings.als_time; chip->tsl2772_config[TSL2772_PRX_TIME] = chip->settings.prox_time; chip->tsl2772_config[TSL2772_WAIT_TIME] = chip->settings.wait_time; chip->tsl2772_config[TSL2772_ALS_PRX_CONFIG] = chip->settings.als_prox_config; chip->tsl2772_config[TSL2772_ALS_MINTHRESHLO] = (chip->settings.als_thresh_low) & 0xFF; chip->tsl2772_config[TSL2772_ALS_MINTHRESHHI] = (chip->settings.als_thresh_low >> 8) & 0xFF; chip->tsl2772_config[TSL2772_ALS_MAXTHRESHLO] = (chip->settings.als_thresh_high) & 0xFF; chip->tsl2772_config[TSL2772_ALS_MAXTHRESHHI] = (chip->settings.als_thresh_high >> 8) & 0xFF; chip->tsl2772_config[TSL2772_PERSISTENCE] = (chip->settings.prox_persistence & 0xFF) << 4 | (chip->settings.als_persistence & 0xFF); chip->tsl2772_config[TSL2772_PRX_COUNT] = chip->settings.prox_pulse_count; chip->tsl2772_config[TSL2772_PRX_MINTHRESHLO] = (chip->settings.prox_thres_low) & 0xFF; chip->tsl2772_config[TSL2772_PRX_MINTHRESHHI] = (chip->settings.prox_thres_low >> 8) & 0xFF; chip->tsl2772_config[TSL2772_PRX_MAXTHRESHLO] = (chip->settings.prox_thres_high) & 0xFF; chip->tsl2772_config[TSL2772_PRX_MAXTHRESHHI] = (chip->settings.prox_thres_high >> 8) & 0xFF; /* and make sure we're not already on */ if (chip->tsl2772_chip_status == TSL2772_CHIP_WORKING) { /* if forcing a register update - turn off, then on */ dev_info(&chip->client->dev, "device is already enabled\n"); return -EINVAL; } /* Set the gain based on tsl2772_settings struct */ chip->tsl2772_config[TSL2772_GAIN] = (chip->settings.als_gain & 0xFF) | ((chip->settings.prox_gain & 0xFF) << 2) | (chip->settings.prox_diode << 4) | (chip->settings.prox_power << 6); /* set chip time scaling and saturation */ als_count = 256 - chip->settings.als_time; als_time_us = als_count * tsl2772_int_time_avail[chip->id][3]; chip->als_saturation = als_count * 768; /* 75% of full scale */ chip->als_gain_time_scale = als_time_us * tsl2772_als_gain[chip->settings.als_gain]; /* * TSL2772 Specific power-on / adc enable sequence * Power on the device 1st. */ ret = tsl2772_write_control_reg(chip, TSL2772_CNTL_PWR_ON); if (ret < 0) return ret; /* * Use the following shadow copy for our delay before enabling ADC. * Write all the registers. */ for (i = 0, dev_reg = chip->tsl2772_config; i < TSL2772_MAX_CONFIG_REG; i++) { int reg = TSL2772_CMD_REG + i; ret = i2c_smbus_write_byte_data(chip->client, reg, *dev_reg++); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to write to register %x: %d\n", __func__, reg, ret); return ret; } } /* Power-on settling time */ usleep_range(3000, 3500); reg_val = TSL2772_CNTL_PWR_ON | TSL2772_CNTL_ADC_ENBL | TSL2772_CNTL_PROX_DET_ENBL; if (chip->settings.als_interrupt_en) reg_val |= TSL2772_CNTL_ALS_INT_ENBL; if (chip->settings.prox_interrupt_en) reg_val |= TSL2772_CNTL_PROX_INT_ENBL; ret = tsl2772_write_control_reg(chip, reg_val); if (ret < 0) return ret; ret = i2c_smbus_write_byte(chip->client, TSL2772_CMD_REG | TSL2772_CMD_SPL_FN | TSL2772_CMD_PROXALS_INT_CLR); if (ret < 0) { dev_err(&chip->client->dev, "%s: failed to clear interrupt status: %d\n", __func__, ret); return ret; } chip->tsl2772_chip_status = TSL2772_CHIP_WORKING; return ret; } static int tsl2772_chip_off(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); /* turn device off */ chip->tsl2772_chip_status = TSL2772_CHIP_SUSPENDED; return tsl2772_write_control_reg(chip, 0x00); } static void tsl2772_chip_off_action(void *data) { struct iio_dev *indio_dev = data; tsl2772_chip_off(indio_dev); } /** * tsl2772_invoke_change - power cycle the device to implement the user * parameters * @indio_dev: pointer to IIO device * * Obtain and lock both ALS and PROX resources, determine and save device state * (On/Off), cycle device to implement updated parameter, put device back into * proper state, and unlock resource. */ static int tsl2772_invoke_change(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); int device_status = chip->tsl2772_chip_status; int ret; mutex_lock(&chip->als_mutex); mutex_lock(&chip->prox_mutex); if (device_status == TSL2772_CHIP_WORKING) { ret = tsl2772_chip_off(indio_dev); if (ret < 0) goto unlock; } ret = tsl2772_chip_on(indio_dev); unlock: mutex_unlock(&chip->prox_mutex); mutex_unlock(&chip->als_mutex); return ret; } static int tsl2772_prox_cal(struct iio_dev *indio_dev) { struct tsl2772_chip *chip = iio_priv(indio_dev); int prox_history[MAX_SAMPLES_CAL + 1]; int i, ret, mean, max, sample_sum; if (chip->settings.prox_max_samples_cal < 1 || chip->settings.prox_max_samples_cal > MAX_SAMPLES_CAL) return -EINVAL; for (i = 0; i < chip->settings.prox_max_samples_cal; i++) { usleep_range(15000, 17500); ret = tsl2772_get_prox(indio_dev); if (ret < 0) return ret; prox_history[i] = chip->prox_data; } sample_sum = 0; max = INT_MIN; for (i = 0; i < chip->settings.prox_max_samples_cal; i++) { sample_sum += prox_history[i]; max = max(max, prox_history[i]); } mean = sample_sum / chip->settings.prox_max_samples_cal; chip->settings.prox_thres_high = (max << 1) - mean; return tsl2772_invoke_change(indio_dev); } static int tsl2772_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct tsl2772_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_INTENSITY) { *length = ARRAY_SIZE(tsl2772_int_calibscale_avail); *vals = tsl2772_int_calibscale_avail; } else { *length = ARRAY_SIZE(tsl2772_prox_calibscale_avail); *vals = tsl2772_prox_calibscale_avail; } *type = IIO_VAL_INT; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_INT_TIME: *length = ARRAY_SIZE(tsl2772_int_time_avail[chip->id]); *vals = tsl2772_int_time_avail[chip->id]; *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_RANGE; } return -EINVAL; } static ssize_t in_illuminance0_target_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2772_chip *chip = iio_priv(dev_to_iio_dev(dev)); return scnprintf(buf, PAGE_SIZE, "%d\n", chip->settings.als_cal_target); } static ssize_t in_illuminance0_target_input_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2772_chip *chip = iio_priv(indio_dev); u16 value; int ret; if (kstrtou16(buf, 0, &value)) return -EINVAL; chip->settings.als_cal_target = value; ret = tsl2772_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_illuminance0_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; int ret; if (kstrtobool(buf, &value) || !value) return -EINVAL; ret = tsl2772_als_calibrate(indio_dev); if (ret < 0) return ret; ret = tsl2772_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_illuminance0_lux_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct tsl2772_chip *chip = iio_priv(dev_to_iio_dev(dev)); int i = 0; int offset = 0; while (i < TSL2772_MAX_LUX_TABLE_SIZE) { offset += scnprintf(buf + offset, PAGE_SIZE - offset, "%u,%u,", chip->tsl2772_device_lux[i].ch0, chip->tsl2772_device_lux[i].ch1); if (chip->tsl2772_device_lux[i].ch0 == 0) { /* * We just printed the first "0" entry. * Now get rid of the extra "," and break. */ offset--; break; } i++; } offset += scnprintf(buf + offset, PAGE_SIZE - offset, "\n"); return offset; } static ssize_t in_illuminance0_lux_table_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct tsl2772_chip *chip = iio_priv(indio_dev); int value[ARRAY_SIZE(chip->tsl2772_device_lux) * 2 + 1]; int n, ret; get_options(buf, ARRAY_SIZE(value), value); /* * We now have an array of ints starting at value[1], and * enumerated by value[0]. * We expect each group of two ints to be one table entry, * and the last table entry is all 0. */ n = value[0]; if ((n % 2) || n < 4 || n > ((ARRAY_SIZE(chip->tsl2772_device_lux) - 1) * 2)) return -EINVAL; if ((value[(n - 1)] | value[n]) != 0) return -EINVAL; if (chip->tsl2772_chip_status == TSL2772_CHIP_WORKING) { ret = tsl2772_chip_off(indio_dev); if (ret < 0) return ret; } /* Zero out the table */ memset(chip->tsl2772_device_lux, 0, sizeof(chip->tsl2772_device_lux)); memcpy(chip->tsl2772_device_lux, &value[1], (value[0] * 4)); ret = tsl2772_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static ssize_t in_proximity0_calibrate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); bool value; int ret; if (kstrtobool(buf, &value) || !value) return -EINVAL; ret = tsl2772_prox_cal(indio_dev); if (ret < 0) return ret; ret = tsl2772_invoke_change(indio_dev); if (ret < 0) return ret; return len; } static int tsl2772_read_interrupt_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct tsl2772_chip *chip = iio_priv(indio_dev); if (chan->type == IIO_INTENSITY) return chip->settings.als_interrupt_en; else return chip->settings.prox_interrupt_en; } static int tsl2772_write_interrupt_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int val) { struct tsl2772_chip *chip = iio_priv(indio_dev); if (chan->type == IIO_INTENSITY) chip->settings.als_interrupt_en = val ? true : false; else chip->settings.prox_interrupt_en = val ? true : false; return tsl2772_invoke_change(indio_dev); } static int tsl2772_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct tsl2772_chip *chip = iio_priv(indio_dev); int ret = -EINVAL, count, persistence; u8 time; switch (info) { case IIO_EV_INFO_VALUE: if (chan->type == IIO_INTENSITY) { switch (dir) { case IIO_EV_DIR_RISING: chip->settings.als_thresh_high = val; ret = 0; break; case IIO_EV_DIR_FALLING: chip->settings.als_thresh_low = val; ret = 0; break; default: break; } } else { switch (dir) { case IIO_EV_DIR_RISING: chip->settings.prox_thres_high = val; ret = 0; break; case IIO_EV_DIR_FALLING: chip->settings.prox_thres_low = val; ret = 0; break; default: break; } } break; case IIO_EV_INFO_PERIOD: if (chan->type == IIO_INTENSITY) time = chip->settings.als_time; else time = chip->settings.prox_time; count = 256 - time; persistence = ((val * 1000000) + val2) / (count * tsl2772_int_time_avail[chip->id][3]); if (chan->type == IIO_INTENSITY) { /* ALS filter values are 1, 2, 3, 5, 10, 15, ..., 60 */ if (persistence > 3) persistence = (persistence / 5) + 3; chip->settings.als_persistence = persistence; } else { chip->settings.prox_persistence = persistence; } ret = 0; break; default: break; } if (ret < 0) return ret; return tsl2772_invoke_change(indio_dev); } static int tsl2772_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct tsl2772_chip *chip = iio_priv(indio_dev); int filter_delay, persistence; u8 time; switch (info) { case IIO_EV_INFO_VALUE: if (chan->type == IIO_INTENSITY) { switch (dir) { case IIO_EV_DIR_RISING: *val = chip->settings.als_thresh_high; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: *val = chip->settings.als_thresh_low; return IIO_VAL_INT; default: return -EINVAL; } } else { switch (dir) { case IIO_EV_DIR_RISING: *val = chip->settings.prox_thres_high; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: *val = chip->settings.prox_thres_low; return IIO_VAL_INT; default: return -EINVAL; } } break; case IIO_EV_INFO_PERIOD: if (chan->type == IIO_INTENSITY) { time = chip->settings.als_time; persistence = chip->settings.als_persistence; /* ALS filter values are 1, 2, 3, 5, 10, 15, ..., 60 */ if (persistence > 3) persistence = (persistence - 3) * 5; } else { time = chip->settings.prox_time; persistence = chip->settings.prox_persistence; } filter_delay = persistence * (256 - time) * tsl2772_int_time_avail[chip->id][3]; *val = filter_delay / 1000000; *val2 = filter_delay % 1000000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int tsl2772_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct tsl2772_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: tsl2772_get_lux(indio_dev); *val = chip->als_cur_info.lux; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_INTENSITY: tsl2772_get_lux(indio_dev); if (chan->channel == 0) *val = chip->als_cur_info.als_ch0; else *val = chip->als_cur_info.als_ch1; return IIO_VAL_INT; case IIO_PROXIMITY: tsl2772_get_prox(indio_dev); *val = chip->prox_data; return IIO_VAL_INT; default: return -EINVAL; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) *val = tsl2772_als_gain[chip->settings.als_gain]; else *val = tsl2772_prox_gain[chip->settings.prox_gain]; return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBBIAS: *val = chip->settings.als_gain_trim; return IIO_VAL_INT; case IIO_CHAN_INFO_INT_TIME: *val = 0; *val2 = (256 - chip->settings.als_time) * tsl2772_int_time_avail[chip->id][3]; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int tsl2772_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct tsl2772_chip *chip = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_INTENSITY) { switch (val) { case 1: chip->settings.als_gain = 0; break; case 8: chip->settings.als_gain = 1; break; case 16: chip->settings.als_gain = 2; break; case 120: chip->settings.als_gain = 3; break; default: return -EINVAL; } } else { switch (val) { case 1: chip->settings.prox_gain = 0; break; case 2: chip->settings.prox_gain = 1; break; case 4: chip->settings.prox_gain = 2; break; case 8: chip->settings.prox_gain = 3; break; default: return -EINVAL; } } break; case IIO_CHAN_INFO_CALIBBIAS: if (val < TSL2772_ALS_GAIN_TRIM_MIN || val > TSL2772_ALS_GAIN_TRIM_MAX) return -EINVAL; chip->settings.als_gain_trim = val; break; case IIO_CHAN_INFO_INT_TIME: if (val != 0 || val2 < tsl2772_int_time_avail[chip->id][1] || val2 > tsl2772_int_time_avail[chip->id][5]) return -EINVAL; chip->settings.als_time = 256 - (val2 / tsl2772_int_time_avail[chip->id][3]); break; default: return -EINVAL; } return tsl2772_invoke_change(indio_dev); } static DEVICE_ATTR_RW(in_illuminance0_target_input); static DEVICE_ATTR_WO(in_illuminance0_calibrate); static DEVICE_ATTR_WO(in_proximity0_calibrate); static DEVICE_ATTR_RW(in_illuminance0_lux_table); /* Use the default register values to identify the Taos device */ static int tsl2772_device_id_verif(int id, int target) { switch (target) { case tsl2571: case tsl2671: case tsl2771: return (id & 0xf0) == TRITON_ID; case tmd2671: case tmd2771: return (id & 0xf0) == HALIBUT_ID; case tsl2572: case tsl2672: case tmd2672: case tsl2772: case tmd2772: case apds9930: return (id & 0xf0) == SWORDFISH_ID; } return -EINVAL; } static irqreturn_t tsl2772_event_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct tsl2772_chip *chip = iio_priv(indio_dev); s64 timestamp = iio_get_time_ns(indio_dev); int ret; ret = tsl2772_read_status(chip); if (ret < 0) return IRQ_HANDLED; /* What type of interrupt do we need to process */ if (ret & TSL2772_STA_PRX_INTR) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } if (ret & TSL2772_STA_ALS_INTR) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), timestamp); } ret = i2c_smbus_write_byte(chip->client, TSL2772_CMD_REG | TSL2772_CMD_SPL_FN | TSL2772_CMD_PROXALS_INT_CLR); if (ret < 0) dev_err(&chip->client->dev, "%s: failed to clear interrupt status: %d\n", __func__, ret); return IRQ_HANDLED; } static struct attribute *tsl2772_ALS_device_attrs[] = { &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, NULL }; static struct attribute *tsl2772_PRX_device_attrs[] = { &dev_attr_in_proximity0_calibrate.attr, NULL }; static struct attribute *tsl2772_ALSPRX_device_attrs[] = { &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, NULL }; static struct attribute *tsl2772_PRX2_device_attrs[] = { &dev_attr_in_proximity0_calibrate.attr, NULL }; static struct attribute *tsl2772_ALSPRX2_device_attrs[] = { &dev_attr_in_illuminance0_target_input.attr, &dev_attr_in_illuminance0_calibrate.attr, &dev_attr_in_illuminance0_lux_table.attr, &dev_attr_in_proximity0_calibrate.attr, NULL }; static const struct attribute_group tsl2772_device_attr_group_tbl[] = { [ALS] = { .attrs = tsl2772_ALS_device_attrs, }, [PRX] = { .attrs = tsl2772_PRX_device_attrs, }, [ALSPRX] = { .attrs = tsl2772_ALSPRX_device_attrs, }, [PRX2] = { .attrs = tsl2772_PRX2_device_attrs, }, [ALSPRX2] = { .attrs = tsl2772_ALSPRX2_device_attrs, }, }; #define TSL2772_DEVICE_INFO(type)[type] = \ { \ .attrs = &tsl2772_device_attr_group_tbl[type], \ .read_raw = &tsl2772_read_raw, \ .read_avail = &tsl2772_read_avail, \ .write_raw = &tsl2772_write_raw, \ .read_event_value = &tsl2772_read_event_value, \ .write_event_value = &tsl2772_write_event_value, \ .read_event_config = &tsl2772_read_interrupt_config, \ .write_event_config = &tsl2772_write_interrupt_config, \ } static const struct iio_info tsl2772_device_info[] = { TSL2772_DEVICE_INFO(ALS), TSL2772_DEVICE_INFO(PRX), TSL2772_DEVICE_INFO(ALSPRX), TSL2772_DEVICE_INFO(PRX2), TSL2772_DEVICE_INFO(ALSPRX2), }; static const struct iio_event_spec tsl2772_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_PERIOD) | BIT(IIO_EV_INFO_ENABLE), }, }; static const struct tsl2772_chip_info tsl2772_chip_info_tbl[] = { [ALS] = { .channel_with_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, }, }, .channel_without_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, }, }, .chan_table_elements = 3, .info = &tsl2772_device_info[ALS], }, [PRX] = { .channel_with_events = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, }, .channel_without_events = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, }, .chan_table_elements = 1, .info = &tsl2772_device_info[PRX], }, [ALSPRX] = { .channel_with_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, }, .channel_without_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, }, .chan_table_elements = 4, .info = &tsl2772_device_info[ALSPRX], }, [PRX2] = { .channel_with_events = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, }, .channel_without_events = { { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBSCALE), }, }, .chan_table_elements = 1, .info = &tsl2772_device_info[PRX2], }, [ALSPRX2] = { .channel_with_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBSCALE), .event_spec = tsl2772_events, .num_event_specs = ARRAY_SIZE(tsl2772_events), }, }, .channel_without_events = { { .type = IIO_LIGHT, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_CALIBSCALE), }, { .type = IIO_INTENSITY, .indexed = 1, .channel = 1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .indexed = 1, .channel = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBSCALE), .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBSCALE), }, }, .chan_table_elements = 4, .info = &tsl2772_device_info[ALSPRX2], }, }; static int tsl2772_probe(struct i2c_client *clientp, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct tsl2772_chip *chip; int ret; indio_dev = devm_iio_device_alloc(&clientp->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); chip->client = clientp; i2c_set_clientdata(clientp, indio_dev); chip->supplies[TSL2772_SUPPLY_VDD].supply = "vdd"; chip->supplies[TSL2772_SUPPLY_VDDIO].supply = "vddio"; ret = devm_regulator_bulk_get(&clientp->dev, ARRAY_SIZE(chip->supplies), chip->supplies); if (ret < 0) { if (ret != -EPROBE_DEFER) dev_err(&clientp->dev, "Failed to get regulators: %d\n", ret); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(chip->supplies), chip->supplies); if (ret < 0) { dev_err(&clientp->dev, "Failed to enable regulators: %d\n", ret); return ret; } ret = devm_add_action_or_reset(&clientp->dev, tsl2772_disable_regulators_action, chip); if (ret < 0) { dev_err(&clientp->dev, "Failed to setup regulator cleanup action %d\n", ret); return ret; } usleep_range(TSL2772_BOOT_MIN_SLEEP_TIME, TSL2772_BOOT_MAX_SLEEP_TIME); ret = i2c_smbus_read_byte_data(chip->client, TSL2772_CMD_REG | TSL2772_CHIPID); if (ret < 0) return ret; if (tsl2772_device_id_verif(ret, id->driver_data) <= 0) { dev_info(&chip->client->dev, "%s: i2c device found does not match expected id\n", __func__); return -EINVAL; } ret = i2c_smbus_write_byte(clientp, TSL2772_CMD_REG | TSL2772_CNTRL); if (ret < 0) { dev_err(&clientp->dev, "%s: Failed to write to CMD register: %d\n", __func__, ret); return ret; } mutex_init(&chip->als_mutex); mutex_init(&chip->prox_mutex); chip->tsl2772_chip_status = TSL2772_CHIP_UNKNOWN; chip->pdata = dev_get_platdata(&clientp->dev); chip->id = id->driver_data; chip->chip_info = &tsl2772_chip_info_tbl[device_channel_config[id->driver_data]]; indio_dev->info = chip->chip_info->info; indio_dev->dev.parent = &clientp->dev; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = chip->client->name; indio_dev->num_channels = chip->chip_info->chan_table_elements; if (clientp->irq) { indio_dev->channels = chip->chip_info->channel_with_events; ret = devm_request_threaded_irq(&clientp->dev, clientp->irq, NULL, &tsl2772_event_handler, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "TSL2772_event", indio_dev); if (ret) { dev_err(&clientp->dev, "%s: irq request failed\n", __func__); return ret; } } else { indio_dev->channels = chip->chip_info->channel_without_events; } tsl2772_defaults(chip); ret = tsl2772_chip_on(indio_dev); if (ret < 0) return ret; ret = devm_add_action_or_reset(&clientp->dev, tsl2772_chip_off_action, indio_dev); if (ret < 0) return ret; return devm_iio_device_register(&clientp->dev, indio_dev); } static int tsl2772_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2772_chip *chip = iio_priv(indio_dev); int ret; ret = tsl2772_chip_off(indio_dev); regulator_bulk_disable(ARRAY_SIZE(chip->supplies), chip->supplies); return ret; } static int tsl2772_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct tsl2772_chip *chip = iio_priv(indio_dev); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(chip->supplies), chip->supplies); if (ret < 0) return ret; usleep_range(TSL2772_BOOT_MIN_SLEEP_TIME, TSL2772_BOOT_MAX_SLEEP_TIME); return tsl2772_chip_on(indio_dev); } static const struct i2c_device_id tsl2772_idtable[] = { { "tsl2571", tsl2571 }, { "tsl2671", tsl2671 }, { "tmd2671", tmd2671 }, { "tsl2771", tsl2771 }, { "tmd2771", tmd2771 }, { "tsl2572", tsl2572 }, { "tsl2672", tsl2672 }, { "tmd2672", tmd2672 }, { "tsl2772", tsl2772 }, { "tmd2772", tmd2772 }, { "apds9930", apds9930}, {} }; MODULE_DEVICE_TABLE(i2c, tsl2772_idtable); static const struct of_device_id tsl2772_of_match[] = { { .compatible = "amstaos,tsl2571" }, { .compatible = "amstaos,tsl2671" }, { .compatible = "amstaos,tmd2671" }, { .compatible = "amstaos,tsl2771" }, { .compatible = "amstaos,tmd2771" }, { .compatible = "amstaos,tsl2572" }, { .compatible = "amstaos,tsl2672" }, { .compatible = "amstaos,tmd2672" }, { .compatible = "amstaos,tsl2772" }, { .compatible = "amstaos,tmd2772" }, { .compatible = "avago,apds9930" }, {} }; MODULE_DEVICE_TABLE(of, tsl2772_of_match); static const struct dev_pm_ops tsl2772_pm_ops = { .suspend = tsl2772_suspend, .resume = tsl2772_resume, }; static struct i2c_driver tsl2772_driver = { .driver = { .name = "tsl2772", .of_match_table = tsl2772_of_match, .pm = &tsl2772_pm_ops, }, .id_table = tsl2772_idtable, .probe = tsl2772_probe, }; module_i2c_driver(tsl2772_driver); MODULE_AUTHOR("J. August Brenner <Jon.Brenner@ams.com>"); MODULE_AUTHOR("Brian Masney <masneyb@onstation.org>"); MODULE_DESCRIPTION("TAOS tsl2772 ambient and proximity light sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1